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Abstract: Static-type systems are a major topic in programming language research and the software 

industry because they should reduce the development time and increase the code quality. Additionally, they 

are predicted to decrease the number of defects in a code due to early error detection. However, only a few 

empirical experiments exist on the potential benefits of static-type systems in programming activities. This 

paper describes an experiment that tests whether static-type systems help developers create solutions for 

certain programming tasks. The results indicate that although the existence of a static-type system has no 

positive impact when subjects code a program from scratch, it does allow more errors in program 

debugging to be fixed.

Keywords: Static-type systems, programming language, empirical study, program debugging.

1. Introduction

One determining aspect of software quality is the suitability of the programming language and the 

software requirements. While some researchers state that there is no clear relationship between 

programming languages and application domain [4], we hold opposite views. We believe that certain 

programming language are excel in certain cases while may not perform well in other cases [20]. A study

[18] indicates that there is a strong relationship between category of programming activity (problem) and 

programming language used to solve the problem. However, it is hard to figure out what kind of 

programming language is suitable for particular project. Therefore, a series of experiment should be 

conducted to answer such question. One of the most common way to classify programming languages is by 

looking to its type systems.

Type systems are generally formulated as collections of rules to check the consistency of programs. This 

kind of checking exposes not only trivial mental slips, but also deeper conceptual errors, which are 

frequently manifested as type errors. A programming language can be divided into several categories as 

shown in Table I [1].

The traditional, simplified, definition of dynamic-type languages is that they do not enforce or check type 

safety at the compile-time (as opposed to a static-type language), but defer such checks until the run-time. 

While factually true, this definition leaves out what makes dynamic-type languages interesting—for 

example, they lower development costs and provide the flexibility required by specific domains such as data 

processing [14].
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Table 1. Programming Language Classification 

 Statically checked 
Dynamically 

checked 

Strongly typed 
ML, Haskell, Pascal 
(almost), Java 
(almost) 

Lisp, Scheme 

Weakly typed C, C++ Perl 

 

It should be noted that since there is no central authority defining dynamic-type languages, such 

languages vary greatly. Nevertheless all such languages share a great deal in common. In contrast to 

dynamic-type programming languages, static-type programming languages do type checking (the process of 

verifying and enforcing type constraints) at the compile-time as opposed to the run-time. In addition, 

prototype-based scripting languages (e.g., JavaScript [8]) also exist where everything belongs to a single 

type, but a variable declaration is still necessary. 

There is a long, ongoing debate about the potential strengths and weaknesses of static- and dynamic-type 

systems in software development. Although many authors claim that static-type systems reduce the amount 

of time required to develop a program and consequently, improve software quality, others hold the opposite 

view.  

Static-type checking allows early detection of some programming errors. Errors that are detected early 

can be fixed immediately, rather than lurking in the code to be discovered at a later time when the 

programmer may be busy with something else—or even after the program has been deployed [1]. Many 

experts and practitioners in Software Engineering have argued that fixing program errors, including bugs 

and defects, in the later stage of Software Development may require a much larger intellectual effort (and 

time) compared to removing them at the early stage. Moreover, when a type system is well designed, type 

checking can capture a large fraction of routine programming errors, eliminating lengthy debugging 

sessions [15]. Fareer [3] even mentioned that unit testing cannot replace static-type checking. 

However, the expressive power of current static-type systems in mainstream object-oriented languages is 

limited. For example, although they prevent users from adding a string to a bool, they do not prevent them 

from accessing the first element of an empty list, creating off-by-one errors, or using null pointers.  In fact, 

static-type systems cannot detect most common programming errors [14]. For such systems to work, 

developers must manually input the types during development.  

In static-type systems, reasoning about a specification will easily find any errors caught by type checking. 

However, large specifications are seldom verified, and type checking can catch errors that would otherwise 

go undetected [13]. Moreover, based on the data provided by Stefan Hanenberg in his empirical study [10], 

at least in his experiment settings, the total debugging time of the exceptions, which could have been 

handled by a type checker (in static-type systems), is less than the time that must be invested to handle the 

type checker itself.  

This paper contributes to the discussion with a controlled experiment that empirically investigates 

possible conditions when developer should use static-type systems and potential advantages of using such 

systems. The experiment in this paper is built to test the hypothesis that static-type programming 

languages decrease development time and consequently enable developers to create better solutions for 

certain programming tasks as well as debugging certain program codes. Specifically this paper examines the 

following two research questions: 

RQ1) How do static-type systems affect the development of specific programming tasks when developers 

code a program from scratch? 

RQ2) How do static-type systems affect program debugging? 

The experiment reveals that subjects who used a static-type system had a significant positive impact for 
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debugging tasks, especially for encryption programs with many data types. On the other hand, when 

developers coded a program from scratch, a significant difference was not observed between static- and 

dynamic-type systems. The measurements are based on the number of requirement points that are 

successfully achieved and the number of fixed errors. 

Section 2 briefly discusses related works in the area of empirical studies on type systems. Section 3 

describes the initial considerations of the experiment and programming tasks used in the experiment as 

well as threats to validity. Then section 4 shows the results by describing the measured data. Finally, section 

5 concludes the paper. 

2. Literature Review and Related Works 

2.1. Definitions 

2.1.1. Type systems 

According to Luca Cardelli, the most obvious symptom of an execution error is an unexpected software 

fault such as an illegal instruction fault. The fundamental purpose of a type system is to prevent execution 

errors from occurring while running a program [15]. 

2.1.2. Typed programming languages 

A program variable can assume a range of values when a program is executed. The upper bound of such a 

range is called the type of the variable. For example, variable x of type boolean is supposed to assume that 

only boolean values can be assigned to x. Languages where variables can be given (nontrivial) types are 

called typed languages [9]. 

A type system is a component of a typed language that keeps track of the types of variables of all 

expressions in a program. Type systems are used to determine whether programs behave well. In a typed 

language, only program sources that comply with a type system can run. Typed languages are explicitly 

typed if the types are part of the syntax, and implicitly typed otherwise. No mainstream language is purely 

implicitly typed [15]. 

2.1.3. Untyped programming languages 

Untyped languages do not restrict the range of the variables; they do not have types or, equivalently, have 

a single universal type that contains all values. In these languages, operations may be applied to 

inappropriate arguments. The result may be a fixed arbitrary value, a fault, an exception, or an unspecified 

effect. The pure λ-calculus is an extreme case of an untyped language where no fault ever occurs [15]. 

2.1.4. Static typing 

For example, in C programming language (static-typing): 

 

 
Fig. 1. C program code. 

 

The example above uses two built-in C types: int (representing an integer) and Unicode character or char 

arrays (represent a string). Although this program might be expected to run, when foo is set to 60, the C 

compiler refuses to compile this code and says that the + operation is not defined between the values of the 

type integer and the String. In some dynamic typing languages, the above error will not prevent the 
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program from running (or being compiled), but when the program runs, the function will raise a run-time 

type exception. In some other dynamic typing languages, such an error will be ignored, or automatic type 

conversion (implicit type-casting) will enable the program to successfully run. 

Statically typed languages define and enforce types at the compile-time. Dynamic typing, at its simplest 

level, is when type checks are left until run-time. It is important to note that is different from being typeless. 

Both statically and dynamically typed languages are typed, but the chief technical difference is when the 

types are enforced [14]. 

2.2. Related Works 

To the best of our knowledge, only a few works are published in the area of empirical evaluations of type 

systems. The first one is by Prechelt and Tichy [17], which concentrates on the impact of static-type 

checking in procedure arguments. Their experiment suggested that for many realistic programming tasks, 

type checking of interfaces improves both productivity and program quality. However, in another paper [16], 

which compares seven programming languages, Prechelt showed that programmers who used a scripting 

language (dynamic-type) needed less than half the time to finish the experimental task compared to those 

using a static-type language. 

In a different experiment, Hanenberg [10] showed a negative impact for a static-type system in one task 

and no significant difference in the other. The author measured two different points: the development time 

required to create a minimal scanner program and the quality of the resulting software measured by the 

number of successful test cases. Another experiment performed by Hanenberg, which focused on the 

relationship between type casting and development time [11], revealed a positive impact for a 

dynamic-type language. However, a positive impact could not be measured for non-trivial programming 

tasks. 

A study on the Rosetta code, which is a code repository of solutions for common programming tasks in 

various languages, concluded that strongly typed languages are significantly less prone to runtime failures 

than interpreted or weakly typed language because more errors are caught at the compile-time. 

Nevertheless, these works referred to run-time failures or errors that make a program terminate (including 

inputs that cause a program to malfunction) or unable to run rather than using a set of test cases or testing 

based on specific requirements (black/white box testing) [9]. 

A qualitative study on the Ruby programming language carried out by Daly et al. [6] suggested that, at 

least in the specific setting of the experiment, the benefit of the type of system could not be shown. 

In a paper entitled Popularity, Interoperability, and Impact of Programming Languages in 100,000 Open 

Source Projects[12], the authors investigated 100,000 open source projects available on GitHub and found 

no correlation between programming language employed and the number of issues listed on the bug 

tracker. 

3. Experiment Description 

3.1. Initial Considerations 

Whether static-type systems reduce the development time and produce a better output remains 

controversial. For example, static-type systems may increase the development time due to type casting. The 

intent of the experiment is to check whether static-type systems help programmers code a solution from 

scratch and debug programs as well as identify under what conditions static-type systems are beneficial 

with regards to the number of fulfilled requirements and the number of fixed errors measured by manually 

prepared test cases.  

We divided the experiment into two sessions. In the first session, subjects were asked to code a program 



 

 

 

 

 

 

 

 

 

 

 

 

602 Volume 12, Number 8, August 2017

Journal of Software

 

 

 

 

from scratch, while in the second session they were asked to fix several errors in a given program code.  

The day before the experiment, the subjects were given the program requirements, which included a 

demo video showing how the finished program should look. Therefore, during the experiment, the subject 

knew what to do and what functions or procedures were necessary to complete the tasks. 

3.2. Environment and Measurements 

The programming languages used in the experiment were C# for static-type systems and PHP for 

dynamic-type systems. Each language has its own built-in functions and procedures. Therefore, we 

informed the subjects about all equivalent functions in C# and PHP. We also imitated some functions by 

defining those available in one language but not the other. 

The subjects were allowed to select their own code editor because we assumed that using a familiar 

development environment would produce a better code. Although the development environment and the 

employed code editor may affect the productivity, the experimental setup was designed to minimize the 

impact. First, the experiment requires a relatively small number of classes and procedures. Second, the 

auto-complete feature is not very useful in the experimental tasks. 

We measured the number of achieved requirement points and fixed errors by running several test cases 

on the programs created by the subjects. 

3.3. Programming Tasks 

In the first session of this experiment, 14 subjects were asked to write 2 kinds of programs: a simple 

validation program and an encryption program. The main difference between these two is that one involves 

considerably more data types and requires more type casting. Each program had 7 requirement points 

(features) that must be implemented. Details of the programing tasks include: 

3.3.1. Simple Validation Program 

A Simple Validation Program requires the subject to create a form with several textboxes and apply a 

validation to each textbox. Example validations are username, password, phone number, and email address. 

 

 
fig. 2. example interface of a simple validation program. 

 

3.3.2. Encryption Program 

An Encryption Program requires the subject to create a simple algorithm to encrypt and decrypt a text 

file and validate whether the target file is created using the same program by placing a specific signature. 
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Fig. 3. Encryption program. 

 

3.4. Experiment Execution 

Fourteen subjects, including IT-professionals and graduate school students, participated in the 

experiment. They were divided equally into the static-type group and the dynamic-type group. All subjects 

were recent Computer Science graduates (within the last three years) and had one to two years of 

experience in the programming language they chose. 

We divided the experiment into two sessions with a long break between the sessions. Each session was 

90 minutes. The first session (coding) included two tasks: a simple validation program followed by an 

encryption program.  Each subject had 45 minutes to complete a task and did not have a break between 

tasks. In the second session (debugging), the target program was similar to the program the subjects 

created in the first session. However, this time subjects were asked to fix errors in the given program code. 

Errors included a semantic error, a logical error, and a defect error related to the software requirements. 

After the experiment, we asked several subjects to provide comments regarding the experiment and what 

was needed for a future experiment with an increased number of subjects and more diverse programming 

tasks. 

3.5. Threats to Validity 

As with any empirical study, this study has a number of potential threats to validity, including a small 

number of subjects, small programming tasks, and an artificial development environment. However, it 

should be emphasized that while a small programming task might not represent a real-world programming 

task, a large programming task has other factors that must be taken into account. 

Another possible threat to validity is developer knowledge. Although we used only Computer Science 

graduates, we did not interview the subjects prior to experiment. Hence, there might be a gap in the 

subject’s coding capabilities. Nonetheless, we also realize that there is not a well-accepted standard to 

classify whether someone is a good or bad software developer or to indicate if one subject is equal to 

another. 

4. Results and Discussion 

The experiment results and analysis are presented by giving descriptive statistics followed by significance 
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tests to verify whether there is a significant difference between static- and dynamic-type solutions.  

 

 
Fig. 4. Number of fulfilled requirement points in the coding session. 

4.1. Research Question 1 - How do Static-Type Systems Affect the Development of 
Specific Programming Tasks when Developers Code a Program from Scratch? 

Fig. 1 shows that a gap does not exist between solutions written in a static- and a dynamic-type system 

with regards to the number of achieved requirement points. This also applies to the result of the encryption 

program. 

Table 2. Wilcoxon Rank Sum Value of Program Solutions 

 N Type Systems 
Simple Program Encryption Program 
Mean 
Rank 

Sum 
Rank 

Mean 
Rank 

Sum 
Rank 

Session 1 
Code from scratch 

7 

Static  8.43 59.0 7.86 55.0 

Dynamic 6.57 46.0 7.17 50.0 

Session 2 
Debugging 

7 

Static  9.93 69.5 10.36 72.5 

Dynamic 5.07 35.5 4.64 32.5 

 

Furthermore, we used Wilcoxon Rank Sum Test for independent samples to determine whether there is a 

significant difference between the number of fulfilled requirement points by type. Since the number of 

samples of static- and dynamic-type solutions is equal (n1=n2=7) for both the simple validation program 

and the encryption program, we chose 36 [2] as the critical value (Wcrit using α = 0.05 two tail). Because 

the Wilcoxon Rank Sum values (W) are 46 and 50 for the simple validation and the encryption program, 

respectively (Table 2), we cannot reject the null hypothesis. Thus, for code written in the scratch tasks, both 

type systems produce similar results.  

4.2. Research Question 2 - How do Static-Type Systems Affect Program Debugging? 
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Fig. 5. Number of fixed program errors in the debugging session. 

 
Fig. 2 shows the number of successfully fixed errors in the simple validation program. It shows that there 

is a visible gap between the static- and dynamic-type solutions. This gap is larger for the encryption 

program solutions.   

Again, we used the Wilcoxon Rank Sum Test for independent samples to test whether there is a 

significant difference between the number of successfully fixed errors in the debugging session. Since the 

static- and dynamic-type solutions have the same number of samples (n1=n2=7) for both the simple 

validation program and the encryption program, we chose 36 [2] as the critical value (Wcrit using α = 0.05 

two tail). The Wilcoxon Rank Sum value for the simple validation program solutions (W) is 35.5, which is 

slightly lower than the specified critical value. For the encryption program solutions, the W value is 32.5 

(see Table 2). Therefore, there is a meaningful difference in the number of fixed errors between static- and 

dynamic-type solutions. 

In conclusion, we reveal that a static-type system enhances the effectiveness of developers in program 

fixing or program debugging. Nonetheless, our current data still unable to confirm whether the type of 

program directly affects the debugging process. 

4.3. Discussion 

Although there is no difference when the subjects develop solutions of given tasks from scratch, the 

experiment reveals a benefit of using a static-type system when the subjects debug two given program 

codes. This might be because when debugging a program code, the developer must understand how the 

program actually works and what the initial programmer was thinking while writing the code. 

Dynamic-type systems provide little to none of this information, which may lead to confusion [19] [21]. 

From this perspective, the experiment provides evidence that static-type systems benefit developers in 

situations where program documentation is limited or unavailable (which are common scenarios). [5] 

This benefit is more pronounced in debugging an encryption program containing more lines of code and 

data types. Although there is no direct proof that static-type systems are more suitable for a program with 

many lines of code and high data types [4], we conjecture that the encryption program has a more complex 

application flow. Hence, the time required to understand the program will be greater. Static-type systems 

make it easier for developers to understand the code, allowing the code that is “possibly” related to certain 

errors or defects to be easily identified.  

5. Conclusion and Future Work 

In this paper, we present an experiment that explores the impact of using a static-type system in the 

development of certain programming tasks with respect to the number of fulfilled requirements. We also 

investigate whether a static-type system helps developer fix program errors. Although the tasks are 

considered trivial, we hope our experiment contributes to the discussion of when to use a static-type 

system because empirical data that can be used to identify such situations is scarce. 
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One interesting point is that this study weakens the argument of authors who argue that dynamic-type 

systems reduce the development time due to the absence of type casting. In fact, in the debugging session of 

our experiment, the result shows a positive impact of static-type solutions for encryption program, which 

involves type casting. 

The result of the experiment can be summarized as follows: 

 When subjects coded from scratch, there is not a significant difference in terms of the number of 

successfully achieved requirement points between static- and dynamic-type solutions. This 

applies to both programs. 

 In errors-fixing tasks, a static-type system may be beneficial. Subjects who used a static-type 

system tended to fix more errors. This benefit is more pronounced in encryption programs, 

which are relatively more difficult to complete and contain more data types. 

Based on these conclusions, although direct proof is inconclusive, we suggest that the use of static-type 

systems is more beneficial and preferable in large-scale software developments due to the large number of 

software developers involved in a complex system with a large codebase. A large-scale software 

development creates a situation where one programmer should understand other programmers’ code and 

be able to debug any kind of defects. In addition, the number of software bugs in such a system may be 

considerable. 

The experiment suffers from several threats to validity. Artificial tasks used in the experiment may not 

represent real-world programming problems, and the experiment methodology may not match with the 

common situation. Generally, programmers get supervision from their superiors prior to implementation 

and debugging so they usually have more hints to the problems even before they read the technical 

requirements. We all also aware that subjects in our experiment used different IDEs based on their 

preference. While some IDEs are not mature enough, some of them provide very useful features such as a 

complete code refactoring which we believe will enable them to detect the errors we created easier. 

As a future work, we will conduct additional experiments with more subjects and more diverse 

programming tasks to elucidate the characteristics of software programming activities where static- and 

dynamic-type systems are more beneficial. This will allow software developers to select the most suitable 

language. We are currently investigating the possible benefits of a static-type system in large-scale software 

projects. However, in large-scale software development there are too many factors to take into account 

because there are several software development phases. As the result, the use of a static- or a dynamic-type 

system in programming activities may become negligible. 
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