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Abstract: Software project has many uncertain factors and risk management has been recognized as one of 

key activities for project success. However, much of the present research focuses on finding the relation 

between risk factors and project outcome. Software project failures are often a result of insufficient and 

ineffective risk identification process. Many parts of identifying risks are subject to the knowledge and 

experience of expert and manual activities. Consequently, risk identification process can be time consuming 

and error prone. 

To overcome these problems, a mechanism was proposed that uses CBR (Case Based Reasoning) to 

facilitate the reuse of past experience and lesson learned in similar projects. CBR is useful for extracting risk 

cases having high similarity with the target project in risk database. For the purpose of supporting the 

proposed mechanism, a descriptor which characterizes and represents a project is designed and an 

improved algorithm for comparing project similarity is provided. An illustrative example is presented to 

show how the proposed mechanism can be applied to the actual projects. 
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1. Introduction 

Software project has many uncertain risks including ambiguous requirements, different skill levels of 

developers, and project invisibility in itself. Risk management identifies and manages potential and 

anticipated project risks in early stage of project. Controlling and mitigating the risks has been recognized 

as one of the key activities for project success [1]. However, much of the present research focuses on simply 

finding the relation between risk factors and project outcomes [1], [2] leaving little research on risk 

identification. In the present practice field, project managers and project stakeholders play an important 

role in identifying the risks based on their subjective opinions and knowledge. It is often time consuming 

and inconsistent, and even hard to ensure the reliability of the decision they’ve made.  

Some organizations utilize a risk database to store and compare past experience. But since the structure 

of database is constructed only with a simple classification scheme based on project source and category, 

there is a limit for finding appropriate risks to target project efficiently. In this study, a systematic 

mechanism was proposed that utilizes CBR (Case Based Reasoning) method for finding and reusing the 

risks out of previous project practices. In CBR, a set of candidate risk is retrieved from risk database based 

on the project similarity and a reliable and accurate similarity measurement is important in the 

identification of risks. 

In this study, a modified cosine similarity was developed which is calculated from project properties and 
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values and the degree of project attribution in the past project. For the purpose of supporting the proposed 

mechanism, a descriptor which characterizes and represents project is designed and also an algorithm for 

calculating similarity out of those descriptors is provided. Its usefulness was also illustrated through a case 

example of actual software project. 

2. Related Research 

2.1. Risk Identification Process  

For the first step in the risk management, risks are identified and added to the known risk list. The output 

of the step is a list of specific risks that have potential impacts to the current project. A risk database is 

constructed with the classification scheme based on the project sources. As in Fig. 1. the candidate risks are 

compared and reviewed for reuse with the risks from risk database. Once identified, they are added to the 

final risk set with or without modification. New risks also should be included in the final risk set.  
 

 

Fig. 1. Risk identification process in risk DB. 

 
 

2.2. CBR (Case Based Reasoning) 

CBR provides solutions that are derived from previous solutions which have close similarity to target 

project. This method is known to be useful in the area where the problems are difficult to formalize and the 

solution is merely depended on experts’ knowledge. CBR enables the analyst to save time by reusing the 

previous knowledge and lesson learned. Key success factor of this method is to find the similarity metric 

between the two problems. The accuracy and correctness of the similarity metric is important for the reuse 

of appropriate knowledge. 

3. The Proposed Risk Identification Process 

The goal of our study is to develop a systematic framework for the software risk management process, 

especially applicable to medium-to-small sized organization. To help managers and analysts identifying 

risks, a risk database should be developed to maintain the identified risks. Projects are sorted by their 

similarity with now-to-started project and analyst is provided with identified risks from the project. The 

similarity score can be modified with weight factors provided by experts. 

As various projects are performed by many organizations, many kinds of risk data is piled on risk 

database. These data should be managed and maintained as properties or assets of projects, thus being able 

to be used for possible risk suggestions for a new project. Risk probability is generally decided by project 

properties such as resource constraints, technical difficulties, and etc. Fig. 2. shows identification process 

described in our study. 
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Fig. 2. Risk identification process. 
 

3.1. Project Descriptor 

A set of descriptor should be defined to compare with the previous projects and to find out the most 

similar projects. Because probable risks are introduced by various project properties, project property 

taxonomy can be adopted to define the descriptors. These descriptors will be act as a knowledge base for 

the further project performance. Our study synthesizes and reconstructs the project property from various 

studies [3]–[5] and proposes a risk description system as shown in Table 1. [6]–[11]. 

 
The proposed descriptor is defined as follows: 

 Project descriptor = <Category, Property Name, Property Value, Type> 
 

Table 1. Project Property Descriptor 

 

 

3.2. Calculating Similarity 

Descriptors are used to find out which projects are more similar to a specific project. The similarity is 
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calculated by the cosine similarity metric, because it gives the better intuition between two projects and is 

easier to perform clustering compare to other similarity measures. Each property item is converted to a 

vector component, a vector per a project, and property values can have only the textual values rather than 

discrete values. Conversion logic was provided for each type of the property as shown in Table II. 
 

Table 2. Conversion Logic 
 

 
 

 

The formula for cosine similarity is as following: 
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where Ai and Bi are components of each vector. Because the value of components cannot be negative, 

similarity always has a value between 0 and 1. The higher value means the higher similarity between the 

vector A and B.  

Basic cosine similarity applies the same importance weight evenly to all the vector components in project 

property. But when identifying risk, certain properties are more important than the others. For example, if 

an organization has suffered financial trouble recently, properties such as Budget and Deadline can have 

greater importance than COTS. Therefore, a way of giving weights was suggested to each component to 

reflect the relativity among them. Following is the modified cosine similarity metric: 

 
 

                    
   

     
 
   

        
  

           
  

   

                        (2) 

 

where    is calculated weight factor for a project property.  

 

 

get preliminary comparison property 
for all properties: 

input weight factors that experts calculated 
as a given project COMPARED PROJECT: 
 for all projects in DB:  
  for all properties: 
   convert property value to vector component (min 0, max 10) 
   calculate the product of each weight factor and vector component 
  calculated weighted similarity 
 return list of most similar projects with COMPARED PROJECT 
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Fig. 3. Algorithm for calculating modified cosine similarity 

The weight factor is given by project experts and represents the degree of importance to the risks. 

Because over value of weight factor may cause distortion to the result, we suggest limiting the weight factor 

no greater than (2). Fig. 3. shows the algorithm for the calculation of similarity. 

 

 

4. Case Application 

To validate our study, an example case for project risk identification is performed on the control software 

of automobile smart key. The following are a set of requirements about the case project:  

a) The required functions will be enhanced based on the previous model. 

b) It is assumed that no COTS packages are used. 

c) The project requires remote ignition function to be installed. This function is considered as 

super high technology. 

4.1. Project Descriptor 

After analyzing requirements, the project descriptor of the target project is identified as in Table III.  
 

Table 3. Descriptor of Target Project 

 

4.2. Calculating Similarity 

The descriptor of target project is compared with the projects in risk database. Table IV shows some of 

the descriptors in risk database. 

 

Table 4. Descriptor of Some Projects in Risk Database 

 

 

Then the modified cosine similarity measure is applied and calculated using the algorithm defined in Fig. 

3. With given requirements, our experts estimated weight factors as following: 

[1,0,0.5,1,2,2,1,1,1,2,1,0.5,1,1,1,1,1,0.5,1,1] 
For each corresponding project properties described above, respectively. Table V shows how modified 
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cosine similarity made difference with naive cosine similarity. The result suggests that Project A is more 

appropriate candidate for reusing identified risks than Project B. 

 
 

Table 5. Project Similarities with Target Project 

 

5. Conclusion 

In this paper, a mechanism was proposed to use CBR to retrieve the risk candidates from risk DB to reuse 

past experience and lesson learned in similar projects. A set of project properties was suggested to find out 

the most similar project, and set up an algorithm to obtain similarity. 

The proposed approach has several advantages. First, CBR enables more efficient retrieval of risks from 

similar past project. It provides a great opportunity of reusing knowledge and lesson learned of past 

projects. 

Second, analyzing the target project based on project descriptor provides more systematic and thorough 

examination of the project. It also reduces the possibility of missing some critical risks. 

Third, modified cosine similarity can improve accuracy and correctness of similarity which will play an 

important role in the success of using CBR.  

For the future work, we will support entire risk identification process and automate the initial risk 

candidates from risk Database for efficiency of risk identification.  
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