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Abstract: Predicting software testability can reduce costs and efforts. Cohesion, as one of software quality 

metrics, found to be good indicator for software testability. Although there is a good interest in software 

testability on the class level in the literature, software testability on the package level has not received the 

same interest. The paper investigates the relationship between a newly proposed package cohesion metric 

and software testing effort. The empirical analysis used data collected from five Java open source software 

systems for which JUnit test classes are available. The results show that as good the package cohesion is, as 

the less testing effort is needed. The stability of the correlations allows us to draw optimistic conclusions 

about its use as an indicator. 
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1. Introduction 

Software testability is known to be one of the software maintainability characteristics. During the 

software development process, the detection of faults and errors is always one of the main goals for the 

software development team. The early detection of errors and faults can reduce the maintenance effort and 

costs.  Software testing is the process that offers this advantage to deliver a high quality software system. 

Software testability aims to facilitate the process of software testing. ISO [1] defines software testability as 

“attributes of software that bear on the effort needed to validate the software product.” Another definition 

by ISO [2] is the degree of effectiveness and efficiency with which test criteria can be established for a 

system, product, or component, and tests can be performed to determine whether those criteria have been 

met. IEEE [1] defines it as the degree of the software that facilitates the establishment of test criteria and 

the performance of tests to determine whether criteria have been met. Software testability has a relation to 

testing effort reduction and software quality [3]. As stated by Gao et al. [3], the late detection of a lack of 

testability may be difficult and expensive to repair, and it can badly affect the testing and maintenance effort 

[4]. 

It has been argued that software testability, as one of the maintainability characteristics, should be 

considered as a key factor in software quality. Software quality measurements depend on software 

testability measures. Therefore, predicting software testability using software measurements is expected to 

give a chance to improve software quality.  
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Measuring software attributes that have an impact on testability after coding for the purpose of 

testability evaluation is later and more costly. However, predicting testability earlier, during the software 

design phase, may greatly reduce the cost and the time [5]. Software metrics can predict software quality 

characteristics [6]-[8]. Several metrics were proposed to predict quality attributes related to testability such 

as maintainability. Many studies have investigated the role of cohesion, which is one of the most important 

software quality internal attributes, in predicting software maintainability, and how cohesion can impact 

software maintainability in different abstraction levels. A cohesion metric can be a good predictor for 

software maintainability and software testability. Such predictions include, but are not limited to, fault 

prone-ness and defect density. In this paper, we empirically investigate the relationship between package 

cohesion and package testability of the software system. Our hypothesis is that a package with low cohesion 

is difficult to test.  

This study has two folds. First, it investigates the relationship between package cohesion and software 

testing effort, which is presented in this paper. Second, it predicts software testing effort using package 

cohesion, which will be published in the near future. The first part of the study encouraged us to further 

exploration of how package cohesion can be used as a good testability predictor. 

The rest of the paper is organized as follows: The related studies are briefly introduced in Section 2. 

Section 3 presents an overview of the studied package cohesion metrics. Section4 details the empirical 

study. Section 5 investigates and discusses the correlation between package cohesion and testing effort. 

Finally, Section 6 concludes the paper with future works. 

2. Related Work 

Finding a clear view of all the factors that can affect software testability is difficult because testability is 

an elusive concept [5]. Many testability approaches have been proposed to investigate the degree of 

software testability.  

Freedman [9] proposed testability metrics based on observability and controllability. The proposed 

testability measures examine the input and output domains. He meant by observability the ability of 

specific input to affect the output. Controllability is meant to be the ease of producing specific output from 

specific input. Fenton et al. [10] considers software testability as an external attribute that can be affected 

by internal attributes. Voas [11] states that the test case of a component will fail if it has a fault. Using the 

testability definition proposed by Voas [11], Khoshgoftaar et al. [12] modeled the relationship between 

static software measures and testability. They developed two distinct models, and classified the program 

modules as having low or high testability. Jungmayr [13] focuses on dependencies between software 

components and proposed the notion of “test-critical dependencies.” This new concept is used to estimate 

testability of software through integration testing. The reduction metric is used to calculate the effect of 

individual factors to find out the required testability metric [5]. Bruntink and Deursen [14] proposed some 

testability metrics to assess the testability of the classes of Java systems. They defined some testability 

factors based on source code metrics. One limitation of this study is the late detection of errors, which 

makes any repair expensive. Without empirical validation, Baudry et al. [15] aimed to detect the 

weaknesses of a UML class diagram to reduce the final testing effort. They addressed two configurations in 

a UML class diagram that can lead to code difficulties in testing. They proposed a testability measurement 

for a UML class diagram as well as solutions to improve the testability of the software design. Jianping and 

Minyan [16] proposed a request-oriented method of software testability measurement. The proposed 

method can select the appropriate elements from a self-contained software testability measurement 

framework to measure testability of all kinds of software. Their goal was to lower the difficulty and the cost 

of a software testability measurement as well as to accelerate the application and development of a 
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software testability measurement.  

Badri et al. [1], [4] aimed to empirically explore the relationship between a lack of cohesion and the 

testability of classes in object-oriented systems. Using two Java software systems that have JUnit test cases, 

they evaluated the capability of lack of cohesion metrics to predict testability. The results support the idea 

that there is a significant relationship between the (lack of) cohesion of classes and testability. In another 

work, Badri et al. [17] performed an empirical investigation to study the relationship between object-

oriented design metrics and the testability of classes. Using logistic regression methods, they evaluated the 

individual and the combined effect of metrics on the unit testing effort of classes. The results indicated that 

complexity, size, cohesion, and (to some extent) coupling were found to be significant predictors of the 

testing effort of classes. Later, Badri et al. [18], [19] studied the effect of control flow of the unit testing 

effort of classes. They classified the classes into low and high according to the required testing effort.  

Singh et al. [20] measured the testing effort in terms of lines of code added or changed during the life 

cycle of a defect. They predicted testing effort using object-oriented metrics and neural networks [20]. In 

another work, Singh et al. [21] performed a case study on Eclipse to predict testability at the package level. 

The results showed that there is a significant correlation between source code metrics and test metrics that 

obtained from JUnit test classes of test packages. They found that the low value of cohesion increases 

testing effort and decreases testability.  

Although there is a good interest in software testability on the class level as seen from the above, software 

testability on the package level has not received the same interest. So this study focuses on the package 

testability and how it is affected by package cohesion. It uses our cohesion metric on the package level [22], 

proposed based on the well-known package cohesion principles, both theoretically and experimentally 

validated. Actual testing data of software have been used to investigate the relationship between the 

internal quality attribute, package cohesion, and the external quality attribute, package testability, using 

statistical analysis tests.  

3. Package Cohesion Metrics 

3.1. The Proposed Metric (CH) 

In our previous work [22]-[24], which is motivated by Martin’s package cohesion principles [25], we 

proposed two different cohesion metrics to measure two different cohesion concepts or types based on 

Martin’s package cohesion principles in [25]. The first cohesion type, Common Reuse (CR), includes the 

factors that help in assessing CR cohesion. Similarly, the second cohesion type, Common Closure (CC), 

includes the factors that help in assessing CC cohesion. After each type of cohesion is measured by itself, the 

two values of CR and CC may be combined to one unified value of package cohesion, while still recognizing 

the two types. 

The CR metric measures cohesion based only on the common reuse factors of the package. The elements 

of a package have different degrees of reachability. Reachability of a class in a package is the number of 

classes in the same package that can be reached directly or indirectly. The CR metric is defined as follows: 

“Let c  C, and suppose there is an incoming relation to c from a class in a different package. Then c is 

called an in-interface class. The cardinality of the intersection of the hub sets of all the in-interface classes in 

C divided by the number of classes in C is the CR of P ”. 

 

CR= | In-interface class hub sets| / |C|                                 (1) 

where 
Hubness(c) = {d  C: if there is a path c d} 

C: set of classes in package P 
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c and d: classes in C 

The CC metric considers the package dependencies on other packages as well as the internal 

dependencies between classes of the package. The classes of the package should depend on the same set of 

packages and, thus, they will have the same reasons for a change. The CC metric is defined as follows: 

“The cardinality of the intersection of the reachable sets divided by the cardinality of the union of the sets 

represents the CC of P ”. 

 

CC= ( | Reachable Package sets | / | Reachable Package sets | )                                    (2) 

 

The combined cohesion CH is defined as follows: 

 

CH =
2 -D

2                                                                                

(3)

 

D= (1-CR)2 +(1-CC)2                                                                                
(4) 

 
 

3.2. Martin’s Metric (H) 

Martin proposed a rational cohesion metric for the package, 

 

H=(R+1)/N      (5) 

 

where R: number of relationships between classes in the package 

N: number of classes in the package 

Although Martin’s cohesion principles [25] are well known and well accepted, H metric doesn’t conform 

to them. H measures the ratio of the relationships between classes of the package. This simple concept 

doesn’t measure the common reuse or the common closure of the package, but rather, in its best situation, it 

may measure the classes’ extent of being connected. The H metric depends on the number of relations 

rather than how these relations are designed. In this case, a well-designed package and a badly designed 

package could have the same cohesion value. In our previous work [22], further discussions are presented. 

4. Descriptive Statistics 

This empirical study was conducted on five open-source Java software systems to discover the role of a 

package cohesion measure in predicting software testability. This section provides descriptions about the 

studied software systems and the testing data collection. Two package cohesion metrics are included in this 

study, Martin’s cohesion metric (H) and our proposed package cohesion metric (CH)[22], which was 

developed based on Martin’s package cohesion principles [25].  

4.1. The Software Systems 

Five open-source Java software systems were involved in the empirical study. All the five systems were 

selected based on the following criteria to allow results generality. They had: (1) to be implemented using 

Java programming language, (2) to have testing cases available, (3) to have a sufficient number of versions 

for each system that have been tested, (4) to be organized using packages, (5) to have different sizes ranging 

from very large to small systems in terms of number of packages and number of classes, (6) to be from 

different domains, and (7) to have positive reviews and to be mature. We expect these criteria will allow the 

generalization of the results obtained from the study. The first system, Camel [26], is rule-based and 
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mediation engine to configure routing and mediation rules. The second system, Tomcat [27], is an open 

source webserver developed to implement Javaservlet and Java Server pages (JSP). Apache Tomcat is 

developed by the Apache Software Foundation. It has been developed and released under Apache License 

version 2. The third system, Hadoop [28], is open source framework software for large-scale processing of 

data sets on clusters of computers. It is licensed under the Apache License 2.0. The fourth system, Synapse 

[29], is a lightweight and high-performance open source Enterprise Service Bus (ESB). It provides 

exceptional support for XML and Web Services. It also supports several content interchange formats. 

Apache Synapse is licensed under the Apache Software License version 2.0. The fifth system, Ant [30], is a 

Java library and command-line tool used to build Java applications. It can be also used to build non-Java 

applications such as C or C++ applications. Table I provides details about the studied software systems. 

 

Table 1. Details of the Studied Systems 
 Release #LOC #Classes #Packages #TestPackages #TestClasses #TLOC 

Camel 2.0.0 143732 5111 264 44 459 31494 

Tomcat 7.0.6 170461 1725 113 37 323 10732 

Hadoop 2.2.0 522903 4445 222 205 3351 181007 

Synapse 2.1.0 82032 1115 117 47 288 13177 

Ant 1.92 106300 1120 67 36 442 23170 

 

4.2. Testing Data 

The source of the testing data for this study is the test classes of the studied systems. Test classes are 

written for the purpose of software testing. JUnit, which is an open source framework, is designed for 

running tests in Java programming language [31]. JUnit has gained a lot of popularity [32][33]. It helps in 

testing a Java class by defining how to write the corresponding classes and provides the tool to run them 

[34]. JUnit gives testers support to write test classes for the system classes, in a convenient way, and then 

run them to output a report about the successful and failed methods of the class tested [4][31]. The source 

class and the test class can be kept in the same or different packages [34]. The more test classes that are 

written, the more the testing effort.  

To indicate the testing effort required for the software package, we consider a Testing Lines Of Code 

(TLOC) measure in which we count the number of LOC used for the purpose of testing the classes of the 

package. The written TLOC represents the effort spent to test a specific package. The more TLOC written, 

the more effort is spent and the lower the testability of the package. We consider this measure for two 

reasons. First, it seems to be a reasonable and a good measure for testing effort in terms of cost and time 

spent to test a package. Second, this measure is measurable using the freely available data.  

Two computer science PhD students were dedicated to collecting the testing data. The data was collected 

manually from the systems’ artifacts. The collected data were tested to check its validity. This process 

increased our confidence about the validity of the data collected. 

For the purpose of listing all classes in each system and listing all packages, we have used the JHawk tool 

[35]. Then, each test class is assigned to its system class along with its LOC. Then, testing effort data are 

collected on the package level. The testing effort data were collected individually for the five studied 

systems. Table II summarizes testing data for the studied systems.  

 

Table 2. Testing Data 
 #LOC Mean #LOC #TLOC Mean #TLOC 
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Camel 143732 544 31494 715 

Tomcat 170461 1508 10732 290 

Hadoop 522903 2355 181007 882 

Synapse 82032 701 13177 280 

Ant 106300 1586 23170 643 

4.3. Package Cohesion Data 

Package cohesion data is gathered from two package cohesion metrics. The first metric is our proposed 

package cohesion metric [22], CH. The second metric is Martin’s cohesion metric, H. These two metrics have 

been used to investigate the correlation between package cohesion and testability. For the purpose of data 

gathering, we have developed our Java tool to measure the CH package cohesion metric. The tool has been 

extended to calculate Martin’s package cohesion metric, H. For each system, a list of all the packages, 

number of classes in each package, and the associated cohesion values are generated. 

5. Exploring the Relationship between Package Cohesion and Testability Using 
Correlation  

In this section, we present the empirical study we performed to explore the relationship between package 

cohesion and package testability, in terms of testing effort. Correlation is one of the widely used statistical 

tests to investigate the relationship between internal quality attributes, e.g., cohesion, and external quality 

attributes, e.g., testability; and it has been used in different studies such as [1], [14], [18], [21], [36]. The 

correlation analysis aims to determine whether each individual package cohesion metric (CH and H) is 

significantly related to the testing measure, TLOC, of the package. For this purpose, we have performed 

Spearman’s rank correlation due to the non-parametric nature of the metrics’ data. We have used the well-

known SPSS software for the correlation analysis of the empirical study. We have created and analyzed a 

correlation matrix for each software system in the study. Each correlation matrix has all the studied 

variables (cohesion and testing), a correlation coefficient (r), and significance level. For each pair of 

variables, the value of (r) can range between -1 and +1, where 1 represents a perfect positive correlation 

between the pair variables; -1 denotes a perfect negative correlation; and 0 indicates that there is no 

relationship between the variables. The magnitude of the coefficient determines the degree of the 

correlation. The ratings of correlation strength follow the adjectives developed by Cohen [37], Table 3. 

 

Table 3. Ratings of Correlation 
Correlation coefficient Adjective rating 

< 0.1 Trivial 

0.1 to 0.3 Minor 

0.3 to 0.5 Moderate 

0.5 to 0.7 Large 

0.7 to 0.9 Very large 

0.9 to 1 Almost perfect 

 

Besides the strength of the correlation, the relationship between any pair of variables should be assessed 

for its significance as well. The significance is assessed by the p-value, which corresponds to the probability 

that the found correlation might be due to purely random effects. The smaller the p-level, the more 

significant is the relationship between variables [38]. The significance of the correlation in this empirical 

study was tested at 95% confidence level (i.e., p-level   0.05). While the correlation can establish the 
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relationship, it cannot establish a cause-effect relationship between the pair of variables [38]. 

5.1. Hypotheses 

Our objective in this experiment is to explore empirically to what extent package cohesion is related to 

the package testability, in terms of testing effort. We evaluated cohesion at the package level and we 

counted the testing effort at the package level based on the test classes of the software system. The 

hypotheses of the empirical study are: 

H01: There is no significant correlation between package cohesion, CH, and the number of testing lines of 

code, TLOC. 

H02: There is no significant correlation between Martin’s package cohesion, H, and the number of testing 

lines of code, TLOC. 

In this experiment, rejecting the null hypothesis indicates that there is a statistically significant 

relationship between the pair of variables (significance level       ). 

5.2. Statistical Analysis 

The number of testing lines of code (TLOC) of the software package assesses the software package 

testability. A smaller number of testing lines of code during the software-testing phase indicates that less 

effort is needed to test the software, i.e., the software is highly testable.  

Table IV provides descriptive statistics (mean and standard deviation) for the variables used in analyzing 

software testability across the five systems, Camel, Tomcat, Hadoop, Synapse, and Ant. We included Martin’s 

package cohesion metric (H) in the list of variables for the purpose of comparison. 

 

Table 4. Means and Standard Deviations of the Variables Used in Testability Analysis 

Variable 

Camel  Tomcat Hadoop Synapse Ant 

N=264 N=113 N=222 N=117 N=67 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

H .636 .361 .817 .524 .674 .456 .738 .423  .851 .486 

CH .530 .388 .358 .374 .281 .326 .539 .409 .557 .345 

#Classes 13.700 29.637 16.17 23.062 20.02 34.879 9.53 16.836 16.72 32.973 

TLOC 119.295 689.072 76.60 206.907 815.35 2527.927 112.62 242.194 345.82 1056.753 

5.3. Results and Discussion 

Spearman Rho correlation is the appropriate measure of a bivariate relationship when normality and 

linearity conditions for the Pearson’s product moment correlation do not hold. For this study, the Spearman 

Rho correlation provides a measure of association between the proposed measure of package cohesion CH, 

the Martin’s package cohesion metric H, package size (#Classes), and the measure of package testability, the 

number of testing lines of code (TLOC), within each of the five data sets. Table V provides the list of these 

correlations for the five sets of data.  

Table V reveals that the new proposed measure of package cohesion CH, consistently has a negative 

moderate correlation with the measure of package testability, the number of testing lines of code (TLOC), 

across all the five data sets except for the Synapse system where the correlation is minor. The correlation 

values between package cohesion CH and the number of testing lines of code (TLOC) across the five data 

sets ranges from  -0.199 (for the Synapse system data set) to -0.488 (for the Hadoop system data set). The 

statistically significant correlations confirm the expectation that a highly cohesive software package 

requires less effort to be tested. That is high values of the proposed measure of package cohesion are 

associated with lower number of testing lines of code. 
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Correlations between Martin’s package cohesion metric H and the package testability measure, the 

number of testing lines of code (TLOC), tend to be not as strong as the ones with the newly proposed 

measure of package cohesion CH. These correlations are consistently weak and statistically insignificant 

across all the five data sets, except for the correlation with the testing lines of code (TLOC) for Synapse 

system’s data. The value of the correlation is -.310, which is statistically significant at the .001 level. The 

correlation values between Martin’s package cohesion H and the number of testing lines of code (TLOC) 

across the five data sets is never more than 0.135 except for Synapse system data set (-0.310).   

Table VI summarizes the results of the examined null hypotheses. In this experiment, rejecting the null 

hypothesis indicates that there is a statistically significant relationship between the pair of variables 

(significance level       ). 

 

Table 5. Spearman's Rho Correlations for Testability Analysis 
 

  ** Correlation is significant at the .001 level 
  * Correlation is significant at the .05 level 

 

Table 6. The Results of the Null Hypotheses 
 Camel Tomcat Hadoop Synapse Ant 

H01 Rejected Rejected Rejected Rejected Rejected 

H02 Accepted Accepted Accepted Rejected Accepted 

6. Conclusion 

In this paper, we investigated empirically the relationship between Package cohesion metrics (H and CH) 

and the testability of software packages in terms of required testing effort. We performed an empirical 

analysis using data collected from five Java open source software systems for which JUnit test classes are 

available. To measure the testability of packages, we used testing lines of code (TLOC) to quantify the 

corresponding testing effort.  

One strength of this study is the number of the studied systems and the relatively large sample used in 

the analysis. The proposed package cohesion metric (CH) is found to be correlated with package testing 

effort, measured by testing lines of code (TLOC). The stability of the correlations allows us to draw 

optimistic conclusions about its use as an indicator. However, the results of this study should be viewed as 

Data Set  H CH #Classes 

Camel 

N=264 

CH .281**   

#Classes -.350** -.655**  

TLOC -.086 -.329** .334**  

Tomcat 

N=113 

CH .169   

#Classes -.069 -.736**  

TLOC -.123 -.394** .549** 

 

Hadoop 

N=222 

CH .157   

#Classes .063 -.688**  

TLOC -.033 -.488** .615**  

     

Synapse 

N=117 

CH        -.038   

#Classes -.084 -.490**   

TLOC -.310** -.199* .465** 

     

Ant 

N=67 

CH .227   

#Classes .078 -.527**  

TLOC -.135 -.385** .450** 
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exploratory and indicative rather than conclusive. 

In future, the second fold of the study will be presented. Other statistical analyses, simple and multiple 

regression analyses, will be conducted to predict the testing effort of the package using the proposed 

package cohesion metric. Regression model can evaluate the effect of the proposed package cohesion metric 

(CH) on the testing effort of packages.  

We hope these findings will help lead to a better understanding of the relationship between package 

cohesion and package testability. In future, this study will be extended to include more testability measures, 

such as the number of test classes in packages. We also plan, in the future, to investigate the combined 

ability of multiple factors (i.e., cohesion, coupling, size) in predicting the testability of packages. Additionally, 

open source systems developed in other languages (such as C++) can be investigated, since this study has 

focused on Java open source systems. 
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