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Abstract: This paper presents a reversible data hiding method for JPEG images by combining (7, 4) the 

Hamming code and improving Huang et al.’s data hiding technique. Huang et al.’s original method embeds 

data into JPEG quantized 8×8 block DCT coefficients by histogram shifting and alternating current (AC) 

coefficients with values of 1 and -1 to embed secret bits. The proposed method here adopts a hybrid 

embedding strategy to increase maximum embedding capacity. The experimental results show that the 

proposed method allows for maximum embedding capability while maintaining acceptable image quality.  

 

Key words: Histogram shifting, Joint photographic experts group (jpeg), reversible data hiding, (7, 4) 
hamming CODE. 

 
 

1. Introduction 

Networking and multimedia technologies have been rapidly developing in recent years. Everyone on the 

Internet can upload or download all kinds of multimedia information, such as video, audio, and images. 

Generally, the Joint Photographic Experts Group (JPEG) format is the most popular digital image format in 

use on the Internet. People can easily copy or edit these images and transmit them to others. Therefore, the 

security of information is essential during the transmission phase. 

Traditional security transmission methods are divided into cryptography based and steganography based 

methods. Cryptography turns secret information into an unreadable format using mathematical 

transformations. However, these operations still may be detected by the eavesdropper. Therefore, a 

technique named steganography, also known as data hiding, was proposed to hide the secret information in 

another cover medium. Cover medium can be text files, audio, images, and video. The cover medium is 

called a stego-medium when it is embedded with secret information.  

Most data hiding techniques create some irreversible distortion in the cover image that cannot be 

recovered even if the secret data has been extracted. However, some images must not be damaged or 

distorted, such as medical and military images. Therefore, a reversible data hiding (RDH) technique was 

first proposed by Barton [1] in 2000 to address this concern. To date, there are three main strategies that 

can be adopted to design an RDH method. The first is lossless compression [2], [3], the second is difference 

expansion (DE) [4]-[6], and the third is histogram shifting (HS) [7]-[10]. Recently, a new data hiding method 
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based on Hamming code (HC) [11], [12] was also developed. This new lossless compression method uses 

any redundant space that is produced by the lossless compression process to embed information. The 

difference expansion-based method was first proposed by Tian in 2003 [4]. Tian’s method divided the host 

image into pixel pairs and the difference of the two pixels’ values in the pair is expanded to embed a secret 

message of one bit. Subsequently, Tian’s work has been improved in various approaches. 

Histogram shifting was first proposed by Ni et al. in 2004 [7], where the histogram of the host image is 

utilized for embedding secrets. This method changes each pixel one by one, so the visual quality of the 

stego-image can be higher than 48 dB. Hamming code was first developed by R.W. Hamming in 1980 [13]. 

Originally, Hamming code made use of error correction where the receiver can use the code to discover one 

error and correct it. Mao et al. in 2016 [12] proposed a new RDH method by rearranging the order of the 

Hamming codes. Some recent researchers have combined DE and histogram shifting (HS) to achieve better 

performance, and some methods were even combined with sorting [15]. 

Most of the RDH methods from the past few years have proposed spatial images to achieve improved 

visual quality and embedding capacity. Unfortunately, these methods cannot be used directly on JPEG 

images. First of all, the more information redundancy the host images have, the more data can be embedded. 

JPEG images are much less redundant than spatial images. JPEG images are the most commonly used digital 

images in daily life, and as such, the ability to hide data into JPEG images reversibly may have many 

applications, such as for secure data systems and image authentication. A histogram pair-based RDH 

method for JPEG images was proposed by Xuan et al. in 2007 [16]. They used the best search strategy to 

shift the histogram of the quantized DCT coefficient to achieve good performance. In order to verify that the 

data embedding was imperceptible, only the low frequency and intermediate frequency DCT coefficients 

were selected to embed the data. Xuan et al.’s method was improved by Sakai et al in 2008 [17] by using a 

new adaptive embedding strategy. In 2012, a method based on Huffman code mapping to embedding secret 

data into JPEG bit-stream was proposed by Qian and Zhang [21]. Later, a reversible data hiding based on 

EMD for JPEG image is proposed by Kuo et al. in 2012 [22]. After that, a higher capacity reversible data 

hiding method based on EMD in JPEG images was proposed by Zhang et al. in 2013 [20]. Subsequently in 

2015, Huang et al. [18] further proposed a new HS-based RDH method for JPEG images. 

In this paper, we study Huang et al.’s HS-based RDH method [18] and propose an improvement. Huang et 

al.’s method used alternating current (AC) coefficients obtained from DCT coefficients with values of 1 and 

-1 to hide information. But this method does not use all AC coefficients equal to 1 or -1 to carry secret data, 

and instead uses a block selection strategy. We improved Huang et al.’s HS-based RDH method [18] by 

combining it with (7, 4) Hamming code. The experimental results show that our RDH method has a higher 

embedding ability, and also provides good image quality. 

The rest of this paper is organized as follows. Huang et al.’s HS-based RDH method [18], the (7, 4) 

Hamming code and Zhang et al.’s EMD-based JPEG method [20] are demonstrated in Section 2, respectively. 

The proposed method is introduced in detail in Section 3. Experimental and comparative results are shown 

in Section 4. Finally, we summarize our conclusions in Section 5. 

2. Related Work 

In this section, two HS-based RDH methods are first introduced in Subsection 2.1, then a (7, 4) Hamming 

code-based RDH scheme is introduced in Subsection 2.2. A brief introduction for JPEG compression will 

provided in Subsection 2.3. Finally, a high capacity reversible data hiding scheme for JPEG images is 

introduced in Subsection 2.4. 

2.1. Two HS-Based RDH Methods 
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2.1.1. Ni et al.’s histogram shifting method 

The histogram shifting (HS) method is an RDH algorithm proposed by Ni et al. [7]. In their method, the 

histogram of the image pixel value was counted first. For example, the histogram of the plane image shown 

in Fig. 1 has the corresponding peak point and zero point marked in the figure. We find the zero point (the 

gray scale value corresponding to the zero point does not appear in the given image, e.g., h (255) as show in 

Fig. 1) and the peak point (the gray scale value corresponding to the peak point is the maximum number of 

pixels in a given image, e.g., h (196) as shown in Fig. 1) in the histogram and take them as a pair.  

 

 
Fig. 1. Histogram of the plane image. 

 

Secondly, the entire image is scanned in an aster scan order. The pixel gray value between 197 (197 

included) and 254 (254 included) is incremented by “1.” This step is equivalent to shifting all the values in 

the range [197, 254] of the histogram to the right by one unit, leaving the gray value of 196 empty. 

Finally, the entire image is scanned once again in the same order. When the embedding procedure 

encounters a pixel with a grayscale value of 196, it then checks the to-be-embedded secret sequence. If the 

corresponding to-be-embedded bit in the sequence is binary “1,” then the pixel value is incremented by one. 

Otherwise, the pixel value remains unchanged. 

After that, a stego-image holding the secret data is received. If the receivers receives this stego-image, 

then they can conduct an extracting procedure to scan the entire image in aster scan order again and find all 

the pixels with a grayscale value of 196 or 197. If 196 is found, then the secret bit “0” is extracted. If 197 is 

found, then the secret bit “1” is extracted. Then, the entire image can be scanned in the same order to find 

all pixels with a grayscale value between 198 and 255 whose pixel values will be reduced by one. The 

original image can then be recovered without any distortion. 

2.1.2. Huang et al.’s HS-based RDH method in nonzero AC coefficients in DCT 

This HS-based method was proposed by Huang et al. in [18]. In their method, generally speaking, all 

non-zero AC coefficients in DCT are represented by N = (N1, N2, … , Nm-1, Nm), where M represents the 

number of all nonzero AC coefficients in the JPEG image. They concluded that most of the peak points of the 

AC coefficient histograms are located at points 1 and -1. The embedding algorithm of their method is 

described as: 

   
 

 
'

  1

              1

i i i

i

i i i

N sign N s if N
N

N sign N if N

   
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In (1), s{0,1}, s indicates the secret information bit to be embedded and '

iN denotes the corresponding 

hidden AC coefficients in the marked JPEG image. In this method, all coefficients are changed at most by one 

in the embedding process. 

The information extraction and image restoration algorithm can be described as follows: 

 

 
'

10

21

i

i

if N
s

if N


 


                               (3) 

 

' '

' ' '

( ) 1 2

( ) 3

i i

i

i i i

sign N if N
N

N sign N if N

  
 

 

                           (4) 

 

where
's and iN denotes the extracted secret bit and the restored AC coefficient, respectively. 

But Huang et al.’s method has low hiding capacity because it only embeds message bits in AC coefficients 

with values of 1 and -1.  

2.2. An RDH Scheme Based on the (7, 4) Hamming Code 

Hamming codes may be the most popular block codes that can dectect and correct a one-bit error in a 

block. Furthermore, for a given block length, Hamming codes require minimal redundancy to correct any 

1-bit errors [14]. The (7, 4) Hamming code transforms four-bit data  1 2 3 4, , ,D D D D into seven cover bits 

by combining the other three corresponding check bits  1 2 3, ,C C C obtained by  1 2 3 4, , ,D D D D , as 

shown in (5): 

 

1 1 2 4

2 1 3 4

3 2 3 4

C D D D

C D D D

C D D D

  


  
   

                                (5) 

 
wheremeans XOR (exclusive or) operation. The normal order of the seven cover bits is shown in Fig. 2. In 

this RDH scheme, the order of these seven cover bits will be rearranged. The Hamming code finds errors by 

detecting whether each parity bit and its corresponding data bit constitute an even parity. That is to say, 

there must be an even number of ones in the parity check bit and its corresponding data bit. 

 

 
Fig. 2. The normal form of a (7, 4) Hamming code. 

R1 R2 R3 R4 R5 R6 R7 

C1 C2 D1 C3 D2 D3 D4 
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In 2016, Mao et al. [12] proposed an RDH scheme based on the (7, 4) Hamming code. Mat et al.’s (7, 4) 

Hamming code-based RDH scheme rearranges the seven cover bits from their normal form of R=

 1 2 1 3 2 3 4, , , , , ,C C D C D D D to R=  1 2 3 4 1 2 3, , , , , ,D D D D C C C as shown in Fig. 3, where the first four bits

 1 2 3 4, , ,r r r r consist of four data bits  1 2 3 4, , ,D D D D and the last three bits consist of the parity check bits

 1 2 3, ,C C C . 

 

 
Fig. 3. The rearranged form of (7, 4) Hamming code in the proposed method. 

 

This method used Y(R) as a new judgment. Y(R) =  1 2 3, ,y y y is defined as (6): 

 

 

1 1 2 4

2 1 3 4

3 2 3 4

( )

y r r r

Y R y r r r

y r r r

  


   
   

                       (6) 

 

For a given stream with seven bits, R=  1 2 3 4 5 6 7, , , , , ,r r r r r r r ; if the calculated three-bit vector ( )Y R  =

 1 2 3, ,y y y is equal to (0, 0, 0), then the bit stream R is classified as a perfect stream. A new bit stream
'R , 

which is generated by flipping only one bit of the stream R, will generate another three-bit vector 
'( )Y R . 

The location of the flipped bit here is referred to as the error location. The relationship between the error 

location and the corresponding vector of 
'( )Y R  is shown in Table 1.  

 

Table 1. The Relationship between the Error Location and the Vector of
'( )Y R  

Error location '( )Y R  

error free 000 
1 110 
2 101 
3 011 
4 111 
5 100 
6 010 
7 001 

 

Table 1 demonstrates that for a perfect stream, R=  1 2 3 4 5 6 7, , , , , ,r r r r r r r , its error location and the 

corresponding vector of
'( )Y R are a one-to-one mapping. Therefore, the receiver can easily find the error 

location by looking up the table. Hamming codes can be used not only to correct one bit error, but also to 

hide information. From Table 1, we can see that a perfect stream has eight error location signals where 

three 2(log 8 3) bits of information with only one bit flipped can be embedded. In addition, the receiver 

can easily extract the information, and the original image can be recovered without any distortion. 

R1 R2 R3 R4 R5 R6 R7 

D1 D2 D3 D4 C1 C2 C3 
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2.3. A Brief Introduction to JPEG Compression 

The main steps of the JPEG compression process [19] for grayscale images are given in Fig. 4. Color 

images can be generally regarded as multiple grayscale images. By applying 2D DCT to the non-overlapping 

8×8 blocks of the original image, the spatial domain signal is transformed into a frequency domain signal. 

Then, the coefficients obtained by DCT are fed to the quantizer and are quantized by the predefined 

quantization tables. The quantized DCT coefficients are scanned in zig-zag order and the DC coefficients are 

pre-compressed by differential pulse code modulation (DPCM). The AC coefficients are pre-compressed 

through running length encoding (RLE). Finally, by applying the Huffman code, the final compressed bit 

stream will be obtained by processing the symbol string. After enclosing the header file, the final JPEG file is 

obtained. 

 

 
Fig. 4. Flowchart of JPEG compression encoding process. 

 

2.4. A High Capacity Reversible Data Hiding Scheme for JPEG Images 

In 2013, a high capacity reversible data hiding method for JPEG images was proposed by Zhang et al. [20]. 

In their method, they assume one dimensional sequence 0 1 2 63{ , , ,..., }l l l l can be obtained by scanning each 

DCT coefficients block using zigzag scan. And, this method adopts mid-frequency 4 5 6 36{ , , ,..., }l l l l as 

embedded region to carry secret bit by using EMD method. For each coefficient-pairs (every two 

consecutive coefficients) in mid-frequency whose values equals to P will carry secret data, where P is a 

candidate value. Let il and
jl be a pair of coefficients, '

il and
'

jl which are the corresponding coefficients when 

secret message is embedded. In Zhang et al.’s method, P has three cases: P>0, P<0, and P=0. The embedding 

rules for the three cases are designed as fallows according to the value of P: 

(1) When P>0, for a pair ( , )i jl l , if il =
jl =P, which will carry two secret bits. These two bits are converted 

to a decimal g ( 0 3g  ) first. Then the extraction function tf is defined as 

 

 ( , ) ( 2 ) mod 4tf I J I J     (7) 

 

g is hidden into ( , )tf I J when
' '( , )i jl l meet the following circumstances: if g= ( , )t i jf l l , '

il =P and 
'

jl =P; if 

g= ( 1, )t i jf l l , '

il =P+1 and
'

jl =P; if g= ( , 1)t i jf l l  , '

il =P and
'

jl =P+1; if g= ( 1, 1)t i jf l l  , '

il =P+1 and 
'

jl

=P+1. 

(2) When P<0, for a pair ( , )i jl l , if il =
jl =P, which will carry two secret bits, and the corresponding 

decimal form is g ( 0 3g  ). The extraction function the extraction function tf  is defined as (7). 

' '( , )i jl l is determined by the following conditions: if g= ( , )t i jf l l , '

il =P and 
'

jl =P; if g= ( 1, )t i jf l l , '

il

=P-1 and 
'

jl =P; if g= ( , 1)t i jf l l  , '

il =P and 
'

jl =P-1; if g= ( 1, 1)t i jf l l  , '

il =P-1 and 
'

jl =P-1.  
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(3) When P=0, for a pair ( , )i jl l , if il =
jl = P = 0, will embed three secret bits. The corresponding decimal 

form g lies between 0 and 7, and the extraction function sf is defined as (8) according to embedding 

method [5]. 

 

 ( , ) ( ) mod 8sf I J I a J b      (8) 

 

where a and b are a pair of weighting coefficients. g is hidden into ( , )sf I J according to algorithm [5], a and 

b are generated by different random seeds. Let c= ( ( , )) mod 8t i jg f l l , then '

il and
'

jl can be obtained by c. 

Secret data can be embedded into the mid-frequency coefficients according to the above rules. Other 

cases of a pair of coefficients will not be used to carry secret data. 

Zhang et al.’s method [20] can achieve a very high payload, but their method modifies almost zero 

coefficients in mid-frequency of each DCT blocks. In other words, Zhang et al.’s method is very fragile in 

terms of security.  

3. Proposed High-Capacity RDH Method 

In this section, a high-capacity JPEG-based RDH method is presented. Our proposed scheme combines the 

(7, 4) Hamming code with a HS method, resulting in a higher embedding capacity than Huang et al.’s RDH 

[18]. Flowcharts for the embedding and extraction phases of our proposed method are shown in Fig. 5 and 

Fig. 7, respectively. 

 

 
Fig. 5. Flowchart of the embedding phase. 

 

3.1. Embedding Phase 
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In the embedding phase, a cover JPEG image needs to be decoded to get the quantized DCT coefficients. 

Then, we check the AC coefficients at every seven bits as a group. If a group is a perfect string as defined in 

Subsection 2.2, it is embedded with a secret using the (7, 4) Hamming code; otherwise, the HS method 

introduced in Subsection 2.1.1 is used to embed the secret. Meanwhile, we record the adopted embedding 

method of each group using a binary location map. After this has been done, we can obtain a new DCT 

coefficient carrying a secret message. We use these new DCT coefficients to perform inverse DCT operations 

to obtain a mid-JPEG image. Finally, the location map is embedded in the mid-JPEG image to generate the 

stego-image. The details of the embedding phase are described below. 

Inputs: Cover JPEG image I , secret message S . 

Outputs: Stego JPEG image
''I . 

Step 1: Decode cover JPEG image I , as described in Subsection 2.3, to get the quantized DCT coefficient

D . 

Step 2: The AC coefficients of D are grouped into iX in zig-zag order. Each group consists of seven 

consecutive numbers. For example, in Fig. 6(a), 1-7 constitute the first group, 8-14 constitute the second 

group, ... , and 57-63 constitute the ninth group. 

Step 3: For each seven-tuple 1 2 3 4 5 6 7( , , , , , , )iX x x x x x x x , we denote iX in two parts, 

1 2 3 4 5 6 7( , , , , , , )R r r r r r r r which consists of the LSB of each element, and 1 2 3 4 5 6 7( , , , , , , )P p p p p p p p

which is composed of the non-LSB parts of each element. We take R into (6) to calculate the vector value of

( )Y R . If ( )Y R is equal to (0, 0, 0), then R is a perfect stream as defined in Subsection 2.2, and the (7, 4) 

Hamming code is used to hide the data for this seven-tuple iX , after which we continue to Step 4. Otherwise, 

R is a non-perfect stream, HS is used to hide the data for this seven-tuple iX and then we continue to Step 5. 

For one 8×8 DCT block, we need to make nine judgments. 

 

 
Fig. 6. (a) Zig-zag scan order in DCT. (b) Quantized DCT coefficients in an 8×8 block. 

 

Step 4: For a vector cover seven-tuple
1 2 3 4 5 6 7( , , , , , , )iX x x x x x x x , whose R and P are defined as Step 3, 

and secret message S, we first convert S to its corresponding decimal value T (T<8). If T=0, then the stego 

perfect stream ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )R r r r r r r r is equal to the cover seven-tuple R; otherwise, the stego perfect 
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stream ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )R r r r r r r r is generated by flipping the
thT bit of R. Finally, the vector of the stego 

seven-tuple ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )X x x x x x x x is generated by re-combination of P and
'R . 

For example: Shown in Fig. 6(b) is an 8×8 block of quantized DCT coefficients. We found the first 

seven-tuple of the AC coefficient in Fig. 6(b) in zig-zag scan order as 10(2,4,2,0,2,0,0)X  =

 
2

010,100,010,000,010,000,000 , and the LSB of each element constitutes  
2

0,0,0,0,0,0,0R  . We 

take R into (2) and find that R is a perfect string. The corresponding P to R is  
2

01,10,01,00,01,00,00P  . 

Assuming the secret data is   102
1,1,0 6S   ,  

2

' 0,0,0,0,0,1,0R  can be easily generated by flipping the 

6th bit of R. Then, the vector of the seven-tuple stego bits  
2

' 010,100,010,000,010,001,000X  =

 
10

 2,4,2,0,2,1,0 can be obtained by combining P and
'R .  

Step 5: For a vector of cover seven-tuple
1 2 3 4 5 6 7( , , , , , , )iX x x x x x x x and binary secret bit streams

1 2( , ,..., ), {0,1}i iS s s s s  , we first read x  sequentially. If (1 7)ix i  is a nonzero number, then we 

calculate '

ix using (1) and (2). There, a binary secret bit is corresponds to s  in (1); otherwise, x remains 

unchanged, and '

ix is equal to x , which is zero. Then, we can get the stego seven-tuple

' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )X x x x x x x x to carry the secret message.  

For example: Shown in Fig. 6(b) is an 8×8 block of quantized DCT coefficients. We found the second 

seven-tuple of AC coefficients in Fig. 6(b) in a zig-zag scan order as X = (0, 1, 0, 0, -1, -2, 0), and the LSB of 

each element is a non-perfect string. We take it as a cover seven-tuple, and assume the secret bits are

 
2

1,0S  . Reading X sequentially, sequentially, 1 3 4 7, , ,x x x x  are 0 with no need for change; then, 

according to (1), 2 1x  and 1 1s  , so '

2 2 2 1( )x x sign x s   1 (1) 1 2    ; 5 1x  and 2 0s  , so

'

2 2 2 2( )x x sign x s   1 (1) 0 1    ; 6 1x  , so '

6 6 6( ) 2 ( 1) 3x x sign x        . After this is 

complete, we can obtain the seven-tuple stego bits  
1

'

0
0,2,0,0, 1, 3,0X    . 

Step 6: We used”0” to represent choosing the (7, 4) Hamming code for hiding. “1” means that HS method 

was used for hiding the secret message. Therefore, one 8×8 DCT block will generate a 9-bit location map 

(the whole JPEG image was formed on a large location map M according to the raster scan order of DCT 

blocks). This location map M is used to record the embed method of each block. 

Step 7: Repeat Step 3 to Step 6 until all DCT blocks of D are processed. Then a new DCT coefficient
'D

carrying the secret message will be obtained.  

Step 8: After the above step is completed, we can get a new DCT coefficient
'D to carry secret data and a 

location map M to record which hiding method has been used in each block. Then, a new JPEG image
'I can 

be generated by an inverse DCT operation using the new DCT coefficient
'D . This new JPEG image is named 

the mid-JPEG image. Then, the location map carrying the embed method will be embedded in this mid-JPEG 

image using the HS method. 

We first generate the mid-JPEG image I’s histogram ( )H i . In the histogram ( )H i , we find the maximum 

point ( )( [0,255])h a a and the minimum zero point ( )( [0, 255])h b b . If ( )h b > 0, we record the all 

coordinates  ,  x y of those pixels and the grayscale value b as overhead record information. Then we set
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( )h b = 0. Without a loss of generality, we assume a b . Move all parts of histogram ( )H i into the range of

 ,  a b to the right by one unit. This means that all the pixels whose grayscale values are  ,  i a b  are 

increased by 1. Then we scan the image, and if there is a pixel whose grayscale value is equal to a, we check 

the to-be-embedded location map M’s bit. If the bit equals “1,” then the pixel grayscale value is changed to 

a+1. If the bit is “0,” then the pixel value is retained as a. Finally, we can get the stego JPEG image
''I . 

After all steps are finished, a stego JPEG image
''I carrying location map M can be obtained. This stego 

JPEG image
''I also carries secret message S . 

3.2. Extraction and Restoration 

The extraction and restoration phases are shown in Fig. 7. Secret message S is extracted from stego JPEG 

image
''I . 

 
Fig. 7. Flowchart of the extraction and restoration phase. 

  

Inputs: Stego JPEG image
''I . 

Outputs: Secret message S and original JPEG image I . 

Step 1: We first generate stego-JPEG image
''I ’s histogram  H i . Assume the grayscale value of the 

maximum point and the minimum points are a and b , respectively. Without loss of generality, assume

a b . We scan the stego image
''I in the same scan order as in embedding procedure. When we meet a pixel 

whose grayscale value is a +1, a location map bit “1” can be extracted. When we meet a pixel whose value is
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a , a bit “0” can be extracted. Then we scan image
''I again. For whole pixels whose grayscale values satisfy

 ,  i a b  , pixel value i is subtracted by 1. If there is overhead record information found in the extracted 

data, then we set the pixel grayscale value (whose coordinate  ,  x y is saved in the overhead) as b. 

After that, we can get location map M and recover mid-JPEG image
'I .  

Step 2: The quantized DCT coefficients
'D carrying the secret message can be generated from mid-JPEG 

image
'I .  

Step 3: The AC coefficients of
'D are grouped into ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )X x x x x x x x in zig-zag order, and each 

group consists of seven consecutive numbers, just like the embedding phase. 

Step 4: Via location map M, we know which hiding method has been used for '

iX If the corresponding 

location of '

iX in location map M is “0,” that means the (7, 4) Hamming code is used for '

iX . If so, then go to 

Step 5. Otherwise, histogram shifting is used for '

iX , and Step 6 is next. 

Step 5: For a vector of stego seven-tuple ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )X x x x x x x x we denote
'X in two parts, one of 

which is ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )R r r r r r r r , which consists of the LSB of each element, and the other part is

1 2 3 4 5 6 7( , , , , , , )P p p p p p p p , which is composed of non-LSB parts of each element. Then we calculate 

the value of
'( )Y R using (6). If  ' 0( ,) 0, 0Y R  , then the secret data  

2
0,0,0S  , and the cover perfect 

stream R is equal to
'R ; otherwise, we look up with Table 1 for

'( )Y R to obtain the error location T, then 

convert T to 3-bits binary form
'T ,

'T is the secret data. The cover perfect stream R can be obtained by 

flipping the
thT bit of

'R . Finally, reconstruct the cover seven-tuple by P and R, 

and adjust their corresponding elements for re-combination. 

For example: When we get the stego seven-tuple  '

10
2,4,2,0,2,1,0X  , we divide X’ = 

   '

10 2
2,4,2,0,2,1,0 010,100,010,000,010,001,000X   into two parts, P 

 
2

01,10,01,00,01,00,00 and  
2

'  0,  0,  0,  0,  0,  1,  0R  . Then get
'( )Y R = (0, 1, 0) by (6) because

1 5 1 2 4 0 0 0 0 0y r r r r         ; 2 6 1 3 4 1 0 0 0 1y r r r r         ;

3 7 2 3 4 0 0 0 0 0y r r r r         . As the value of    ' 0,1,0( ) 0,0,0Y R  , we can look up Table 

1 and find that the error location is 6. Therefore, secret data  10 2
6 1,1,0S   , and then flipping the 6th

bit 

of
'R gets  

2
0,0,0,0,0,0,0R  . At last, we reconstruct the cover seven-tuple

   
2 10

010,100,010,000,010,000,000 2,4,2,0,2,0,0X   by combining the corresponding elements P 

and R. 

Step 6: For a vector of stego seven-tuple ' ' ' ' ' ' ' '

1 2 3 4 5 6 7( , , , , , , )X x x x x x x x . Read
'X sequentially, according to 

(3), if ' 1ix  , a secret bit 0 can be extracted; if ' 2ix  , a secret bit 1 can be extracted. After this, secret data 

can be completely extracted. Then read
'X sequentially again, and according to (4), '

ix can be completely 

restored to the original ix and we can obtain the cover seven-tuple . 

For example: When we get the stego seven-tuple  ' 0,2,0,0, 1, 3,0X    , we first do a sequential scan

1 2 3 4 5 6 7( , , , , , , )iX x x x x x x x

1 2 3 4 5 6 7( , , , , , , )iX x x x x x x x
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'X to find '

2 2x  and '

5 1x   , which satisfy the requirements of (3), which provides secret data  1,0S  . 

Then, we sequentially scan
'X again according to (4), and we can calculate that '

2 2( ) 1x sign x  ;

'

5 5( ) 1x sign x   ; ' '

6 6 6( )x x sign x   3 ( 3)sign   2  , and 1 3 4 7, , ,x x x x are also 0. Finally, the cover 

seven-tuple  0,1,0,0, 1, 2,0X    is obtained. 

Step 7: Repeat Step 4 to Step 6 until all '

iX of DCT coefficients
'D are processed. Then we can get the 

original DCT coefficient D . Through D , we obtain the original JPEG image I by an inverse DCT procedure. 

When all the steps are finished, original JPEG image I can be restored without any distortion and the 

whole secret message S can be extracted.  

4. Experimental Results 

In this section, several experiments were performed to demonstrate the performance of our proposed 

method. Eight grayscale images of size 512×512, including Lena, Peppers, Plane, Baboon, Blonde, Boat, 

Elaine, and Lake were used as test images as shown in Fig. 8. The 2016a version of the MATLAB 

programming language running on an Intel(R) Core(TM) i7-4790 was used to implement each method. We 

used the MATLAB function randint() to generate pseudo random numbers as secret messages. Two metrics 

were used to demonstrate the performance of the proposed hiding method: the peak signal-to-noise ratio 

(PSNR) of the stego JPEG images and actual data embedding capacity (pure payload). PSNR is calculated 

between the original JPEG image and the stego JPEG image and is used as a measure to evaluate the visual 

quality of the stego JPEG image. Pure payload is used to evaluate the maximum data embedding capacity of 

the JPEG image.  

 

 
Fig. 8. Eight test images: (a) Lena, (b) Peppers, (c) Plane, (d) Baboon, (e) Blonde, 

(f) Boat, (g) Elaine, (h) Lake. 
 

Some statistical results for these eight images are shown in Table 2. All the images are uncompressed 

images (.tiff). We compressed them with different quality factors (i.e., QF = 70, 80, 90, and 100). Then, the 

ratio of the perfect string (PS) to a non-perfect string (NPS) was gathered for each quantized DCT block 

(described in Section 3.2) as shown in Table 2. Experiment results demonstrated that there are many PS in 
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the quantized DCT coefficients. The number of PS decreases with an increase of quality factors. Table 2 

shows that the highest average number of PS can reach two-thirds of the whole image when the quality 

factor is 80. But even when the quality factor is 100, there are still a considerable number of perfect strings 

for hiding information. One PS can be used to carry three bits of data if we use the (7, 4) Hamming code. The 

more PS there is, the more information that can be embedded. 

 

Table 2. Average PS and NPS Quantity and Proportional Analysis 

QF PS NPS PS/NPS 

70 24867  11997  2.0729  

80 21980  14885  1.4767  

90 14974  21890  0.6841  

100 4632  32232  0.1437  

 

In our experiments, secret information bits are generated by randomization. All JPEG images are 

generated from the original image through a standard JPEG compression process and a standard 

quantization table (when QF=70, 80, 90 and 100). In order to demonstrate the performance of our method, 

we chose one state-of-the-art RDH method in the JPEG field for comparison. This method was proposed in 

[18]. Huang et al.’s RDH method [18] is based on the modification of quantized DCT coefficients and a block 

selection strategy. 

Corresponding to different QF values (QF=70, 80, 90 and 100), the experimental results are shown in 

Tables 3-6, respectively. The first column of the table is the test image, and the second column is Huang et 

al.’s method. The third column is the proposed method, where SAEB means the same amount of embedding 

bits as Huang et al.’s method when their method achieves a pure payload. The last column is the pure 

payload of our proposed method, and the statistics for each column includes the PSNR values. As shown in 

Tables 3-6, we can clearly see that the proposed method has a higher pure payload. When our method 

carries the same amount of information equal to the pure payload of Huang et al.’s method, we can also have 

a good PSNR. Moreover, with the increase of QF, the PSNR of our proposed method will continually improve. 

Especially when QF=100, our proposed method not only has a better pure payload, but also has better 

visual quality when compared to Huang et al.’s method. The experimental results of the test image Peppers 

on the visual quality of our proposed method is shown in Fig. 9, and has good picture quality. The above 

experimental results indicate that our proposed method achieved a higher pure payload and good image 

quality. 

For a more detailed comparison with [20], we choose “Boat” test image, as shown in Fig. 8. (f), with 

Q-factor 80 as the cover image. Comparison results are shown in Table 7. Obviously, the PSNRs of our 

method are better than those of [21] and [20] under the same hiding capacity. Zhang et al.’s method uses 

almost zero coefficients in mid-frequency of each DCT blocks to carry secret data, so their payload can 

achieve more than 130,000 bits whereas have very low visual quality. By contrast, the proposed method 

only changes a little zero coefficients for each blocks to enhance the hiding capacity while maintain good 

visual quality. For a normal JPEG image, most of it’s coefficients in mid-frequency of each DCT blocks are 0. 

That means Zhang et al.’s method is very fragile in terms of security, and it is quite easily perceived by 

eavesdroppers. 

 

Table 3. PSNRs and Pure Payload for Eight Test JPEG Images (QF=70) 

Images 
Huang et al.’s Method Proposed Method Proposed Method 

Pure payload PSNR (dB) SAEB PSNR (dB) Pure payload PSNR (dB) 

Lena 17778 41.39  17778 38.11  100685 31.20  
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Peppers 21764 40.78  21764 37.38  100098 34.65  

Plane 19742 40.13  19742 37.50  99781 30.46  

Baboon 40466 34.02  40466 34.18  90388 31.47  

Blonde 27354 38.23  27354 36.04  96929 30.93  

Boat 25109 38.29  25109 36.49  96556 30.85  

Elaine 26842 40.42  26842 36.82  98989 31.56  

Lake 26872 38.14  26872 37.07  97039 33.28  

Average 25740.88  38.92  25740.88  36.70  97558.13  31.80  

 
Table 4. PSNRs and Pure Payload for Eight Test JPEG Images (QF=80) 

Images 

Huang et al.’s Method Proposed Method Proposed Method 

Pure payload 
PSNR 

(dB) 
SAEB 

PSNR 

(dB) 
Pure payload 

PSNR 

(dB) 

Lena 22603 42.42  22603 39.08  98438 33.24  

Peppers 28291 41.55  28291 39.36  98048 35.85  

Plane 24220 41.33  24220 38.50  97824 32.46  

Baboon 47784 34.59  47784 35.27  86891 33.44  

Blonde 34121 38.88  34121 37.14  93965 33.25  

Boat 31147 39.14  31147 37.60  91771 33.01  

Elaine 35494 40.13  35494 38.07  96298 34.33  

Lake 33220 38.72  33220 38.70  93799 35.89  

Average 32110.00 39.59  32110.00  37.96  94629.25  33.93  

 
Table 5. PSNRs and Pure Payload for Eight Test JPEG Images (QF=90) 

Images 

Huang et al.’s Method Proposed Method Proposed Method 

Pure payload 
PSNR 

(dB) 
SAEB 

PSNR 

(dB) 
Pure payload 

PSNR 

(dB) 

Lena 34431 44.14  34431 42.92  93542 38.64  

Peppers 44169 41.82  44169 44.41  87997 41.40  

Plane 33439 43.52  33439 42.23  92826 37.80  

Baboon 60338 36.32  60338 37.96  81034 37.24  

Blonde 47883 40.25  47883 40.62  87743 38.40  

Boat 45457 40.80  45457 41.19  80372 38.70  

Elaine 57774 39.14  57774 40.78  86441 39.34  

Lake 50976 39.26  50976 40.29  84166 37.93  

Average 46808.38  40.66  46808.38  41.30  86765.13  38.68  

 
Table 6. PSNRs and Pure Payload for Eight Test JPEG Images (QF=100) 

Images 

Huang et al.’s Method Proposed Method Proposed Method 

Pure payload 
PSNR 

(dB) 
SAEB 

PSNR 

(dB) 
Pure payload 

PSNR 

(dB) 

Lena 70021 52.74  70021 54.83  75052 54.51  

Peppers 49069 52.72  49069 57.92  56519 57.24  

Plane 70770 53.01  70770 54.54  75980 54.24  

Baboon 25199 53.97  25199 58.74  35990 57.42  

Blonde 45788 52.93  45788 55.93  53880 55.27  

Boat 46147 52.83  46147 55.61  54243 54.38  

Elaine 38920 53.00  38920 57.30  48327 56.32  

Lake 40407 53.31  40407 55.93  49169 54.86  

Average 48290.13  53.06  48290.13  56.35  56145.00  55.53  
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Table 7. PSNRs Comparisons between the Proposed Method and Kuo et al.’s Method [22], Zhang et al.’s 
Method[20] (QF=80) 

Payload(bit) Kuo et al.’s Method [22] Zhang et al.’s Method [20]  Proposed Method 

5000 42.5395 44.5976 45.5614 

12288 31.7602 39.7804 41.5250 

26214 - 37.0356 38.2714 

52429 - 32.2727 35.3318 

78643 - 31.0415 33.6089 

131072 - 29.1812 - 

 

 
Fig. 9. Peppers test results when QF=70, 80, 90, and 100. 

 

5. Conclusions 

Recently, Huang et al. [18] proposed an RDH method based on HS and used a block selection strategy in 

JPEG images. However, this method does not fully use all the AC coefficients in the quantized DCT block. In 

this paper, we proposed a high capacity reversible data hiding method based on HS and utilization of the (7, 

4) Hamming code in JPEG images. A few parts of the zero AC coefficients were used to embed the secret, but 

this was not perceived by the eavesdropper due to the small number of zeros that are changed. Our 

proposed RDH method for JPEG images is able to embed an average of 50,000-100,000 secret message bits. 

Compared to Kuo et al.’s [22] and Zhang et al.’s [20] methods, our method has better visual quality and 

PSNRs under the same hiding capacity. Compared to Huang et al.’s [18] method, our method still has very 

high visual quality. With the increase of QF, the PSNR of our proposed method will only continue to improve. 

Therefore, if a sender needs a larger capacity to hide more secret messages, a low QF will be more helpful 

(e.g., QF=70). If the sender needs high visual quality to avoid an eavesdropper's suspicion, then a QF=100 is 

a better choice. 
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