

Risk Identification Using Case Based Reasoning in
Software Project

Eunjin Chun*, Jongdae Han, Hyuksoo Han

Depart of Computer Science, Sangmyung University. 20 Hongjimun 2-gil, Jongno-gu, Seoul, Korea.

* Corresponding author. Tel.: +820232178705; email: hshan@smu.ac.kr
Revised manuscript submitted July 11, 2017; accepted October 12, 2017.
doi: 10.17706/jsw.12.9.744-750

Abstract: Software project has many uncertain factors and risk management has been recognized as one of

key activities for project success. However, much of the present research focuses on finding the relation

between risk factors and project outcome. Software project failures are often a result of insufficient and

ineffective risk identification process. Many parts of identifying risks are subject to the knowledge and

experience of expert and manual activities. Consequently, risk identification process can be time consuming

and error prone.

To overcome these problems, a mechanism was proposed that uses CBR (Case Based Reasoning) to

facilitate the reuse of past experience and lesson learned in similar projects. CBR is useful for extracting risk

cases having high similarity with the target project in risk database. For the purpose of supporting the

proposed mechanism, a descriptor which characterizes and represents a project is designed and an

improved algorithm for comparing project similarity is provided. An illustrative example is presented to

show how the proposed mechanism can be applied to the actual projects.

Key words: Case based reasoning, risk identification, risk management, risk database.

1. Introduction

Software project has many uncertain risks including ambiguous requirements, different skill levels of

developers, and project invisibility in itself. Risk management identifies and manages potential and

anticipated project risks in early stage of project. Controlling and mitigating the risks has been recognized

as one of the key activities for project success [1]. However, much of the present research focuses on simply

finding the relation between risk factors and project outcomes [1], [2] leaving little research on risk

identification. In the present practice field, project managers and project stakeholders play an important

role in identifying the risks based on their subjective opinions and knowledge. It is often time consuming

and inconsistent, and even hard to ensure the reliability of the decision they’ve made.

Some organizations utilize a risk database to store and compare past experience. But since the structure

of database is constructed only with a simple classification scheme based on project source and category,

there is a limit for finding appropriate risks to target project efficiently. In this study, a systematic

mechanism was proposed that utilizes CBR (Case Based Reasoning) method for finding and reusing the

risks out of previous project practices. In CBR, a set of candidate risk is retrieved from risk database based

on the project similarity and a reliable and accurate similarity measurement is important in the

identification of risks.

In this study, a modified cosine similarity was developed which is calculated from project properties and

Journal of Software

744 Volume 12, Number 9, September 2017

values and the degree of project attribution in the past project. For the purpose of supporting the proposed

mechanism, a descriptor which characterizes and represents project is designed and also an algorithm for

calculating similarity out of those descriptors is provided. Its usefulness was also illustrated through a case

example of actual software project.

2. Related Research

2.1. Risk Identification Process

For the first step in the risk management, risks are identified and added to the known risk list. The output

of the step is a list of specific risks that have potential impacts to the current project. A risk database is

constructed with the classification scheme based on the project sources. As in Fig. 1. the candidate risks are

compared and reviewed for reuse with the risks from risk database. Once identified, they are added to the

final risk set with or without modification. New risks also should be included in the final risk set.

Fig. 1. Risk identification process in risk DB.

2.2. CBR (Case Based Reasoning)

CBR provides solutions that are derived from previous solutions which have close similarity to target

project. This method is known to be useful in the area where the problems are difficult to formalize and the

solution is merely depended on experts’ knowledge. CBR enables the analyst to save time by reusing the

previous knowledge and lesson learned. Key success factor of this method is to find the similarity metric

between the two problems. The accuracy and correctness of the similarity metric is important for the reuse

of appropriate knowledge.

3. The Proposed Risk Identification Process

The goal of our study is to develop a systematic framework for the software risk management process,

especially applicable to medium-to-small sized organization. To help managers and analysts identifying

risks, a risk database should be developed to maintain the identified risks. Projects are sorted by their

similarity with now-to-started project and analyst is provided with identified risks from the project. The

similarity score can be modified with weight factors provided by experts.

As various projects are performed by many organizations, many kinds of risk data is piled on risk

database. These data should be managed and maintained as properties or assets of projects, thus being able

to be used for possible risk suggestions for a new project. Risk probability is generally decided by project

properties such as resource constraints, technical difficulties, and etc. Fig. 2. shows identification process

described in our study.

Journal of Software

745 Volume 12, Number 9, September 2017

Fig. 2. Risk identification process.

3.1. Project Descriptor

A set of descriptor should be defined to compare with the previous projects and to find out the most

similar projects. Because probable risks are introduced by various project properties, project property

taxonomy can be adopted to define the descriptors. These descriptors will be act as a knowledge base for

the further project performance. Our study synthesizes and reconstructs the project property from various

studies [3]–[5] and proposes a risk description system as shown in Table 1. [6]–[11].

The proposed descriptor is defined as follows:

 Project descriptor = <Category, Property Name, Property Value, Type>

Table 1. Project Property Descriptor

3.2. Calculating Similarity

Descriptors are used to find out which projects are more similar to a specific project. The similarity is

Journal of Software

746 Volume 12, Number 9, September 2017

calculated by the cosine similarity metric, because it gives the better intuition between two projects and is

easier to perform clustering compare to other similarity measures. Each property item is converted to a

vector component, a vector per a project, and property values can have only the textual values rather than

discrete values. Conversion logic was provided for each type of the property as shown in Table II.

Table 2. Conversion Logic

The formula for cosine similarity is as following:

 (1)

where Ai and Bi are components of each vector. Because the value of components cannot be negative,

similarity always has a value between 0 and 1. The higher value means the higher similarity between the

vector A and B.

Basic cosine similarity applies the same importance weight evenly to all the vector components in project

property. But when identifying risk, certain properties are more important than the others. For example, if

an organization has suffered financial trouble recently, properties such as Budget and Deadline can have

greater importance than COTS. Therefore, a way of giving weights was suggested to each component to

reflect the relativity among them. Following is the modified cosine similarity metric:

 (2)

where is calculated weight factor for a project property.

get preliminary comparison property
for all properties:

input weight factors that experts calculated
as a given project COMPARED PROJECT:
 for all projects in DB:
 for all properties:
 convert property value to vector component (min 0, max 10)
 calculate the product of each weight factor and vector component
 calculated weighted similarity
 return list of most similar projects with COMPARED PROJECT

Journal of Software

747 Volume 12, Number 9, September 2017

Fig. 3. Algorithm for calculating modified cosine similarity

The weight factor is given by project experts and represents the degree of importance to the risks.

Because over value of weight factor may cause distortion to the result, we suggest limiting the weight factor

no greater than (2). Fig. 3. shows the algorithm for the calculation of similarity.

4. Case Application

To validate our study, an example case for project risk identification is performed on the control software

of automobile smart key. The following are a set of requirements about the case project:

a) The required functions will be enhanced based on the previous model.

b) It is assumed that no COTS packages are used.

c) The project requires remote ignition function to be installed. This function is considered as

super high technology.

4.1. Project Descriptor

After analyzing requirements, the project descriptor of the target project is identified as in Table III.

Table 3. Descriptor of Target Project

4.2. Calculating Similarity

The descriptor of target project is compared with the projects in risk database. Table IV shows some of

the descriptors in risk database.

Table 4. Descriptor of Some Projects in Risk Database

Then the modified cosine similarity measure is applied and calculated using the algorithm defined in Fig.

3. With given requirements, our experts estimated weight factors as following:

[1,0,0.5,1,2,2,1,1,1,2,1,0.5,1,1,1,1,1,0.5,1,1]
For each corresponding project properties described above, respectively. Table V shows how modified

Journal of Software

748 Volume 12, Number 9, September 2017

cosine similarity made difference with naive cosine similarity. The result suggests that Project A is more

appropriate candidate for reusing identified risks than Project B.

Table 5. Project Similarities with Target Project

5. Conclusion

In this paper, a mechanism was proposed to use CBR to retrieve the risk candidates from risk DB to reuse

past experience and lesson learned in similar projects. A set of project properties was suggested to find out

the most similar project, and set up an algorithm to obtain similarity.

The proposed approach has several advantages. First, CBR enables more efficient retrieval of risks from

similar past project. It provides a great opportunity of reusing knowledge and lesson learned of past

projects.

Second, analyzing the target project based on project descriptor provides more systematic and thorough

examination of the project. It also reduces the possibility of missing some critical risks.

Third, modified cosine similarity can improve accuracy and correctness of similarity which will play an

important role in the success of using CBR.

For the future work, we will support entire risk identification process and automate the initial risk

candidates from risk Database for efficiency of risk identification.

Acknowledgment

This research was supported by the MSIP(Ministry of Science, ICT and Future Planning), Korea, under the

ITRC(Information Technology Research Center) support program (IITP-2016-R0992-16-1014) supervised

by the IITP(Institute for Information & communications Technology Promotion)

References

[1] Hu, Y., et al. (2013). Software project risk analysis using Bayesian networks with causality constraints.

Decision Support Systems.

[2] Avdoshin, S. M., et al. (2016). Software Risk Management: Using the Automated Tools. In Emerging

Trends in Information Systems. Springer international publishing, 85-97.

[3] Kang, D. W., et al. (2011). Knowledge-based process tailoring automation. Journal of KIISE: Software

and Applications, 38(6), 304-316.

[4] Park, Soo-Jin, et al. (2006). A process tailoring method based on artificial neural network. Journal of

KIISE: Software and Applications, 33(2), 201-219.

[5] Kim, Woo-Ri, et al. (2010). The research on applying FMEA to evaluate the safety of tangible

game-focusing on Wii accident cases. Journal of Korea Game Society, 10(3), 25-35.

[6] Yu, W. A., et al. (2003). Knowledge and case-based reasoning for customization of software processes -

A hybrid approach. International Journal of Software Engineering and Knowledge Engineering, 13,

293-312.

[7] Ginsberg, M. P., et al. (1995). Process Tailoring and the Software Capability Maturity Model (sm). No.

Journal of Software

749 Volume 12, Number 9, September 2017

CMU/SEI-94-TR-024. Carnegie-mellon univ pittsburg pa software engineering inst.

[8] Shenhar, A. J., et al. (1996). Toward a typological theory of project management. Research policy, 25(4),

607-632.

[9] Jalote, P. (2000). CMM in Practice: Processes for Executing Software Projects at Infosys. Risk Managemet

(pp. 159-174). Addison-Wesley Professional.

[10] Daniel, S. (2001). Software acquisition management guidelines. Thesis. Submitted for the Degree of.

Master of Science. Linkoping University, Sweden.

[11] The Ministry of Information and Communication. (2005). Standard Software

Acquisition Processes for Public Sectors. TTAS, Korea.

Eunjin Chun is a senior student in the Department of Computer Science at SangMyung

University. She will enter M.S. program in 2017 at SangMyung University, Korea. Her

research interests are SW engineering, MSR(Mining Software Repository) and risk

management.

Jongdae Han received his computer science and engineering B.S. in 2005 and Ph.D. in 2013

from Seoul National University, Korea. He is currently an assistant professor in the

Department of Computer Science at SangMyung University, Korea. His research interests

are in team composition for software development, distributed software development, and

repository data mining.

Hyuksoo Han received his computer science B.S. in 1985, M.S. in 1987 from Seoul National

University, Korea and Ph.D. in 1992 from University of South Florida. He is a professor in

the Department of Computer Science at SangMyung University, Korea. His current research

interests are in the areas of SW process, SW safety and risk management. He is currently

the director of SSARC (Software Safety Assurance Research Center).

Journal of Software

750 Volume 12, Number 9, September 2017

