

Automatic Recommendation of Software Design Patterns:
Text Retrieval Approach

Abeer Hamdy1, 2*
 , Mohamed Elsayed1

1Faculty of Informatics and Computer Science, British University in Egypt, Elshorouk city, Egypt
2Computers and Systems Departments, Electronics Research Institute, Cairo, Egypt

*
Corresponding Author: Abeer.hamdy@bue.edu.eg

Manuscript submitted February 2018; accepted April 23, 2018.

Abstract: Design pattern is a reusable solution to a commonly occurring design problem in certain context.

Using design patterns in software development improves the product’s quality, understandability and

productivity. However, it is a challenging task for novice developers to select the right design pattern to

solve a design problem. The paper proposes a methodology for the automatic selection of the fit design

pattern from a list of patterns. The proposed methodology is based on Text retrieval approach where the

design problem scenarios are described in natural language. A vector space model (VSM) was created for

the catalogue of design patterns. A vector of features consists of unigrams and bigrams is generated for the

given design problem scenario. The recommended design pattern is the closest to the problem scenario.

The proposed mechanism was evaluated using the Gang of four design patterns and the experimental

results showed the effectiveness of the proposed methodology.

Keywords: Design pattern selection, Gang of four, Information retrieval, Recommendation, Vector space

model.

1. Introduction

In software engineering, a software design pattern (DP) is a general well-proven reusable solution to a

recurring problem within a given context in software design. Design patterns represent a standardized and

well documented best practices used by experienced software developers. Using design patterns in

software development results in increasing the software reusability, quality and maintainability, in addition

to reducing the technical risk to the project by not having to develop and test a new design. Furthermore,

design patterns consider a communication language that facilitates the communication among the

development team members [1], [2].

 However, The existing of a large number of design patterns makes the selection of a fit design pattern for a

given design problem a difficult task to the experienced developer, and makes it a challenging task for the

inexperienced one who is not familiar with design patterns. To overcome this difficulty a supporting tool

that automatically suggest to the developer a right design pattern for a given design problem during the

design phase becomes a necessity.

Recently, a number of research studies was conducted on the automatic selection of the fit design pattern.

Some of these studies developed techniques for suggesting the suitable pattern based on the UML design

diagrams [3], [4]. Other techniques are based on question-answer [5], [6]. Some studies used text

Journal of Software

260 Volume 13, Number 4, April 2018

doi: 10.17706/jsw.13.4.260-268

mailto:Corresponding%20Author:%20Abeer.hamdy@bue.edu.eg

classification and text retrieval techniques [7]-[10]. Others recommended design patterns based on anti-

patterns detected in the design documents or the code [11], [12]. Some studies used Case Based reasoning

CBR technique. Where, the fit design pattern is selected according to the previous experiences of pattern

usages stored in a knowledge base in the form of cases [13], [14].

This paper proposes an approach based on text retrieval for automating the process of software design

pattern recommendation to solve a given design problem. The motivation for this approach is the following:

1. It allows the developers to describe their design problems in natural language.

2. The task of design pattern recommendation is analog to the text retrieval task.

The structure of the paper is as follows: Section 2 Explains design patterns. Section 3 presents the

literature survey in the field of design pattern selection. Section 4 discusses the proposed approach and

section 5 discusses the experiments and the results. Finally, section 6 concludes the paper.

2. Design Pattern Illustration

The concept of design pattern was initiated in software development in 1994 when four software

engineers (Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides) published their book titled

“Design patterns: Elements of reusable object oriented software” [1]. These authors are together popular

with the title Gang of Four (GOF). GOF patterns are 23 patterns and categorized into three categories

namely Creational, Structural and Behavioral patterns. GOF defined a template to describe the patterns.

This template has two counterparts which are the pattern’s problem domain and the solution domain. The

problem domain counterpart includes the intent of the pattern and the context where the pattern can be

applied. While the solution domain counterpart includes the UML diagrams that describes the static

structure of the pattern and its dynamic behavior. In addition to, a description to the constituent

components, their responsibilities and the ways in which they collaborate. The tradeoffs (consequences)

when applying the pattern and the anti-patterns are also discussed in this counterpart. Table 1 shows part

of the description of a structural pattern called Class Adapter design pattern.

Table1. Adapter design pattern description

Category Structural

Problem Domain:

Intent Change the interface of a class into another interface. It let the classes work together without modifying their source code.

Applicability The Class Adapter pattern is used when:

- You want to reuse an existing class but its interface is not compatible with the interface you need.
- You have a class hierarchy and you need to use one or more subclasses. But you need to change their interfaces. It is

impractical to subclass the subclasses to change their interface.

- You need to have classes with incompatible interfaces work together.
Solution Domain:

Structure

Participants -Target: Defines the interface that the Client uses.

-Adaptee: The existing class with the interface that needs to be adapted.

· Adapter: Changes the interface of Adaptee class to the Target class interface.
Collaborations Client class invoke methods of an adapter object. In turn, Adapter invokes corresponding methods in the Adaptee class to

execute the request.

Journal of Software

261 Volume 13, Number 4, April 2018

3. Literature Review

The following subsections summarize the literature review in the field of design pattern selection.

3.1. UML Based Approach

Kim and Khwand [3], Kim and Shen [4] use class diagrams and collaboration diagrams to generate a

meta-model for each design pattern. However, this approach has two limitations which are: 1) the meta-

models of some patterns will be similar as some patterns are similar in their structure but they have

different intent for example State, Strategy patterns and Façade, Adapter patterns. 2) This approach is not

scalable due to the overhead resulting from generating the meta-model; in addition to the more the number

of patterns increases the more the similarity between the meta-models increases.

3.2. Question-Answer Based Approach

In question-answer based approach the software developer is provided with some questions about the

design problem. The most suitable patterns for this problem are recommended based on the designer

answers [5], [6]. Palma et al. [5] constructed a Goal-Question-Metric model (GQM) from the question-

answers to recommend patterns. In this GQM model, the defined goal is a pattern name. The system

consists of two layers, the first layer has the conditions, where the second layer has the sub-conditions. The

model evaluation has been done by a total of six graduate students along with two information technology

professionals. The outcome of the evaluation resulted in a success ratio which reached 50%. While, Pavlie

et al. [6] used the question-answers to build an ontology-based model for design patterns

recommendations. However, constructing the questions in this approach is a challenge task especially with

the large number of patterns. Furthermore, the set of questions are usually biased towards the specifics of

the design patterns themselves rather than the software design problem.

 3.3. Case Based Reasoning (CBR) Approach

In CBR approach the fit design pattern is recommended based on previous experiences (cases) stored in a

repository. Each case comprises two main parts which are: A description to the problem and the solution

(fit design pattern). Gomes et sl. [13] built a repository of cases and retrieve the closest case from the

repository for a user provided class diagram. While, Muangon and Intakosum [14] proposed a solution

where both Case Based Reasoning (CBR) and Formal Concept Analysis (FCA) are integrated together

forming a cohesive technique. This integration enabled the organization of indices to construct a complete

design problem description which is used as aid to find more suitable design patterns. Both of the indices

and case similarity are calculated using FCA. As argued by Gomes et al. The core shortcoming of CBR based

approach is the fact that its accuracy relies on both of the quality and diversity of the case repository.

3.4. Anti-Patterns Based Approach

Nahar [11] identifies the anti-patterns in the design diagrams then recommend the suitable design

pattern. Smith and Smith and Plante [12] recommend patterns at the code-level, where patterns are

recommended dynamically during the code development phase. They identify anti-patterns using structural

and behavioral matching in the code, and then suitable design patterns are recommended to overcome the

identified anti-patterns. However, design pattern recommendation in the code development phase is too

late as the software has already been designed and should be changed.

3.5. Text Classification and Retrival Based Approach

This approach is based on matching the design problem textual description against DP textual

descriptions [7]-[10]. Sanyawong et al. [7] developed classifiers to determine the design pattern category

for a given design problem. They used popular classification techniques: Naive Bayes, J48, k-NN, and SVM.

Journal of Software

262 Volume 13, Number 4, April 2018

They used 26 case studies for evaluation. Suresh [8] proposed a framework for design pattern

recommendation that depends on two approaches which are: text retrieval, question-answer. In this

framework the design problem is represented as a collection of words. Initially, the system operates on this

collection of query words with the goal of finding a suitable design pattern whose intent is similar to the

query words. In next step, the intent of top candidate design patterns are displayed for the designer to

select the most suitable pattern intent. The system provides further support to the designer through

providing a set of questions. Then the system scores the recommended patterns according to the designer

answers. Ultimately, if no suitable candidate pattern is found, the system searches for the most similar

query in its history database. Then the corresponding pattern is allocated to the problem. However they

have partially implemented and tested their framework. In addition to using the pattern intent only in the

first step will not produce a good performance and requires the involvement of the user in the selection

process.

4. Methodology

This approach is based on building a Vector Space Model (VSM) for the GOF design patterns. VSM

represents each design pattern as a vector in a vector space. Vectors that are close together in this space are

similar and vectors that are far apart are distant. The design problem will be represented as a vector in the

same space. The closest design pattern vector to the query vector is the recommended pattern for this

problem. Fig. 1 illustrates the steps of the proposed approach which starts with the textual preprocessing

then indexing and feature selection which is followed by applying a similarity measure function to select the

closest Design Pattern.

4.1. Text Preprocessing

Each design pattern description and each design problem scenario is processed through three activities:

Tokenization and Normalization then Stop-Word Removal then stemming. The goal of the preprocessing is

to reduce the feature set size and data the sparsity.

 Tokenization and Normalization: The token is a sequence of characters and does not include

delimiters such as punctuation marks and spaces. Tokenization is the process of splitting the text at

the delimiters into tokens (words). Then all the words are normalized by transferring them into

lowercase.

 Stop-Word Removal: It is the process of elimination of non-descriptive words like linking verbs and

pronouns. Stop words are considered noise, they increase the size of the Vector Space Model and do

not contribute to the retrieval process.

 Stemming: It is a process for normalizing words to their root forms. For example a stemmer can

reduce each of the words “instantiating” and “instantiated” to the word “instantiate”. Also, verbs like

“am”, “is” and “are” are transferred to the to the verb “be”. Porter stemming algorithm [15] was used

in this work.

4.2. Indexing and Feature Selection

VSM is used to represent the collection design patterns as it is common and effective Statistical

representation of a corpus of documents in many text based applications like text categorization [16] and

text summarization [13]. VSM model represents each design pattern as a vector of features. In this work

features are unigrams (words) and bigrams (two words that appear consecutively in the text). Bigram

features are important to distinguish between the different patterns especially the patterns of the creational

category. For example, all the Creational category patterns include the word “create” but the Singleton

Journal of Software

263 Volume 13, Number 4, April 2018

pattern is the only pattern that has the bigrams “create one” and “one instance”; the Factory pattern has the

bigram “create object”. Also, many patterns include the words “object” and/0r “class” ; while for example

State pattern includes the bigram “object state” , Adapter pattern has the unique bigrams “change interface”

and “incompatible interface”.

Tokenization
Stop word

removal
Stemming

PREPROCESSING

INDEXING

Unigram and

Bigram

features

TF*IDF

Weighing

COSINE SIMILARITY MEASURE

Selected Pattern

Design pattern

descriptions Design Problem

Design Problem

weighted Feature Vector
Design Patterns

weighted VSM

Design Problem

 key words

Design Patterns

key words

Fig. 1. Proposed framework for automatic selection of a design pattern.

In order to enhance the performance of the text retrieval process and clean the noises of the documents;

term weighting scheme should be used [17], where the weight of a term in a VSM reflects the relative

importance of this term for a specific DP description within a collection of DP descriptions. TF*IDF [17]

weighing mechanism was used in this work as it is a popular weighing functions and used in many text

mining applications. TF*IDF stands for Term Frequency- Inverse Document Frequency. Term frequency TF

(t,d) measures how many times a term (t) occurs in a document (d). While Document frequency DF (t,D)

measures how many documents in a collection (D) the term (t) appears in. Inverse document frequency IDF

(t,D) equals to the inverse of DF(t,D). Classical TF*IDF is computed by equation (1) as follows:

 (1)

where,
1

DF t D

TF*IDF value copes with the fact that the repetitive words in a document usually carry a high level of

information to that document, and that the less frequent a term is mentioned in a corpus the higher its

importance to the document in which it appears. It should be noted that TF*IDF computed using equation

Journal of Software

264 Volume 13, Number 4, April 2018

(1) does not take the document length into consideration. Also, TF value indicates that a term occurs five

times in a document is five times valuable than if it occurs once in the same document, which is not true. So,

other forms to compute the TF*IDF were recommended in the literature to make the TF*IDF values

correspond to user intuitions of the relevance of each term. In this work equation (2) is used to compute

TF*IDF.

 () 1 (2)

where, 1
After applying the TF*IDF each design pattern description and each problem scenario will be represented

by a vector of feature V d v t1 d v t2 d …… . . v tn d , where, d is the document of a pattern

description or a problem scenario, v ti d is the TF*IDF of each term in d , n is the size of the VSM which is

the number of the key unigrams and bigrams in the collection of the design pattern descriptions after the

preprocessing stage. Each feature vector will have a number of terms with Zero v ti d .

4.3. Similarity Measure

A similarity measure is used to retrieve the suitable design pattern, for a given design problem, from a

collection of patterns. In this work Cosine Similarity (CS) is adopted. CS is one of the popular measures in

the field of information retrieval. As the value of CS between two vectors is determined by the angle

between the vectors, while Euclidian distance is based on the lengths of the vectors. Cosine similarity

CSk V S V Pk between the feature vector of a design problem (V S) and the feature vector of the Kth

design pattern description (V Pk) is given by Equations 3 and 4 as follows:

‖ ‖‖ ‖
 (3)

∑

√∑

√∑

 (4)

The most suitable design pattern for a given problem scenario is selected based on one of the following

three cases:

Case #1: The Kth design pattern with the highest value of CSk V S V Pk is selected.

Case #2: The design patterns which satisfy equation 5 are candidates to solve the given problem:

 | | (5)

Where, θ is a threshold value for the similarity. In this case may be no pattern is selected.

Case # 3: The design patterns which satisfy equation 6 are suggested.

| | (6)

Where, CSmax is the maximum value of similarity between any design pattern and the given problem

scenario, and θ is a threshold. Case #1 was adopted in this work.

4.4. Evaluation Metric

Precision metric was used to assess the proposed approach. Precision is defined by equation (18) as

follows:

Precision
Total number of correctly recommeded design patterns

Total number or recommended patterns
 (18)

5. Experiments and Results

Journal of Software

265 Volume 13, Number 4, April 2018

To evaluate the effectiveness of our approach, two corpus were created one of them includes the textual

descriptions of 14 pattern from the catalog of GoF design patterns. Each pattern document includes: the

intent, applicability, participants, and collaborators. GOF book in addition to Wikipedia.com were used to

prepare a rich description document to each pattern includes the pattern distinctive words. While the other

corpus includes 32 real design problem scenarios collected from various sources including various design

patterns books, Wikipedia.com and Sourceforge.com. We label each design problem with the fit pattern

manually. We meant to have some design problems written briefly or poorly to test the robustness of our

approach. Five samples of these design problems are defined as follows:

Design Problem #1: A menu consists of a set of choices and a mechanism for a user to specify which

choice they want. There are a variety of styles of menus. One menu style is to print a number in front of each

string (e.g., 1, 2, and so on) and let the user enter a number to make a choice. In general, all of the menus

must provide a way to add entries to the menu, delete entries, display the menu, and obtain the user's

choice.

Design Problem #2: The Company class is the central class that encapsulates several important features

related to the system as a whole. It is required to make sure that only one instance of this important class

can exist.

Design Problem #3: The system has an interface named “MediaPlayer”. This interface is implemented by

a concrete class AudioPlayer. AudioPlayer has methods that play mp3 format audio files. There is another

interface AdvancedMediaPlayer which is implemented by a concrete class AdvancedAudioPlayer to play vlc

amd mp4 format files. It is required to have AudioPlayer class to use AdvancedaudioPlayer class to be able

to play other formats.

Design Problem #4: The designer of an adventure game wants a player to be able to take and drop

various items found in the rooms of the game. Two of the items found in the game are bags and boxes. Both

bags and boxes can contain individual items as well as other bags and boxes. Bags and boxes can be opened

and closed and items can be added to or taken from a bag or box

Design Problem #5: The system approves purchasing requests. There are four approval authority. The

selection of the approval authority depends on the purchase amount. If the amount of the purchase is

higher than 1 million dollar, the owner who approves. If it ranges from 500k to less than 1 million the CEO

who approves, if it ranges from 25k to less than 500k the head of department approves, if less than 25k the

vice who approves. The approval authority for a given dollar amount could change at any time and the

system should be flexible enough to handle this situation.

Design Problem #6: The system should have only one printer spooler although the system can identify

many printers.

Pre-processing was performed using the natural language toolkit NLTK [15]. Table 2 shows both of the

correct and the first three recommended design patterns (using our approach) for each of the design

problems listed above. It was found that the precision of our approach is equal to 65.5%. Design Problem

definitions of failed cases were reviewed and it was noted that these cases do not include descriptive words

of the pattern or they are not well written for example design problem#6. It is one of the failed scenarios, it

is not well written. Table 3 shows the three highest cosine similarity values for this problem. It could be

observed that the highest value tends to be zero which means that the proposed approach was not able to

provide a recommendation for this problem. It was observed during experimentation that the precision of

the proposed approach could be enhanced through enhancing the description of both of the problem

scenario and adding more information to the description of the design patterns themselves.

Journal of Software

266 Volume 13, Number 4, April 2018

Table 2. Correct and Recommended Pattern for Sample Design Problems

Problem
ID

Correct
Pattern

1st
recommended

Pattern

2nd
recommended

pattern

3rd
Recommended

pattern
1 Strategy Strategy Singleton Visitor
2 Singleton Singleton Adapter Prototype
3 Adapter Adapter Bridge Visitor
4 Composite Composite Decorator Bridge
5 Chain of Resp. Chain of Resp. Command State
Precision = 65.5%

Table 3. Cosine Similarity (CS) Results for Problem#6

Design Pattern CS
Strategy 0.037
Singleton 0.015
Visitor 0.015

6. Conclusion and Future Work

 This paper proposed an approach based on text retrieval for the automatic selection of a suitable design

pattern to solve a specific design problem scenario. The experimental results illustrated that the proposed

approach is promising; however, the accuracy of the proposed approach is influenced by two main factors.

Firstly, the existence of an efficient dataset to the descriptions of the design patterns. This dataset should

include as much information as possible. Secondly, the quality of the design problem scenarios. The more

the problem scenario includes words from the design pattern descriptions, the higher the probability of

selecting the right design pattern. Using a lexical database like WorldNet [18] may alleviate the influence of

this factor on the results.

We experimented our approach using the catalog of GOF patterns only but we are currently working on

extending our dataset to include more catalogues of patterns like patterns of concurrency, security and real

time systems. In addition to considering more features in the vector space model.

References

[1] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design pattern: Elements of reusable object-

oriented software. Addison-Wesley.

[2] Hsueh, N. L., Kuo, J.-Y., & Lin, C. C. (2007). Object-oriented design: A goal-driven and pattern-based

approach. J. Softw. Syst. Model. 8(1), 1–18.

[3] Kim, D. K., & Khawand, C. E. (2007). An approach to precisely specifying the problem domain of design

patterns. Journal of Visual Languages and Computing, 18, 560–591.

[4] Kim, D. K., & Shen, W. (2008). Evaluating pattern conformance of UML models: A divide and conquer

approach and case studies. Softw. Q. J., 16(3), 329–359.

[5] Palma, F., Farzin, H., Gu ́eh, Y.-G., & Moha, N. (2012). Recommendation system for design patterns

in software development: An DPR overview. Proceedings of the 3rd International Workshop on

Recommendation Systems for Software Engineering.

[6] Pavlic, L., Podgorelec, V., & Hericko, M. (2014). A question-based design pattern advisement approach.

Computer Science and Information Systems, 11(2), 645–664.

[7] Sanyawong, N., & Nantajeewarawat, E. (2015). Design pattern recommendation: A text classification

approach. Proceedings of the 6th International Conference on Information and Communication

Technology for Embedded Systems.

Journal of Software

267 Volume 13, Number 4, April 2018

[8] Suresh, S., Naidu, M., Kiran, S. A., & Tathawade, P. (2011). Design pattern recommendation system: A

methodology, data model and algorithms. Proceedings of the International Conference on Computational

Techniques and Artificial Intelligence.

[9] Hasheminejad, S. M. H., & Jalili, S. (2012). Design patterns selection: An automatic two-phase method.

Journal of Systems and Software.

[10] Hussain, S., Keung, J., & Khan, A. A. (2017). Software design patterns classification and selection using

text categorization approach. Applied Soft Computing.

[11] Nahar, N., & K. Sakib. (2016). ACDPR: A recommendation system for the creational design patterns

using anti-patterns. Proceedings of the IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering.

[12] Smith, S., & Plante, D. R. (2012). Dynamically recommending design patterns. Proceedings of the 24th

International Conference on Software Engineering and Knowledge Engineering.

[13] Gomes, P., Pereira, F. C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J. L., & Bento, C. (2002). Using CBR for

automation of software design patterns. Advances in Case-Based Reasoning, Springer Berlin Heidelberg.

[14] Muangon, W., & Intakosum, S. (2013). Case-based reasoning for design patterns searching system.

International Journal of Computer Applications.

[15] NTLK. Retrieved from http://www.nltk.org

[16] Castells, P., Fernandez, M., & Vallet, D. (2007). An adaptation of the vector-space model for ontology-

based information retrieval. IEEE Trans. Knowl. Data Eng., 19(2), 261–272.

[17] Tonella, P., & Antoniol, G. (1999). Object oriented design pattern inference. Proceedings of the IEEE

International Conference on Software Maintenance.

[18] Wordnet. Retrieved from http://www.nltk.org/howto/wordnet.html

Abeer Hamdy is a Lecturer in the Faculty of Informatics and Computer Science at The British

University in Egypt since 2009.

She received her B.Sc. degree with honors, M.Sc. and Ph.D. degrees in Electronics and Electrical

communications from the Faculty of Engineering, Cairo University in 1992, 1998, 2003

respectively.

She has been awarded two fellowships from Academy of Scientific Research in Egypt to conduct post

doctoral research at University of Connecticut (2005-2006) and University of Central Florida (2007-2008)

at the United States.

Abeer Hamdy’s research interest includes software engineering , Robotics, Fuzzy systems, Parallel

Computing and BitTorrent systems.

Mohamed Elsayed is an assistant lecturer at The British University in Egypt. He received his

English BA at the Faculty of Al Alsun, Ain Shams University, and Master of Arts in international

education at the Graduate School of Education, The American University in Cairo.

Mohamed Elsayed’s research interest includes Educational issues, Teaching Reading, Social

work, Practicing sports mainly football and Professional development.

Journal of Software

268 Volume 13, Number 4, April 2018

http://www.nltk.org/

