

A New Service Oriented Framework for Self-Adapting
Smart Applications in Mobile Environment

Ahmed Ghoneim*

King Saud University, Department of Software Engineering, College of Computer and Information Sciences,
Riyadh 11543, Saudi Arabia.

* Corresponding author. Tel.: +966(011)-4670685; email: ghoneim@ksu.edu.sa
Manuscript submitted December 01, 2017; accepted February 27, 2018.
doi: 10.17706/jsw.13.3.180-191

Abstract: Successful coupling of service-oriented and agent-oriented architectures can produce

applications that are self-adaptive in both behavior and structure over a long life span. In practice, this

requires detecting and handling of changes to runtime requirements, consistency in reconfiguration, and

separation of the controller from the application itself. To cope with these challenges, we propose a new

framework for self-adaptive and dynamically reconfigurable smart applications. This framework is

composed of loosely coupled base and controller layers. The base layer consists of a base application and

base controller, while the controller layer consists of detector-classifier, inference, and evaluation sub-layers.

The detector-classifier layer monitors and detects runtime events within the base application. In the

inference layer, an adaptive driver agent creates new adaptation plans. The evaluation layer refines the plan

currently in place and compares it with new adaptive plans. We simulated and evaluated the proposed

framework behavior in a smart home environment.

Key words: SOA, agents, smart home, reconfiguration, surveillance systems, run-time event.

1. Introduction

It has been widely observed that many modern, user-centric applications (such as those supporting

healthcare [1], smart home control [2], [3], surveillance systems, C4I military activities, urban traffic, and

the “internet of things” [4] need to continuously adapt their structure and behavior to any changing

conditions. For this, a well-defined methodology is desperately needed. We know that to model and

implement intelligent application environments requires tracking of the application’s behaviors, based on

methodologies like SOA (service oriented architecture), and on techniques involving multi-agents or

ontological representations of configurable elements. While these approaches have produced positive

results, they do not address several key issues [5]-[23], including:

 How to detect and handle changing of application requirements within the smart environment?

 How to reconfigure the software application in a consistent way?

 How to separate the reconfiguration controller from the application itself?

To address these issues, we propose a framework to support self-adaptive and consistent reconfiguration

of smart applications. Our framework couples SOA and multi-agent system features to drive adaptation, by

evolving a base application through a separate controller. The base application is imported into a base layer

Journal of Software

180 Volume 13, Number 3, March 2018

so that its runtime events can be passed through a design style view (base interface). Controller layer

agents then handle these runtime events by managing the configuration of representative components in

the base application. They do this by proposing a suitable plan and checking whether the representative

components are consistent and compatible with the plan. If they are, then the representative components

are reconfigured to reflect the plan; otherwise, certain agents at the control level become responsible for

creating another plan, or deciding that there is no plan available for the given situation events.

To evaluate the proposed framework, we use a “smart home” case study involving several different

runtime scenarios.

The remainder of this paper is organized as follows: in section 2, the proposed framework, its structural

components, and the algorithm that describes its role are presented; in section 3, a case study is discussed

and some experimental results provided; in section 4, related work is covered; finally, in section 5, we make

some concluding remarks and discuss future work.

2. Related Works

To fulfill the complex, dynamic structural requirements of smart application environments, appropriate

tools and techniques [5]-[23] are needed. Existing research into modeling and implementing smart

application environments can be divided into four categories:

 Daily life monitoring and tracking

 Model-driven engineering for smart environments

 Development of ontological standards for run-time adaptation

 SOA and multi-agent systems for driving adaptation

In this section, we explore these four categories of research in details.

Daily life monitoring and tracking. In [5], the authors proposed a knowledge-driven approach to

manage a smart home, using ontology for monitoring daily living activity. In [6], researchers introduced a

model that uses a genetic algorithm for clarifying human understanding. The algorithm generates rules

representing a human-understandable profile to ensure an acceptable level of performance. The authors of

[7] developed an automated assistance and health monitoring technique, and simulated an agent-based

smart home to test their technique.

Model-driven engineering for smart environments. In [8], the authors introduced an approach that

merges the model-driven and ontology-driven approaches to modeling smart spaces at both design-time

and run-time. Authors of [9] proposed an approach that combines both ontology alignment techniques with

model-driven engineering to achieve interoperability among smart home devices.

Development of ontological standards for run-time adaptation. The work described in [10]

introduces a formal framework for explicit representation of ontological views. In [11], the authors

introduced a technique for managing and interoperating among the ontological representations of urban

embedded services.

SOA and multi-agent systems for driving adaptation. In [12], a Software Distribution Management

System (SDMS) was deployed as a homogenous means of monitoring smart living system services and

reconfiguring them to fulfill their domain requirements. In [13], researchers presented a method for

performing just-in-time integration of independent living applications and software using SOA.

 In [14], an android smartphone application was developed to assist and track elderly people. The

application uses distributed components that communicate via cloud-based web services, and so can be

fully controlled both inside and outside the application environment. In [15], the impact of dynamic and

complex of multi-agent research was studied in the context of smart environments. In [16], the authors built

a system that merges multi-agents and ontologies to support behavior changes based on effective user

Journal of Software

181 Volume 13, Number 3, March 2018

feedback. In [17] a multi-agent system allowed specific smart applications and their user interfaces to be

dynamically updated. In [18], an agent-based framework was used to process user feedback (accept, decline,

or change) and to refine the application. In [19], the authors proposed a smart monitoring system, where

different home control services were selected using ant-based service selection algorithm. In [20], the

authors proposed an SOA architecture for smart-home environments, focusing on service integration and

the home environment mobility. Their proposed architecture was based on multiple OSGi (Open Services

Gateway Initiative) platforms and P2P (peer-to-peer) communications. For communications and

interactions between the different system components, service-oriented methodology and mechanisms

were used. For augmenting these interaction methodology and mechanisms, the agent technology and web

services were applied. Further, the Mobile Agents are applied for dealing with the dynamic situations to

distribute loads from the clients to the multiple service providers. In [21], [22], introduce, how the smart

devices integrated with legacy devices using the advantage of SOA at the level of communication for

industrial devices networks. The Devices Profile for Web Services (DPWS) implemented for embedded

systems and industrial automation. In [23], the authors addressed the interoperability requirements for

smart home environments, and used bi-directional management of smart home sub-systems to evaluate the

performance of a proposed system.

Note that all of the above works used monitoring and tracking of application functionality within a

specific environment, and introduced some forms of SOA, multi-agents, and/or ontological representation

to drive adaptations. None, however, addressed the key issues on which our work is focused, namely,

detection and monitoring of requirements changes, consistent reconfiguration, and separation of

reconfiguration control from the application itself.

3. Proposed Framework

In this section, we present the framework outlined in Fig. 1, detailing its primary layers and

corresponding core classes, and discussing the basic connections and databases resources sketched in Fig. 2.

The proposed framework is composed of three loosely coupled layers: the base layer, the composite

controller layer and physical layer. The base layer structure accords with the Model View Controller (MVC)

paradigm, surrounded by an interface for web service interaction with external agents. The model view

corresponds to the internal structure of the main component of the smart application (e.g., the class

diagram). This model view is obtaining from required information stored in a database associated with

smart environment components. The model controller uses its own knowledge base for controlling and

managing both the web service base layer interface and the model representing the smart application

structure.

The composite controller layer is composed of three main sub-layers: the detector-classifier layer, the

inference layer, and the evaluation layer. These sub-layers are also designed in an MVC style and can be

executed in parallel.

The detector-classifier sub-layer consists of a layer interface web service containing functions for

interacting with higher layers, and three component agents. The first of these agents is the detector, which

interacts with the base layer to monitor any changes, such as run-time events or the transition states of the

smart application components. The second agent runs the classifier knowledge base. The third agent is the

classifier, and uses the classifier knowledge base to determine the component to which a given change

corresponds.

The inference sub-layer mediates between the detector-classifier sub-layer and the evaluation sub-layer

through a web service. The primary component of the inference sub-layer, the adaptive driver agent, uses an

adaptation knowledge base to create a suitable plan for each input from the detector-classifier sub-layer,

Journal of Software

182 Volume 13, Number 3, March 2018

and then passes this plan to the base layer interface and to the evaluation sub-layer. The base layer manages

the plan by converting it to an in-action plan and passing this to the necessary components. The evaluation

sub-layer takes the plan as an input from the inference sub-layer, along with the status of the corresponding

in-action plan from the base layer, and creates a general report. If there is inconsistency between the

created plan and the handled in-action plan, the evaluation-sub layer sends a negative acknowledgment to

the inference sub-layer, triggering creation of a new plan. The process repeats until a consistent plan is

acquired, or found to be impossible.

The third layer is the named physical layer, which shows the smart home devices and technologies in

mobile environment

Fig. 1. The proposed framework.

The main execution flow for the framework is monitoring and detection of run time events for a given

smart environment application. The control layer receives these events from the detector agent, and a

suitable plan is created by applying adaptive-driver agent in which it calls adaptation knowledge based to

Journal of Software

183 Volume 13, Number 3, March 2018

extract the required adaptation knowledge and rules. The following step is to reflect the created plan to the

web-service base layer interface. At the final stage, the evaluation agent receives the in-action and the

created plans from the base environment and from the adaptive driver agent to check their consistency

value. If the consistency result is valid, the evaluation agent sends the base controller in the base

environment a positive acknowledgment requesting it to execute the in-action plan. On the other hand, if

the consistency result is invalid, the evaluation agent sends a negative acknowledgement to the adaptive

driver agent to recreate another plan. This process is repeated until either the consistent result is a valid

value or the number of requesting other plans exceed a fixed known number by the system.

Fig. 2. Main classes and connections in the proposed framework

4. Case Study

To simulate the proposed framework and evaluate its run-time functionality, we employed a case study of

a smart home environment, as illustrated in Fig. 3. Note that, the main packages are devoted to the smart

home gate and home automation. The smart home gate includes a packet control interface that can receive

external signals from a various channels including LANs, Bluetooth (PICONET), telephone networks, the

Web, base stations, and mobility towers. A packet-controller handler receives these signals and, based on a

predefined signal table, locates related home-device components to deal with them. The smart home gate

also includes a configuration management sub-package for discovery and re/configuration of home

components devices. The home automation package is responsible for managing security and controlling

multimedia systems [24]. A class diagram for the smart home case study is provided in Fig. 4.

Journal of Software

184 Volume 13, Number 3, March 2018

Fig. 3. Schema of simulated smart home and connected external systems.

To illustrate how the proposed framework applies to this case study, consider the scenario described in

Fig. 5. When the user requests the system for viewing and playing a video, the current smart application

uses self-operation to locate appropriate videos. If self-operation finds this event, it provides a list of videos

to the user, who can then select one of the videos for playback (e.g., mms_id=12).

To process this kind of operation, our detector and classifier component would receive a raw-event, its

parameters, and its required components, and check the latter for availability. This availability depends on

(1) identifying the related category of the event, (2) extracting the specification of this category, and (3)

checking whether the required components and the related category specification are matched or not. If

they do match, the detector and the classifier change the status of the event from raw-event to

classified-event. Otherwise, it is sent back to the base application to re-verify event requirements, a process

that is repeated until verified and valid requirements are acquired.

Next, the inference interface receives the classified-event, creates a suitable action plan through the

adaptive driver agent, and reflects this plan in the related home devices. In addition, this figure shows the

evaluator agent rules as shown in Fig. 6.

Journal of Software

185 Volume 13, Number 3, March 2018

Fig. 4. The smart home runtime class structure

Fig. 5. Video playing scenario

Journal of Software

186 Volume 13, Number 3, March 2018

Fig. 6. Runtime output of the video playing scenario

5. Experimental Results

In order to evaluate the proposed smart home system and to validate the suitability of the proposed

adaptive smart applications, a java based simulation experiments have been conducted to find the

scalability with regards to smart home service requests. Then a usability study has been conducted with

both mobile users and non-mobile users.

Fig. 7. Scalability for the number of concurrent requests against different smart services (100, 64, 49).

Journal of Software

187 Volume 13, Number 3, March 2018

Three different computational power settings have been used in our simulation experiments. For each

setting, multithreaded clients have emulated the same number of concurrent requests (1050 requests) and

have sent them to smart home servers. Ten simulation experiments have been conducted for each setting,

where the time span of each was almost two hours. In such experiments, all smart home servers have been

configured to stream data at a maximum capacity.

As shown in Figure 7, in response to the increased number of concurrent requests, the response time and

the average response time gradually and linearly increased. It is shown that the scalability is a linear until it

reaches a certain threshold value. As seen from Figure 7, at 500 concurrent requests, the average response

time slightly is increased in the system with 49 smart service requests (around 3001.466 ms), compared

to the system with 64 services (around 3100.208 ms).

Table 1. The Comparison table
No. of selected smart

services

0 1 2 3 4 5

Probability

of getting

best smart

home

service

(%)

Experiment

setting no 1
0 87.87 96.06 98.87 100

Experiment

setting no 2
4.5 75.35 94.60

93.78

99.72 93.56

Experiment

setting no 3
48.13 68.45 83 92.45 94.72 87.23

The summary of the three experiments settings data is described in Table 1. It may note that the number

of services selected from each smart home service group (appliance selection to social media section)

varies from 0 to 5.

The above table shows that the results of the experiment setting no 1 are a bit better than those of

experiment setting no 2, while the results from experiment setting no 3 are not as good as those of

experiment setting no 2. It could be as a result of the user’s requirement, which is clarified in the following

points:

 Experiment setting no 1 satisfies the user’s selection criteria,

 Experiment setting no 2 does not satisfy the user’s requirements, while

 Experiment setting no 3 satisfies the users’ service selection criteria.

Before presenting the usability study, we considered four important questions that are related to the

adaption of smart applications in mobile environment. A questionnaire has been conducted and

distributed on 100 students and researchers at different level. 50% of the participants were in the age

group 13-17, 20% of them were in the age group 17-30, and 30% were in the age group 30+. Firstly, the

participants have been asked to provide their preference of using smart systems (with mobile devices or

without mobile devices). Following that, interaction history data has been recorded. Finally, the participants

have been requested to fill up a questionnaire (Table 2), to give their opinion on the ratings of the system

ease of use, preferences, response time, and likeness.

Table 2. User satisfactory questionnaires of the smart system services
Question No Question

Q1 Smart service interaction is easy to use

Q2 Using the smart system through mobile devices

Journal of Software

188 Volume 13, Number 3, March 2018

Q3 Response time of the smart system is acceptable while using mobile

devices

Q4 The composed self-adaptive smart service is mostly liked by users

Neutral Strongly Disagree Disagree Strongly Agree Agree

Q1: Smart service interaction is easy to use

Q3: Response time of the smart system is acceptable while using mobile devices

Q2: Using the smart system through mobile devices

1
0
00

2
0

4
0

6
0

8
0

2 22 28 48

Q4: The composed self-adaptive smart service is mostly liked by users

4 20 36 40

15 5 27 53

2 22 28 48

Fig. 8. Overall user response.

As shown in Fig. 8, the response of participants satisfaction based on the Likert five-point scale [25].

Feedbacks from users have been summarized and the average of user responses has been calculated. The

questionnaire results have shown that the majority of users like to use self-adapting smart applications in

mobile environment.

Self Adaptive Smart System

using mobile device
Self Adaptive Smart System

without mobile device

0 1 2 3 4 5 0 1 2 3 4 5

(a) User Group (Age 17-21) (b) User Group (Age 21-30)

0 1 2 3 4 5

(c) User Group (Age 30+)
Fig. 9. Different user responses of three age groups three in Table 3

In table 3, the overall performance scores of users’ satisfaction are summarized, where the higher mean

(μ) and standard deviation (σ) values for ease of use, likeability and preferences, denote acceptable user

satisfactory responses, while the medium mean values for response time shows a good user satisfaction.

Also, acceptability satisfaction has been conducted to ascertain the suitability of the system for different age

groups: ages 17~21, ages 21~30, and ages 30+ responses have been documented, as shown in Fig. 9. By

comparing older age group (30+) and younger age group (17-21), users from the middle age group (21~30)

seem to be more eager to use smart systems.

Table 3 User Satisfaction Evaluation

 μ σ μ Percentage

Ease of use (Q1) 4.21 0.89 82.2%

Preferences (Q2) 4.34 0.78 85.3%

Response time (Q3) 3.78 0.98 71.7%

Likeability (Q4) 4.17 0.83 83.3%

Journal of Software

189 Volume 13, Number 3, March 2018

6. Conclusion

Our framework for dynamic reconfiguration of smart applications is based on monitoring the base

application environment to detect both runtime events and environmental changes, where suitable plans of

dynamic adaptation, for acceptance or rejection by a configuration controller, have been proposed.

We have demonstrated the applicability of the proposed framework by using a case study that involves

smart home systems. From the experimental results, ease of use, likeability and preferences have reached

acceptable user satisfactory responses, also acceptability satisfaction has been conducted to ascertain the

suitability of the system for different age groups, where users from the middle age group seem to be more

eager to use smart systems.

In future work, we plan to enhance quality of service by increasing the quantity and quality of monitored

measurements. We also plan to identify a new method for handling the synchronization of multiple events.

References

[1] Hossain, M. S. (2015). Cloud-supported cyber–physical localization framework for patients monitoring.

IEEE Systems Journal, 1-10.

[2] Wu, S., Rendall, J. B., Smith, M. J., Zhu, S., Xu, J., Wang, H., ... & Qin, P. (2017). Survey on prediction

algorithms in smart homes. IEEE Internet of Things Journal, 4(3), 636-644.

[3] Pan, Z. (2017). A context aware anomaly behavior analysis methodology for building automation

systems, Doctoral dissertation, The University of Arizona.

[4] Hossain, M. S., & Muhammad, G. (2016). Cloud-assisted industrial internet of things (IIoT) – Enabled

framework for health monitoring. Computer Networks.

[5] Chen, L., Nugent, C. D., & Wang, H. (2012). A knowledge-driven approach to activity recognition in

smart homes. IEEE Transactions on Knowledge and Data Engineering, 24(6), 961-974.

[6] Fahim, M., Fatima, I., Lee, S., & Lee, Y. K. (2013). EEM: Evolutionary ensembles model for activity

recognition in Smart Homes. Applied intelligence, 38(1), 88-98.

[7] Das, S. K., & Cook, D. J. (2004). Health monitoring in an agent-based smart home by activity predition.

Proceedings of the International Conference on Smart Homes and Health Telematics (pp. 3-14).

[8] Soylu, A., & De Causmaecker, P. (2009). Merging model driven and ontology driven system development

approaches pervasive computing perspective. Proceedings of the 24th International Symposium on

In Computer and Information Sciences, pp. 730-735.

[9] Kaed, E., Denneulin, C., Ottogalli, Y., G., F., & Mora, L. F. M. (2010). Combining ontology alignment with

model driven engineering techniques for home devices interoperability. Software Technologies for

Embedded and Ubiquitous Systems .

[10] Xue, Y., Ghenniwa, H. H., & Shen, W. (2012). Frame-based ontological view for semantic

integration. Journal of Network and Computer Applications, 35(1), 121-131.

[11] Gregor, D., Toral, S. L., Ariza, T., & Barrero, F. (2012). An ontology-based semantic service for

cooperative urban equipments. Journal of Network and Computer Applications, 35(6), 2037-2050.

[12] Chen, I. Y., & Huang, C. C. (2007, April). A reconfigurable software distribution framework for smart

living environments. Proceedings of the International Conference on Multimedia and Ubiquitous

Engineering.

[13] Shen, W., Xue, Y., Hao, Q., Xue, H., & Yang, F. (2011, October). A service-oriented system integration

framework for community-based independent living spaces. Proceedings of the 2011 IEEE International

Conference on Systems, Man, and Cybernetics (SMC).

[14] Fahim, M., Fatima, I., Lee, S., & Lee, Y. K. (2012). Daily life activity tracking application for smart homes

using android smartphone. Proceedings of the 2012 14th International Conference on Advanced

Journal of Software

190 Volume 13, Number 3, March 2018

Communication Technology (ICACT) (pp. 241-245).

[15] Cook, D. J. (2009). Multi-agent smart environments. Journal of Ambient Intelligence and Smart

Environments, 1(1), 51-55.

[16] Benta, K. I., Hoszu, A., Văcariu, L., & Creţ, O. (2009, June). Agent based smart house platform with

affective control. Proceedings of the 2009 Euro American Conference on Telematics and Information

Systems: New Opportunities to increase Digital Citizenship (p. 18).

[17] McNaull, J., Augusto, J. C., Mulvenna, M., & McCullagh, P. (2012, June). Multi-agent system feedback and

support for ambient assisted living. Proceedings of the 2012 8th International Conference on Intelligent

Environments (pp. 319-322).

[18] Cavone, D., De Carolis, B., Ferilli, S., & Novielli, N. (2011). An agent-based approach for adapting the

behavior of a smart home environment.

[19] Hossain, M. S., Hossain, S. A., Alamri, A., & Hossain, M. A. (2013). Ant-based service selection framework

for a smart home monitoring environment. Multimedia tools and applications, 67(2), 433-453.

[20] Wu, C. L., Liao, C. F., & Fu, L. C. (2007). Service-oriented smart-home architecture based on OSGi and

mobile-agent technology. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, 37(2), 193-205.

[21] Jammes, F., Mensch, A., & Smit, H. (2005). Service-oriented device communications using the devices

profile for web services. Proceedings of the 3rd International Workshop on Middleware for Pervasive and

Ad-hoc Computing (pp. 1-8).

[22] Zeeb, E., Bobek, A., Bohn, H., & Golatowski, F. (2007). Lessons learned from implementing the devices

profile for web services. Digital EcoSystems and Technologies Conference..

[23] Perumal, T., Ramli, A. R., Leong, C. Y., Mansor, S., & Samsudin, K. (2008). Interoperability for smart home

environment using web services. International Journal of Smart Home, 2(4), 1-16

[24] Trilles, S., Calia, A., Belmonte, Ó., Torres-Sospedra, J., Montoliu, R., & Huerta, J. (2017). Deployment of an

open sensorized platform in a smart city context. Future Generation Computer Systems, 76, 221-233.

[25] Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology.

Ahmed Ghoneim received his M.Sc. degree in software modeling from University of

Menoufia, Egypt, and the Ph.D. degree from the University of Magdeburg (Germany) in the

area of software engineering, in 1999 and 2007 respectively. He is currently an assistant

professor at the department of software engineering, College of Computer Science and

Information Sciences, King Saud University. His research activities address software

evolution; service oriented engineering, IoT, software development methodologies,

Quality of Services, Net-Centric Computing, and Human Computer Interaction (HCI).

o

Journal of Software

191 Volume 13, Number 3, March 2018

