
  

 

 

 

 

 

 

 
 

 

 

 

 

 

570 Volume 12, Number 7, July 2017

Journal of Software

  

Big-step and Small-Step Semantics of the Call-by-Name 
RPC Calculus 

 

Keishi Watanabe*, Shin-ya Nishizaki 

Tokyo Institute of Technology, 2-12-1-W8-69, Ookayama, Meguroku, Tokyo 152-8552, Japan. 
 
* Corresponding author. Tel.: +81-3-5734-2772; email: nisizaki@cs.titech.ac.jp 
Manuscript submitted February 15, 2017; accepted May 21, 2017. 
doi: 10.17706/jsw.12.7.570-580 
 

Abstract: A remote procedure call (RPC) is a network communication technique between distributed 

computers. RPC is more approachable than the other network communication techniques since a 

programmer can use it in a similar manner to a procedure call in a sequential program on a single CPU 

computer. Cooper and Wadler proposed the RPC calculus and formalized the remote procedure call in the 

style of the lambda calculus. They used the call-by-value evaluation strategy for the RPC calculus. We may 

say that the RPC calculus is an extension of the traditional call-by-value lambda calculus by attaching a 

location. In the previous work, we developed a big-step semantics of the call-by-name RPC calculus and 

studied the translation of the call-by-name RPC calculus into the call-by name RMI calculus, in order to 

show the expressive power of the RMI calculus. In this paper, we newly propose a small-step semantics of 

the call-by-name RPC calculus. We prove the equivalence between the small-step and big-step semantics.  

 
Key words: programming language theory, functional programming language, lambda calculus, operational 
semantics, remote procedure call, RPC calculus.  

 
 

1. Introduction 

A remote procedure call, abbreviated RPC, is a communication mechanism between distributed computers 

connected through a network, which provides an interface similar to a procedure call in a single computer. One 

of the most famous RPC implementations is Sun’s RPC, which is used for Network File System on SunOS [5].  

Cooper and Wadler [6] proposed the RPC calculus, which formalizes the remote procedure call in the 

framework of the lambda calculus. The RPC calculus is an extension of the call-by-value lambda calculus by 

adding the notion of location. In this paper, we give a call-by-name evaluation strategy to the RPC calculus and 

investigate the theoretical properties of the call-by-name RPC calculus. An evaluation strategy [8], such as 

call-by-value and call-by-name, gives the order of evaluation among caller and callees in a function call. In 

lambda calculus, an evaluation strategies can be defined as a big-step semantics. A call-by-value evaluation 

strategy is formalized as a binary relation         inductively-defined by the following rules. 

 

 

 

On the other hand, the call-by-name evaluation strategy is formulated as follows. 
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Symbols   and   represent values that mean the results of evaluation; a value is defined as either a 

variable or a lambda abstraction        . The first argument of the binary relation  means an expression to be 

evaluated, and the second is the result of the evaluation. Since the binary relation  gives an evaluation result 

directly, we call it a big-step semantics. Another style of formalization of the evaluation strategy is a small-step 

semantics, which is defined by reduction and reduction context, dependent on each evaluation strategy. For 

example, the evaluation contexts of the call-by-value evaluation are given by the following grammar. 

 

                                

 

The call-by-value reduction is defined inductively by the following rule. 

                      

The call-by-name evaluation is given by the following evaluation context and the rule. 

                          

                      

Cooper and Wadler [6] extend Plotkin’s style of evaluation strategy for a traditional function call to the one for a 

remote procedure call; they propose a lambda calculus for remote procedure calls, called the RPC calculus. The 

big-step semantics is given as an evaluation relation       inductively defined by the following rules. 

 

 

 

 

The evaluation relation       means that the result of evaluation of   at location l is value  . 

In this paper, we study call-by-name evaluation for the RPC calculus, formalizing its small-step and big-step 

semantics. We started to study the call-by-name RPC in our previous work [2]. In the paper [2], we proposed the 

big-step semantics of the RPC and RMI calculi and studied the relationship between the two calculi. In this paper, 

we newly propose the small-step semantics of the call-by-name RPC calculus. The small-step semantics is an 

extension of the reduction of the lambda calculus. 

2. Related Works 

The call-by-value evaluation has appeared in many programming languages since the 1950s, such as 

FORTRAN and LISP. Call-by-name evaluation was originally proposed in ALGOL 60[4]. Call-by-value and 

call-by-name evaluation strategies were formalized as small-step semantics by Plotkin[8]. Big-step semantics 

was invented by Kahn[7]. The RPC calculus was proposed by Cooper and Wadler [6], which is an extended 

lambda calculus introducing the notion of location. Its operational semantics is provided as a big-step semantics 

based on the call-by-value evaluation. 

3. Call-by-Name RPC Calculus 

First, we introduce the syntax of the call-by-name RPC calculus, based on Cooper and Walder’s call-by-value 

RPC calculus.  

We assume     and     to be countable sets of variables and of locations, respectively. We use 

metavariables         for variables and           for locations. 

Definition 1 (Expression, Value) An expression of        is defined inductively by the following grammar 

 

                                      



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

572 Volume 12, Number 7, July 2017

Journal of Software

  

A value of        is an expression satisfying the following grammar. 

 

                       

 

The first three constructs are the same as Cooper and Wadler's:           means a function whose body   

is assumed to be evaluated at location a. The last construct      means an eval form at location a. We will 

sometimes incorporate constants such as numerals         and function symbols      , in order to enrich 

examples of the expression. 

The big-step semantics in the following is given by a ternary relation       among the term  , the 

location l, and the value  , which intuitively means that a result of evaluation of the term   at the location  . 

The relation       is called an evaluation relation. 

Definition 2 (Big-Step Semantics) We define a big-step semantics       for call-by-name evaluation as a 

ternary relation among the term  , the location a and the value   by the following rules, inductively. 

 

 

 

An evaluation context is a term containing a hole which indicates to be reduced under an evaluation strategy, 

in the small-step semantics. Since the following evaluation context is supposed to be used for the call-by-name 

evaluation, the hole in the evaluation context is located at the head of function applications. 

Definition 3 (Evaluation Context) An evaluation context of        is inductively defined by the following 

grammar. 

 

                            

 

Definition 4 (Small-Step Semantics) We define a small-step semantics as a binary relation between pairs of 

an expression and a location,  

 

 

 

Lemma 1. If        , then there is a value   satisfying that      and          

Proof. This lemma is proven by induction on the structure of        

Base Case:           Suppose that          If you take   as    then      and          

Step Case 1:                   Suppose that 

 

               

 

Then, by Rule Beta of the big-step semantics, 

        

                                             (1) 
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                                       (2) 

 

By the induction hypothesis, we know that there is a term   satisfying that 

From (1) and (4), 

                                           (3) 

                                     (4) 

 

 

By rule Beta of the big-step semantics, that is,          

Step Case 2:                         Suppose that 

Then, by rule BetaEval of the big-step semantics, we know 

 

                                 (5) 

                                   (6) 

 

By the induction hypothesis, we know that there is a term   satisfying that  

 

                                     (7) 

                                  (8) 

 

From (5) and (8), 

By rule BetaEval of the big-step semantics, that is, 

End of Proof. 

 

Lemma 2. If      and          then          

Proof. This lemma is proved by induction on the structure of       

Base Case:           If it is supposed that 

 
Then we know that     and therefore it is trivial that 

 

 

Step Case 1:                  Suppose that 
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                                     (10) 

 

From (10), there is a term   satisfying that  

                                    (11) 

 

                                  (12) 

 

By the induction hypothesis, (9) and (11), we have  

 

 

From (13) and (12), it is derived by Rule Beta that  

 

                                 (13) 

 

That is,  

 

     

 

Step Case 2:                      Suppose that  

 

                                       (14) 

                                   (15) 

 

From (15), there is a term   satisfying that  

 

                                   (16) 

                                    (17) 

 

By the induction hypothesis, (14) and (16), we have 

 

                                   (18) 

 

From (18) and (17), it is derived by Rule BetaEval that 

 

 

End of Proof. 
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Lemma 3. If           then           

Proof. This lemma is proved by induction on the structure of       

Base Case:           If you suppose 

 

 

 

Then it is trivial that 

 
Since            

Step Case 1:                  Suppose that 

 

      

 

By Rule BetaEval, we have 

 

                                       (19) 

                                       (20) 

 

By the induction hypothesis and (19), 

 

                                       (21) 

 

From (29) and (21), we have 

 

 

By Rule Beta. 

Step Case 2:                   . Suppose that 

 

 

By Rule BetaEval, we have 

                              (22) 

                                (23) 

 

By the induction hypothesis and (22), 

                            (24) 

From (23) and (24), we have 
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By Rule BetaEval. 

End of Proof. 

Theorem 1. If                then       

Proof. This theorem is proven by mathematical induction on    

Base Case:      Since             Then       that is       

Step Case:      Suppose that  

 

We conduct a case analysis on       
       

Case 1:                                 Since 

 

from the induction hypothesis, we have 

 

 

By Lemma 1, we know that there is a value   satisfying that 

 

                                (25) 

                                    (26) 

 

Then, from (40), Rule Value and Beta, it is derived that 

 

                                   (27) 

 

From (27) and (26), it is derived that 

 

by Lemma 2. By Lemma 3, we have 

 

Case 2:                      Since 

 

We have 
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                                   (28) 

 

By Lemma 1, there is a term W satisfying that 

 

                                  (29) 

                                     (30) 

From (29), it is derived that 

                                  (31) 

By Rule Eval. By lemma 2, (30) and (31),  

 

End of Proof. 

The converse of Theorem 1 also holds. Before we prove it, we show a lemma which will be used in its proof. 

Lemma 4. If            
 then  

 

Proof. We conduct a case analysis on            
  

Case 1:                                
 
   

It holds that 

 

 

And 

 

Case 2:                                  
 

. 

It holds that 

 

and 

 

End of Proof. 

Theorem 2. If        then             
 for      

Proof. This theorem is proven by induction on the structure of       

Base Case:       

It is trivial that  
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Step Case 1: 

 

 

By the induction hypothesis, we have 

 

                                  (32) 

                           (33) 

 

From (40) and Lemma 4, it is derived that 

                          (34) 

By Rule BetaEval of the small-step semantics, 

                       (35) 

From (38), (39), and (41), 

 

Step Case 2: 

 

By the induction hypothesis, we have 

 

                              (36) 

                          (37) 

 

From (40) and Lemma 4, it is derived that 
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579 Volume 12, Number 7, July 2017

Journal of Software

  

 

By Rule BetaEval of the small-step semantics, 

 

                   (39) 

 

From (38), (39), and (41), 

 

Step Case 3: 

 

By the induction hypothesis, 

                            (40) 

By Rule Eval of the small-step semantics, 

                              (40) 

From (40) and (41), 

 

End of Proof. 

4. Conclusion 

We studied a call-by-name evaluation of the RPC calculus, which is formalized as both the big-step and the 

small-step semantics. The former gives a semantics function and the latter a step-wise computation. We then 

investigated the equivalence between the two semantics. 

The call-by-name evaluation is adopted in Algol 60 [4] but its efficiency is not sufficient for practical usage. 

However, lazy evaluation of functional programming languages such as Haskell is formalized as the call-by-need 

evaluation strategy [3]. Our future research target is design and formalization of a call-by-need evaluation in the 

RPC calculus. 

The   -calculus[1] is an improved version of the lambda calculus, in which the variable binding is handled 

more precisely than the traditional lambda calculus, based on the idea of explicit substitution. We will improve 

our call-by-name evaluation, introducing the explicit substitution. 

In Paper [9], we proposed a parallel abstract machine for the call-by-value RPC calculus. Design of a parallel 

abstract machine for the call-by-name RPC calculus is one of the most interesting research direction of this work. 
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