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Abstract: Recent interest has been paid to chaotic systems with infinite number of equilibrium points. In 

this work, we construct a chaotic system with equilibrium points of rectangle loop. Basic dynamical 

properties, including phase portrait, equilibrium point and bifurcation of the new system, are investigated 

numerically and theoretically. Analyses show that this system can generate multiple attractors with different 

initial values, which reveals its rich dynamics. A simple control scheme with linear controller is designed to 

synchronize the systems, and the feasibility is verified by the numerical simulations. 
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1. Introduction 

Autonomous systems are at least third-order nonlinear differential equations to behave chaotic with one 

or more positive Lyapunov exponent. Chaotic system has the properties as sensitive to initial condition, 

infinite recurrence and bounded orbit. Chaotic behave exists widely in different scientific disciplines 

including neural network, economy, biology, electrical circuit, etc. [1]–[4]. Since the chaotic model describing 

the simplified Rayleigh-Benard problem is found by Lorenz [5], there have many interests shown on the 

theories and applications of chaotic systems. 

The equilibrium point of a chaotic system is the real solution of its differential equation, which plays an 

important role in feature analysis, classification and signal amplitude [6]–[11]. The feature of equilibrium 

point brings on four types of chaotic systems with heteroclinic orbit, homoclinic orbit, both heteroclinic and 

homoclinic orbits, without heteroclinic orbit and homoclinic orbit, respectively. Recently, there has been 

paid growing attention to special chaotic systems with no equilibrium and with uncountable infinite number 

of equilibrium points [7], [12]–[16]. The finding of these reported systems is striking for their new features 

of chaos, and leads to a new classification of chaotic attractors as hidden attractor and self-excited attractor 

from the computational point of view. The attracting basin of hidden attractor does not intersect with any 

small neighborhoods of its equilibrium point, whereas the self-excited attractor holds a basin of attraction 

associated with an unstable equilibrium. Therefore, the systems without equilibrium or infinite equilibrium 

points belong to the type of hidden attractors. However, rare cover seems to be known about the dynamical 

behavior of the system with infinite equilibrium points. 

This paper aims at revealing some mysterious properties of the dynamical system with infinite 

equilibrium points. We first construct a chaotic system with equilibrium points of rectangle loop. Basic 
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dynamical properties including phase portrait, equilibrium point and bifurcation of the new system are 

investigated numerically and theoretically. And the analyses show that this system holds rich dynamics by 

generating multiple attractors with different initial values. Then, a simple control scheme with linear 

controller is designed to synchronize the systems, which is further verified by the numerical simulations. 

2. The Introduced Chaotic System 

In 2015, Gotthans and Petržela reported the new discovery of chaotic dynamics with an infinite number of 

equilibrium points [14], depicted by the dimensionless set of three first-order differential equations  
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where x1,  x2, x3  are state variables, and a  is a free parameter. f1(x1,  x2, x3), f2(x1,  x2, x3), f3(x1,  x2, x3) are three 

nonlinear functions. The authors of [14] considered the following function form to get a system with circular 

equilibrium: f1(x1, x2, x3) = bx1+cx32, f2(x1, x2, x3) = x12+x22-r2, f3(x1, x2, x3) = dx1. Inspired by Gotthans’s work, 

we proposed a new 3D system with the following form:  
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Taking the condition 
1 0x  , 

2 0x  , 
3 0x  , we obtain the rectangle loop equilibrium point of system (2) 

as 
1 2( , ,0)p pP x x , with 2 4

1 21.5 0p px x r   . The loop shape of equilibrium 
1 2( , ,0)p pP x x  for different r is 

depicted in Fig.1. 

 

 
Fig. 1. Shapes of equilibrium points with different r. 
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Fig. 2. Chaotic phase diagrams of system (2). (a) x1-x2 plane; (b) x2-x3 plane; (c) x1-x3 plane; (d) x1-x2-x3 

plane. 

 

When consider a=–0.1, b=3.0, c=0.1, d=–0.1, r=50 and initial condition (0.1, 0.6, 0), system (2) exhibits 

chaotic behavior of multi-layer double-bell attractor, as plotted in Fig.2. The dense dots of Poincaré maps on 

different crossing planes further verify the emergence of chaos, which is described in Fig.3. 

 

 

 
Fig. 3. Poincaré maps on (a) x3=0; (b) x1 =0.14; (c) x2 =1.6. 

 

3. Bifurcation Analysis by Varying Parameters 

The reported system has been found to exhibit complex dynamical behaviors by varying system 

parameters in a wide range. We consider parameter set a=–0.1, b=3.0, c=0.1, d=–0.1, r=50 and initial 

condition (0.1, 0.6, 0), while let b varies in the region [1], [5] and r varies in the region [0, 60], respectively. 

The corresponding bifurcation diagram and maximal Lyapunov exponent spectrum for system (2) are 

depicted in Fig.4 and Fig.5. It’s known from Fig. 4 that there exists quasi-periodic behavior when [1,2.1]b , 

finally falls into chaos when b>2.1. But from Fig. 5 we know that there exists a narrow quasi-periodic 

window when [0,0.9]r , and system is chaotic when r>0.9. 

4. Multiple Attractors with Different Initial Conditions 

One of important feature of the presented system is that it can generate multiple chaotic attractors with 

different initial condition. To illustrate our finding, we fix a=–0.1, b=3.0, c=0.1, d=–0.1, r=50. When consider 
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initial condition x(0)=(0.07, 0.6, 0), system (2) is chaotic; when x(0)=(0.069, 0.6, 0), system (2) exhibits a 

periodic orbit; and when we select the initial condition (0.068, 0, 0), system (2) displays a quasi-periodic 

behavior. The numerical results are shown in Fig. 6. 

 

 

 

 
Fig. 4. Bifurcation diagram and maximal Lyapunov exponent spectrum of system (2) versus parameter b. 

 

 

 
Fig. 5. Bifurcation diagram and maximal Lyapunov exponent spectrum of system (2) versus parameter r. 

5. Synchronization of the Introduced Chaotic System 

As we known that two chaotic trajectory will separate exponentially with time starting from slightly 

different initial conditions. Thereby, chaotic synchronization is deemed to have theoretical and practical 

applications in secure communication, information science, control processing and biomedical engineering. 

However, it is impossible for one to synchronize two identical chaotic systems with different initial points, 
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even if the exact knowledge of the system model is known. Therefore, a proper synchronization controller is 

indispensable to achieve synchronization of chaotic systems.  

 

 

 
Fig. 6. Multiple attractors of system (2) with initialization as (a) (0.07, 0.6, 0); (b) (0.069, 0.6, 0); (c) (0.068, 

0, 0). 

 

In this section, a practical control scheme will be designed to synchronize the reported systems. The 

synchronization scheme is simple with linear controller. 

System (2) is taken as the master system, and the controlled slave system is given below 
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In system (3), k1, k2 are the coupled control gains. And we can realize complete synchronization of systems 

(2) and (3) by taking suitable values of k1, k2. We will numerically evaluate the distribution of 

synchronization region in the controlling-parameter space (k1, k2). Therefore, we define the synchronization 

errors as 
1 1 1e y x  , 

2 2 2e y x  , 
3 3 3e y x  . And to expediently evaluate the control gains, the minimum 

synchronization error is considered, described by 2 2 2

min 1 2 3E e e e    in a given finite time T0. 

 

 
Fig. 7. The distribution of the synchronization error. 

 

In the process of numerical simulation, the system parameter is taken as a=–0.1, b=3.0, c=0.1, d=–0.1, 

r=50, and the ODE45 method in Matlab software is employed to solve the differential equations. The initial 
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states of systems (2) and (3) are set as x(0)=(0.1, 0.6, 0), and y(0)=(0.01, 0.2, 0.1), respectively. When 

selecting T0=10, the distribution of the synchronization error Emin in the controlling-parameter space (k1, k2) 

is illustrated in Fig. 7. It’s found that the synchronization region appears approximately when k1>1 and 

k2>1.2. The simulation result is plotted in Fig.8 with k1=2, k2=3. From the curves of time response and 

synchronization error of the states in Fig.8, it’s known that the chaotic systems (2) and (3) are synchronized. 

 

 
Fig. 8. Synchronisation result: (a) time response of the states; (b) synchronization error. 

 

6. Conclusion 

In this paper, we mainly aim at revealing some mysterious properties of the dynamical system with 

infinite equilibrium points. First, we construct a chaotic system with equilibrium points of rectangle loop. 

Basic dynamical properties including phase portrait, equilibrium point and bifurcation of the new system 

are investigated numerically and theoretically. And the analyses show that this system holds rich dynamics 

by generating multiple attractors with different initial values. Then, a simple control scheme with linear 

controller is designed to synchronize the systems. And by taking suitable coupled control gains, we realized 

complete synchronization of the reported system numerically, which further verified the theoretical scheme. 
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