

570 Volume 12, Number 7, July 2017

Journal of Software

Big-step and Small-Step Semantics of the Call-by-Name
RPC Calculus

Keishi Watanabe*, Shin-ya Nishizaki

Tokyo Institute of Technology, 2-12-1-W8-69, Ookayama, Meguroku, Tokyo 152-8552, Japan.

* Corresponding author. Tel.: +81-3-5734-2772; email: nisizaki@cs.titech.ac.jp
Manuscript submitted February 15, 2017; accepted May 21, 2017.
doi: 10.17706/jsw.12.7.570-580

Abstract: A remote procedure call (RPC) is a network communication technique between distributed

computers. RPC is more approachable than the other network communication techniques since a

programmer can use it in a similar manner to a procedure call in a sequential program on a single CPU

computer. Cooper and Wadler proposed the RPC calculus and formalized the remote procedure call in the

style of the lambda calculus. They used the call-by-value evaluation strategy for the RPC calculus. We may

say that the RPC calculus is an extension of the traditional call-by-value lambda calculus by attaching a

location. In the previous work, we developed a big-step semantics of the call-by-name RPC calculus and

studied the translation of the call-by-name RPC calculus into the call-by name RMI calculus, in order to

show the expressive power of the RMI calculus. In this paper, we newly propose a small-step semantics of

the call-by-name RPC calculus. We prove the equivalence between the small-step and big-step semantics.

Key words: programming language theory, functional programming language, lambda calculus, operational
semantics, remote procedure call, RPC calculus.

1. Introduction

A remote procedure call, abbreviated RPC, is a communication mechanism between distributed computers

connected through a network, which provides an interface similar to a procedure call in a single computer. One

of the most famous RPC implementations is Sun’s RPC, which is used for Network File System on SunOS [5].

Cooper and Wadler [6] proposed the RPC calculus, which formalizes the remote procedure call in the

framework of the lambda calculus. The RPC calculus is an extension of the call-by-value lambda calculus by

adding the notion of location. In this paper, we give a call-by-name evaluation strategy to the RPC calculus and

investigate the theoretical properties of the call-by-name RPC calculus. An evaluation strategy [8], such as

call-by-value and call-by-name, gives the order of evaluation among caller and callees in a function call. In

lambda calculus, an evaluation strategies can be defined as a big-step semantics. A call-by-value evaluation

strategy is formalized as a binary relation inductively-defined by the following rules.

On the other hand, the call-by-name evaluation strategy is formulated as follows.

571 Volume 12, Number 7, July 2017

Journal of Software

Symbols and represent values that mean the results of evaluation; a value is defined as either a

variable or a lambda abstraction . The first argument of the binary relation means an expression to be

evaluated, and the second is the result of the evaluation. Since the binary relation gives an evaluation result

directly, we call it a big-step semantics. Another style of formalization of the evaluation strategy is a small-step

semantics, which is defined by reduction and reduction context, dependent on each evaluation strategy. For

example, the evaluation contexts of the call-by-value evaluation are given by the following grammar.

The call-by-value reduction is defined inductively by the following rule.

The call-by-name evaluation is given by the following evaluation context and the rule.

Cooper and Wadler [6] extend Plotkin’s style of evaluation strategy for a traditional function call to the one for a

remote procedure call; they propose a lambda calculus for remote procedure calls, called the RPC calculus. The

big-step semantics is given as an evaluation relation inductively defined by the following rules.

The evaluation relation means that the result of evaluation of at location l is value .

In this paper, we study call-by-name evaluation for the RPC calculus, formalizing its small-step and big-step

semantics. We started to study the call-by-name RPC in our previous work [2]. In the paper [2], we proposed the

big-step semantics of the RPC and RMI calculi and studied the relationship between the two calculi. In this paper,

we newly propose the small-step semantics of the call-by-name RPC calculus. The small-step semantics is an

extension of the reduction of the lambda calculus.

2. Related Works

The call-by-value evaluation has appeared in many programming languages since the 1950s, such as

FORTRAN and LISP. Call-by-name evaluation was originally proposed in ALGOL 60[4]. Call-by-value and

call-by-name evaluation strategies were formalized as small-step semantics by Plotkin[8]. Big-step semantics

was invented by Kahn[7]. The RPC calculus was proposed by Cooper and Wadler [6], which is an extended

lambda calculus introducing the notion of location. Its operational semantics is provided as a big-step semantics

based on the call-by-value evaluation.

3. Call-by-Name RPC Calculus

First, we introduce the syntax of the call-by-name RPC calculus, based on Cooper and Walder’s call-by-value

RPC calculus.

We assume and to be countable sets of variables and of locations, respectively. We use

metavariables for variables and for locations.

Definition 1 (Expression, Value) An expression of is defined inductively by the following grammar

572 Volume 12, Number 7, July 2017

Journal of Software

A value of is an expression satisfying the following grammar.

The first three constructs are the same as Cooper and Wadler's: means a function whose body

is assumed to be evaluated at location a. The last construct means an eval form at location a. We will

sometimes incorporate constants such as numerals and function symbols , in order to enrich

examples of the expression.

The big-step semantics in the following is given by a ternary relation among the term , the

location l, and the value , which intuitively means that a result of evaluation of the term at the location .

The relation is called an evaluation relation.

Definition 2 (Big-Step Semantics) We define a big-step semantics for call-by-name evaluation as a

ternary relation among the term , the location a and the value by the following rules, inductively.

An evaluation context is a term containing a hole which indicates to be reduced under an evaluation strategy,

in the small-step semantics. Since the following evaluation context is supposed to be used for the call-by-name

evaluation, the hole in the evaluation context is located at the head of function applications.

Definition 3 (Evaluation Context) An evaluation context of is inductively defined by the following

grammar.

Definition 4 (Small-Step Semantics) We define a small-step semantics as a binary relation between pairs of

an expression and a location,

Lemma 1. If , then there is a value satisfying that and

Proof. This lemma is proven by induction on the structure of

Base Case: Suppose that If you take as then and

Step Case 1: Suppose that

Then, by Rule Beta of the big-step semantics,

 (1)

573 Volume 12, Number 7, July 2017

Journal of Software

 (2)

By the induction hypothesis, we know that there is a term satisfying that

From (1) and (4),

 (3)

 (4)

By rule Beta of the big-step semantics, that is,

Step Case 2: Suppose that

Then, by rule BetaEval of the big-step semantics, we know

 (5)

 (6)

By the induction hypothesis, we know that there is a term satisfying that

 (7)

 (8)

From (5) and (8),

By rule BetaEval of the big-step semantics, that is,

End of Proof.

Lemma 2. If and then

Proof. This lemma is proved by induction on the structure of

Base Case: If it is supposed that

Then we know that and therefore it is trivial that

Step Case 1: Suppose that

 (9)

574 Volume 12, Number 7, July 2017

Journal of Software

 (10)

From (10), there is a term satisfying that

 (11)

 (12)

By the induction hypothesis, (9) and (11), we have

From (13) and (12), it is derived by Rule Beta that

 (13)

That is,

Step Case 2: Suppose that

 (14)

 (15)

From (15), there is a term satisfying that

 (16)

 (17)

By the induction hypothesis, (14) and (16), we have

 (18)

From (18) and (17), it is derived by Rule BetaEval that

End of Proof.

575 Volume 12, Number 7, July 2017

Journal of Software

Lemma 3. If then

Proof. This lemma is proved by induction on the structure of

Base Case: If you suppose

Then it is trivial that

Since

Step Case 1: Suppose that

By Rule BetaEval, we have

 (19)

 (20)

By the induction hypothesis and (19),

 (21)

From (29) and (21), we have

By Rule Beta.

Step Case 2: . Suppose that

By Rule BetaEval, we have

 (22)

 (23)

By the induction hypothesis and (22),

 (24)

From (23) and (24), we have

576 Volume 12, Number 7, July 2017

Journal of Software

By Rule BetaEval.

End of Proof.

Theorem 1. If then

Proof. This theorem is proven by mathematical induction on

Base Case: Since Then that is

Step Case: Suppose that

We conduct a case analysis on

Case 1: Since

from the induction hypothesis, we have

By Lemma 1, we know that there is a value satisfying that

 (25)

 (26)

Then, from (40), Rule Value and Beta, it is derived that

 (27)

From (27) and (26), it is derived that

by Lemma 2. By Lemma 3, we have

Case 2: Since

We have

577 Volume 12, Number 7, July 2017

Journal of Software

 (28)

By Lemma 1, there is a term W satisfying that

 (29)

 (30)

From (29), it is derived that

 (31)

By Rule Eval. By lemma 2, (30) and (31),

End of Proof.

The converse of Theorem 1 also holds. Before we prove it, we show a lemma which will be used in its proof.

Lemma 4. If
 then

Proof. We conduct a case analysis on

Case 1:

It holds that

And

Case 2:

.

It holds that

and

End of Proof.

Theorem 2. If then
 for

Proof. This theorem is proven by induction on the structure of

Base Case:

It is trivial that

578 Volume 12, Number 7, July 2017

Journal of Software

Step Case 1:

By the induction hypothesis, we have

 (32)

 (33)

From (40) and Lemma 4, it is derived that

 (34)

By Rule BetaEval of the small-step semantics,

 (35)

From (38), (39), and (41),

Step Case 2:

By the induction hypothesis, we have

 (36)

 (37)

From (40) and Lemma 4, it is derived that

 (38)

579 Volume 12, Number 7, July 2017

Journal of Software

By Rule BetaEval of the small-step semantics,

 (39)

From (38), (39), and (41),

Step Case 3:

By the induction hypothesis,

 (40)

By Rule Eval of the small-step semantics,

 (40)

From (40) and (41),

End of Proof.

4. Conclusion

We studied a call-by-name evaluation of the RPC calculus, which is formalized as both the big-step and the

small-step semantics. The former gives a semantics function and the latter a step-wise computation. We then

investigated the equivalence between the two semantics.

The call-by-name evaluation is adopted in Algol 60 [4] but its efficiency is not sufficient for practical usage.

However, lazy evaluation of functional programming languages such as Haskell is formalized as the call-by-need

evaluation strategy [3]. Our future research target is design and formalization of a call-by-need evaluation in the

RPC calculus.

The -calculus[1] is an improved version of the lambda calculus, in which the variable binding is handled

more precisely than the traditional lambda calculus, based on the idea of explicit substitution. We will improve

our call-by-name evaluation, introducing the explicit substitution.

In Paper [9], we proposed a parallel abstract machine for the call-by-value RPC calculus. Design of a parallel

abstract machine for the call-by-name RPC calculus is one of the most interesting research direction of this work.

Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research (C) (24500009).

580 Volume 12, Number 7, July 2017

Journal of Software

References

[1] Abadi, M., Cardelli, L., Curien, P. L., & e vy, J. J. (1991). Explicit substitutions. Journal of Functional

Programming, 1(4), 375–416.

[2] Araki, S., & Nishizaki, S. (2014). Call-by-name evaluation of RPC and RMI calculi. Theory and Practice of

Computation.

[3] Ariola, Z. M., Maraist, J., Odersky, M., Felleisen, M., & Wadler, P. (1995). A call-by-need lambda calculus.

Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

[4] Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J., Rutishauser, H., Samelson, K., Vauquois,

B., Wegstein, J. H., Van, W. A., & Woodger, M. (1963). Revised report on the algorithm language algol 60.

[5] Birrell, A. D., Nelson, B. J.: Implementing remote procedure calls. ACM Transactions on Computer Systems

2(1), 39–59 (1984)

[6] Cooper, E., & Wadler, P. (2009). The RPC calculus. Proceedings of the 11th ACM SIGPLAN Conference on

Principles and Practice of Declarative Programming.

[7] Kahn, G. (1987). Natural semantics. Lecture Notes in Computer Science, 247, 22–39.

[8] Plotkin, G. (1975). Call-by-name, call-by-value, and the -calculus. Theoretical Computer Science 1, 125–159.

[9] Narita, K., & Nishizaki, S. (2011). A parallel abstract machine for the RPC calculus. Informatics Engineering

and Information Science.

Keishi Watanabe received his bachelor’s and master’s degrees from Tokyo Institute of Technology in 2013 and

2015, respectively.

Shin-ya Nishizaki is a professor of computer science at Tokyo Institute of Technology, Japan, where he leads a

research group on formal theory on software systems. He received his bachelor’s, master’s and doctorate

degrees from Kyoto University, in mathematical science. Before joining Tokyo Institute of Technology in 1998, Dr.

Nishizaki held appointments in computer science as Associate Professor at Chiba University for two years and

Assistant Professor at Okayama University for two years.

