

An Empirical Study on Relationship between Requirement
Traceability Links and Bugs

Rizki Amelia1, Hironori Washizaki1 3 4*, Yoshiaki Fukazawa1, Keishi Oshima2, Ryota Mibe2,
Ryosuke Tsuchiya2

1 Dept. of Computer Science and Engineering, Waseda University, Tokyo, Japan.
2 Hitachi, Ltd., Research & Development Group, Center for Technology Innovation - Systems Engineering, Japan.
3 National Institute of Informatics, Tokyo, Japan.
4 System Information CO.,LTD., Tokyo, Japan.

* Corresponding author. *Tel.: +81-352863272; email: washizaki@waseda.jp
Manuscript submitted March 3, 2017; accepted May 17, 2017.
doi: 10.17706/jsw.12.5.315-325

Abstract: Early bug detection reduces the cost of software maintenance, but previous works have not

utilized requirement traceability links (RTLs) as predictors for bugs. To discuss how to use RTLs to predict

the number of bugs, we propose an RTL recovery approach classification based on the ease of the recovery

process. We investigate the relationship using data from industrial software. Classes related to more RTLs

tend to have more bugs. The classification provides better correlations, and including RTLs in the bug

prediction model does not affect the performance. Some class files with no and low RTLs also have bugs; we

hypothesize that this occurs because the actual RTL is missing or not established, which is supported by the

observation that bugs in these classes are highly correlated with the maximum cyclomatic complexity.

Keywords: Requirement traceability links, bug prediction, software metrics, software maintenance.

1. Introduction

Traceability indicates that the relationship between two objects can be traced [1]. Empirical evidence has

shown that requirement traceability links (RTLs), which are specified associations between requirements and

other artifacts, support maintenance [2], [3]. Many studies have revealed that software maintenance is the most

expensive phase in the software lifecycle. Currently maintenance accounts for 60–90% of the total software costs

and at least 50% of the total man hours for a software system [3], [4]. We argue that predicting bugs is one way

to improve the efficiency of maintenance activities. This leads to the question, “Can RTLs be used to predict bugs

as early as possible in order to minimize the maintenance costs?” Previous works have not utilized RTLs as

predictors for bugs.

Before using RTLs to predict bugs, whether RTLs and the number of bugs have a positive relationship must be

investigated. We hypothesize that as the number of RTLs of a class increases, the likelihood that the class has

entangled concerns increases. Thus, classes with many traceability links should have more bugs. This is

supported by [6] in which tangled source code related to other concerns causes defects.

Traceability is a key issue to ensure consistency among software artifacts of subsequent phases in the

development cycle [7]. Despite the importance and advantages of traceability links, explicit traceability is rarely

established unless there is a regulatory reason [8]. Herein we propose an RTL recovery approach classification

based on the ease of the recovery process. The classification is divided into four types. Type I is an explicit RTL,

whereas Types II–IV are implicit RTLs. In our approach, RTLs are modified to recover missing links using

315 Volume 12, Number 5, May 2017

Journal of Software

software from a company.

We aim to answer the following research questions:

RQ1 Do classes that are related to more requirements as indicated by more RTLs tend to have more bugs?

RQ2 Does the type of implicit RTL recovery classification affect the relationship between RTLs and bugs?

RQ3 Does including RTLs influence the bug prediction model performance?

This paper makes the following contributions:

 An RTL recovery approach classification based on the ease of the recovery process is proposed.

 The results of an extensive investigation on the relationship between RTLs and bugs are discussed.

 A new bug prediction model with RTLs as a prediction factor is presented.

 The proposed RTL recovery classification successfully identifies class files that are most difficult to maintain

(i.e., class files without explicit RTLs and ones with the highest number of bugs).

The rest of paper is organized as follows: Section 2 presents our RTL recovery approach classification. Section

3 details the design. Section 4 provides the analysis results, while Section 5 shows the experiment. Section 6

addresses the research questions. Section 7 presents related works. Finally, section 8 provides a conclusion and

future direction.

2. RTL Recovery Approach Classification

[9] defined three possible scenarios to recover traceability links. In this study, we adopted a similar approach

to recover implicit traceability links. In addition to the three implicit traceability links, we also include one

explicit traceability link. This setup realizes the following:

1) There are two types of traceability links: explicit and implicit.

2) Implicit traceability links are classified by the ease of the recovery process using the recovery scenarios in

[9].

Therefore, our proposed RTL recovery approach (depicted in Fig. 1) is classified into the following four types:

 Type I contains explicit traceability links established during the software development process using

knowledge of the developers. We assume that an ideal explicit traceability link is delivered after all links

between related sources and target artifacts are completely established. However, the link’s consistency

must be verified if one or both of the linked artifacts are altered.

 Type II is the first implicit scenario in [5], which is manual tracing. All tracing activities and decisions are

rendered by a human analyst. Assuming that both the source and target artifacts have representative titles

for their contents, this process is considered easy because associating artifact titles recovers the links. It is

less time consuming, and human knowledge can associate polysemy terms well when associating artifacts

titles.

 Type III, which is the second implicit scenario, is automated tracing. In automated tracing, an analyst inputs

the appropriate tracing tools and all necessary files. Then traceability links are automatically determined by

examining content similarities between the source and target artifacts. This process is somewhat difficult

and time consuming. Automated tracing provides candidates with the limitation that the retrieved links may

be insufficient to directly use as explicit traceability links.

 Type IV, which is the third implicit scenario, is semi-automated tracing. These RTLs are difficult to recover.

First, tools are used for automatic tracing. Then the candidate RTLs are studied by an analyst to determine

the correctness and to thoroughly explore both the source and target artifacts to elucidate subtle

traceability links not offered by the tools.

3. Study Design

3.1. Software under Study

We collected data from an enterprise software project developed by a Japanese company. The project

consisted of 830 KLOC from 793 Java class code files with 962 requirements. We chose a project written in Java®

316 Volume 12, Number 5, May 2017

Journal of Software

due to the domain expert’s familiarity with Java®.

A traceability link is a specified association between a pair of artifacts where one represents the source artifact

and other is comprised of the target artifacts. Links can be traversed in both directions [10]. Hence, an RTL is a

specified association between the requirements and class files. In this project, class files have unique IDs, which

represent an implemented requirement. Thus, the class file name and requirement name are matched using the

same ID.

・・・ recovering

links ・・・ form

void build() {

form = ・・・

ScoreCalc.java

LinkRecover.java

Formatter.java

Type I. Explicit link

Type II. Implicit link recovered

manually based on titles (i.e. names)

Requirement

Recover link

Type III. Implicit link recovered by

tools based on content similarity

Type IV. Implicit

links elucidated

from Type II, III

links and manually-

added ones

Fig. 1. RTL recovery approach classification.

3.2. RTL Recovery Approach Classification

Type I RTLs occur based on ID matching where the requirement ID and the class file ID are related via a

one-to-one relationship. Type II RTLs are impossible to recover for the software in this study as the class files

contain IDs only.

Type III RTLs have either a requirement ID or title in the class file contents. Because TraceLab [11], which is a

common traceability link recovery tool, is limited to documents with English contents, we created our own

simple tool for similarity analysis between the requirement ID and title with the class file’s contents to find Type

III RTLs. If class file contents contain either an ID or title, then whether the artifacts are related can be

determined.

For Type IV RTLs, we treated the results from [12] since it targeted the same software. The results were

obtained by applying various traceability recovery techniques [12], [23]-[25] with manual analysis and

determination. We did not validate candidate links from Type III RTLs due to time and cost restrictions.

We grouped the class files based on the existence of the type RTLs as shown in Table I for further analysis. For

example, a class with Type III and Type IV RTLs without Type I ones is grouped in g4. Due to the limitation of

Type IV RTL recovery, some classes do not have any RTLs (grouped in g1).

Table 1. Class Groups Based on the Existence of RTL Type

Group
Type

Class Group
Type

Class
I III IV I III IV

g1 0 0 0 24 g4 0 1 1 55
g2 0 0 1 2 g5 1 1 0 13
g3 0 1 0 21 g6 1 1 1 678

3.3. Code Metrics for Predictors

To build a bug prediction model, we also analyzed other code metrics as candidates of predictors. Based on

existing work [13], we analyzed similar metrics: CK metrics [14], OO metrics, complexity metrics, and volume

metrics; these metrics were selected by following the work in [13]. The values of these metrics were measured

317 Volume 12, Number 5, May 2017

Journal of Software

from the project using Understand [15]. Complexity was based on McCabe’s cyclomatic complexity. Table II lists

the code metrics included in our analysis.

3.4. Correlation Analysis

Correlation analysis aims to determine the correlations between RTLs and bugs as well as to determine

correlations between code metrics and bugs. We employed correlation coefficient analysis using Pearson’s

correlation coefficient (r). Although Spearman’s rank correlation coefficient is robust towards a nonlinear

association, we selected r because this research focuses on linear correlations between two objects to build a

prediction model using multiple linear regressions.

To investigate the correlation between RTL and bugs, the class files were sorted into three groups based on

the amount of RTLs: zero, low, and high. The classes were divided based on the RTL median. Then the

distribution of the number of bugs in each group was analyzed. The population significance was determined

using a Wilcoxon rank sum test between the zero group and the target group.

To investigate the correlations between code metrics and bugs, we computed r for each metric and extracted

the p-value to find the significance of the correlation. Only metrics with p-values < 0.05 were compared. Metrics

strongly correlated with bugs were employed as predictors in the bug prediction model. To determine the

relationship strength based on the obtained r, we used an existing categorization [7].

4. Analysis Results

4.1. Number of Bugs in Class Files Grouped by RTL Type

Figure 2 shows that g4 followed by g6 are the class files with the highest number of bugs (by mean and

median). We hypothesize that class files in this group will be difficult to maintain. Without considering the

existence of Type III and Type IV RTLs, g4 will be very costly with respect to bug fixing activities relative to other

groups without RTLs because g4 has many bugs but lacks Type I RTLs, creating difficulties when tracing code

specifications. To reduce the maintenance costs, software engineers should establish explicit RTLs. Similarly,

Type III and Type IV RTLs should help reduce the maintenance cost.

4.2. Correlation between RTL and Bugs

The boxplots in Fig. 3, Fig. 4, Fig. 5 and Table III show the difference in the number of bugs by group. Groups

with more RTLs tend to have more bugs. The Type III RTL group shows the strongest difference. In contrast, the

Type I class file groups do not differ significantly. There are only two Type I groups because the company tried to

match the requirement and class files in a one-to-one relationship using artifacts’ IDs.

We conducted further analysis to determine which metrics contribute most to the number of bugs. Nine of the

28 metrics in Table II show uniform low values for the class files in the zero group without bugs (Table IV). The

Pearson’s r between these metrics and bugs for classes in the zero group with bugs indicates that only

MaxCyclomatic has a strong correlation to the number of bugs. Thus, MaxCyclomatic is used as a metric to

predict bugs in class files with no and low RTLs.

Table 2. Code Metrics Used

Catg. Name Description

CK

WMC Count of Methods
LCOM Percent Lack of Cohesion
DIT Max Inheritance Tree
CBO Count of Coupled Classes
NOC Count of Derived Classes
RFC Count of All Methods

OO
NIM Number of instance methods
NIV Number of instance variables
IFANIN Count of Base Classes

318 Volume 12, Number 5, May 2017

Journal of Software

Units
Number of non-nested modules, block
data units, and subprograms

Comx

MaxCyclomatic
Maximum cyclomatic complexity of all
nested functions or methods.

AvgCyclomatic
Average cyclomatic complexity for all
nested functions or methods

Modified Modified cyclomatic complexity
Strict Strict cyclomatic complexity
Essential Essential complexity

Vol

AvgLines
Average number of lines for all nested
functions or methods

AvgCodes
Average number of lines containing
source code for all nested functions or
methods

AvgComment
Average number of lines containing
comments for all nested functions or
methods

AvgBlank
Average number of blanks for all nested
functions or methods

Lines Total lines in a file
Comments Total lines with a comment
Blanks Total lines without a comment or code
Code Total lines with code

ExeLines
Number of lines containing an
executable code

DecLines Total lines with declarative code
ExeStmt Number of executable statements
DecStmt Number of declarative statements

RatioComment Ratio of comment lines to code lines

Fig. 2. Bugs distribution in the class files grouped by RTL type.

319 Volume 12, Number 5, May 2017

Journal of Software

Fig. 3. Number of bugs in the class files with type I RTLs (zero, low, high in terms of the number of RTLs).

Fig. 4. Number of bugs in the class files with type III RTLs (zero, low, high in terms of the number of RTLs).

Fig. 5. Number of bugs in the class files with type IV RTLs (zero, low, high in terms of the number of RTLs).

Table 3. Distribution of the Number of Bugs by Group

Type Group Total Class Mean s.d. Wilcox p-value Pearson’s r

I
zero 102 3.324 8.138

-0.083 low 691 2.111 4.173 0.795
high 0 NA NA NA

III
zero 26 0.5 0.99

0.409 low 560 1.411 3.011 0.226
high 207 4.807 7.605 6.01E-18

IV
zero 58 0.569 1.855

0.384 low 629 1.943 4.092 0.001
high 106 5.123 8.179 1.5E-15

Table 4. Correlation between Metrics and Bugs by Group

Catg. Metrics
No Bugs: uniformity With Bugs: Pearson's r
zero low zero Low

CK
DIT Yes Yes NA 0.079
NOC Yes Yes 0.097 NA

OO IFANIN Yes Yes 0.097 0.066

Comx

Modifier Yes No 0.54 0.48
Strict Yes No 0.44 0.5
AvgCyclo Yes No 0.54 0.48
MaxCyclo Yes No 0.97 0.73

Vol
AvgLines Yes No 0.42 0.52
AvgComment Yes No 0.27 0.54

320 Volume 12, Number 5, May 2017

Journal of Software

4.3. Correlation between Code Metrics and Bugs

Of the 28 code metrics in Table II, 12 have correlations with significant values (i.e., < 0.05): MaxCyclomatic

(0.714), ExeStmt (0.712), ExeLines (0.703), LOC (0.533), Strict (0.497), AvgComment (0.49), AvgCode (0.475),

AvgLines (0.473), Modified (0.46), CBO (0.446), and Essential (0.394).

4.4. RTL Recovery Approach Classification Application

Type IV and Type III show weak and moderate correlations between RTLs and bugs, respectively. There is

almost no correlation for Type I. Among the metrics analyzed, RTL is the second weakest, indicating that code

metrics play a larger role in predicting bugs in class files. Consequently, only Type III RTLs and code metrics with

moderate and strong correlations were used as predictors in our experiment.

5. Bug Prediction Based on Relationship Analysis

5.1. Experimental Setup

We used a standard evaluation technique called data splitting [16] to evaluate the predictive performance. We

randomly chose two-thirds of all class files as training data to build the prediction models. The remaining

one-third was used as test data. We performed 50 random splits to ensure the stability and repeatability of our

results.

To build a multiple regression model, we analyzed the multi-collinearity among the independent variables.

Because the common indicator of multi-collinearity is the variance inflation factor (VIF), we removed metrics

with VIF ≥ 4 iteratively. Hence, none of the metrics displayed statistical evidence of multi-collinearity. The

metrics with VIF < 4 after eight iterations are LOC, AvgComment, MaxCyclomatic, CBO, and the number of Type

III RTLs since they showed the highest correlations with bugs among all types of RTLs.

Using these four metrics and RTLs, we built our bug prediction models. Two types of models were constructed:

(M1) with RTLs and (M2) without RTLs. The models’ performances were assessed via an explanatory power

evaluation and a predictive power evaluation. To measure the quality of the model built from the training data,

we computed R-square ranging from 0 to 1, where a higher value indicates a higher explanative power. The

evaluation of the predictive power of the model was performed with respect to accuracy and sensitivity. For the

accuracy, we computed the root mean squared error (RMSE) to determine the difference between the predicted

number of bugs and the actual number of bugs. We chose RMSE instead of MSE because RMSE has the same unit

as the dependent variable, making the results easier to interpret. A smaller RMSE value indicates fewer errors

and a smaller difference between the predicted and actual bugs. For the sensitivity, we computed the Pearson’s r

to assess the correlation between the predicted bug and the actual bugs; the closer the absolute value is to 1, the

stronger the correlation.

5.2. Experimental Results

Table 5. Results of Model Performance in 50 Splits

 Min Max Mean s.d.

M1.
With
RTL

R-squared 0.573 0.723 0.648 0.038
RMSE 2.290 3.870 3.197 0.440
Pearson’s r 0.650 0.868 0.775 0.046

M2.
Without
RTL

R-squared 0.562 0.719 0.644 0.037
RMSE 2.300 3.880 3.159 0.437
Pearson’s r 0.657 0.873 0.779 0.044

Table V summarizes the explanatory power (R-squared) and predictive power (RMSE and Pearson’s r) from

the 50 random splits. Neither bug prediction model (with or without RTLs) performs strongly. The R-squared

shows that the model with RTLs performs slightly better, but the predictive power performance of the bug

prediction model without RTLs is slightly better according to the mean of RMSE and Pearson’s r. These results

321 Volume 12, Number 5, May 2017

Journal of Software

imply that the model with RTLs is not more accurate than the model without RTLs. Additionally, the low value of

the standard deviation of the performance measures indicates both models provide consistent results.

6. Discussion

6.1. Research Questions

RQ1 Do classes related to more requirements as indicated by more RTLs tend to have more bugs?

Classes related to more RTLs tend to have more bugs as moderately supported by the correlation analysis

result of Pearson’s r of 0.409 (significant below the 0.05 level). We assume that class files in the zero or low

groups have numerous missing RTLs. It is likely that the correlations will improve as the RTLs in these classes

are recovered.

RQ2 Does the type of implicit RTL recovery classification affect the relationship between RTLs and bugs?

The recovery classification gives insights into correlations between the recovered RTLs and bugs. For the

current project, the best relationship is shown by Type III RTLs.

RQ3 Does including RTLs influence the bug prediction model performance?

The explanatory power of the model with RTLs is slightly better than the model without RTLs, but the

difference is insignificant. However, the model without RTLs has a slightly better predictive power than the

model with RTLs. These results suggest that including RTLs in the bug prediction model does not affect the

performance, at least for the current project.

6.2. Usage of Findings

 Establishing RTLs explicitly helps trace the code from the class files to the requirements, improving the

efficiency of fixing bugs. Moreover, engineers should be able to allocate their resources more effectively as it

should be intuitive that class files with more RTLs have more bugs than class files with fewer RTLs. The

proposed RTL recovery classification approach groups the class files based on the existence of RTLs by type to

confirm which groups are in endangered states and whether they are maintained easily. Our findings indicate

that software engineers should be aware of the maximum cyclomatic complexity of class files in a development

because this will lead to bug-prone class files.

6.3. Threats to Validity

External Validity: Because the analysis results and current prediction model cannot be generalized beyond the

specific software used in the experiment, validation using other software projects is necessary.

Internal Validity: Determining a strong relationship between RTLs and bugs is challenging. We suspect that

the established RTLs are incomplete or missing for the current project.

Statistical Validity: All the results from the analysis and experimental study, including the performance of the

bug prediction model, are significant below the 0.05 level.

7. Related Works

A previous study demonstrated that crosscutting concerns do cause defects by examining three small-sized to

medium-sized Java® open-source projects [6]. On the other hand, our work focuses on analyzing tangling

concerns indirectly. [6] suggested a method to realize software reliability by modularizing crosscutting concerns,

whereas our work suggests that software developers establish RTLs, which are used to predict bugs, to estimate

the maintenance costs. If RTLs are not established during development, we suggest using our proposed approach

to recover implicit RTLs.

Many works [13], [17]-[22] have examined bug prediction models using code metrics. One standard set of

metrics is the Chidamber and Kemerer (CK) metrics suite, which is used in [17], [18], [21], [22]. The bug

prediction models built in [13], [19], [20] used other code metrics as predictors, while [14] found that a

predictor only performed well in the project it was originally designed. Marco D’Ambros et al. compared the

322 Volume 12, Number 5, May 2017

Journal of Software

performance of models with CK alone, OO alone, CK + OO, and LOC alone as predictors, and found that the model

with CK + OO metrics exhibit the best predictor performance [13].

8. Conclusion and Future Work

There is a moderate correlation between RTLs and bugs. Some class files with no and low RTLs also have bugs.

We hypothesize that this is because the actual RTL is missing or not established, which is consistent with the

observation that bugs in these classes are highly correlated with maximum cyclomatics. Our findings suggest that

the RTL is missing for class files with a high maximum complexity since they must implement at least one

requirement. Hence, implementing an explicit RTL recovery tool is recommended as it can reduce the corrective

maintenance phase for class files with many bugs. On the other hand, including RTLs in a bug prediction model

does not affect the model performance.

In the future, we plan to investigate which bugs in class files in g4 (Section 4) are actually due to missing links

to strengthen our suggestions about the importance of explicit RTLs. We also plan to recover actual Type IV RTLs

on the same software and repeat the analysis to evaluate the impact on the results. We will replicate the analysis

for different datasets from the software as well as employ other models for bug prediction such as

machine-learning ones.

References

[1] Kazuki, N., Hironori, W., Yoshiaki, F., Keishi, O., & Ryota, M. (2015). Recovering transitive traceability among

software artifacts. Proceedings of the 31st IEEE International Conference on Software Maintenance and

Evolution (ICSME) (pp. 576-580).

[2] Patrick, M., & Alexander, E. (2012). Assessing the effect of requirements traceability for software

maintenance. Proceedings of the 28th IEEE International Conference on Software Maintenance (ICSM) (pp.

171-180).

[3] Giuliano, A., Gerardo, C., Gerardo, C., Andrea, D. L., & Ettore, M. (2002). Recovering traceability links between

code and documentation. IEEE Transactions on Software Engineering, 28(10), 970-983.

[4] Bennet, P. L., & Burton, E. S. (1980). Software Maintenance Management, Reading, Ma.: Addison-Wesley.

[5] Jose, M. C., Eduardo, F., Alessandro, G., Juan, H., & Elena, J. (2012). On the relationship of concern metrics and

requirements maintainability. Information and Software Technology, 54(2), 212-238.

[6] Marc, E., Thomas, Z., Kaitlin, D. S., & Vibhav, G. (2008). Do crosscutting concerns cause defects? IEEE

Transactions on Software Engineering, 34(4), 497-515.

[7] Christine, D., & John, R. (2011). Statistics Without Maths for Psychology, Pearson Prentice Hall.

[8] Andrea, D. L., Andrian, M., Rocco, O., & Denys, P. (2012). Information retrieval methods for automated

traceability recovery. Software and Systems Traceability, Springer.

[9] Alex, D., & Jane, H. H. (2012). Studying the role of humans in the traceability loop. Software and Systems

Traceability. Springer.

[10] Jane, C. H., Orlena, G., & Andrea, Z. (2012). Software and systems traceability.

[11] Coest.org. Retrieved August 27, 2016, from http://www.coest.org/index.php/resources/dat-sets

[12] Ryosuke, T., Hironori, W., Yoshiaki, F., Keishi, O., & Ryota, M. (2015). Interactive recovery of requirements

traceability links using user feedback and configuration management logs. Proceedings of the 27th

International Conference on Advanced Information Systems Engineering.

[13] Marco, D., Michele, L., & Romain, R. (2011). Evaluating defect prediction approaches: A benchmark and an

extensive comparison. Empirical Software Engineering, 17(4), 531-577.

[14] Shyam, R. C., & Chris, F. K. (1994). A metrics suite for object oriented design. IEEE Transactions on Software

Engineering, 20(6), 476-493.

[15] SciTools.com. (April 27th 2016), http://SciTools.com

[16] Wang, J. J., Juan, L., Qing, W., & Da, Y. (2013). Can requirements dependency network be used as early

323 Volume 12, Number 5, May 2017

Journal of Software

indicator of software integration Bugs? Proceedings of the 21st IEEE International Requirements Engineering

Conference (RE).

[17] Khaled, E. E., Walcelio, M., & Javam, C. M. (2001). The prediction of faulty classes using object-oriented

design metrics. Journal of Systems and Software, 56(1), 63-75.

[18] Tibor, G., Rudolf, F., & Istvan, S. (2005). Empirical validation of object-oriented metrics on open source

software for fault prediction. IEEE Transactions on Software Engineering, 31(10), 897-910.

[19] Nachiappan, N., Thomas, B., & Andreas, Z. (2006). Mining metrics to predict component failures. Proceedings

of the 28th International Conference on Software Engineering (ICSE).

[20] Thomas, Z., Rahul, P., & Andreas, Z. (2007). Predicting defects for eclipse. International Workshop on

Predictor Models in Software Engineering.

[21] Niclas, O., & Hans, A. (1996). Predicting fault-prone software modules in telephone switches. IEEE

Transactions on Software Engineering, 22(12), 886-894.

[22] Victor, R. B., Lionel, C. B., & Walcelio, L. M. (1996). A validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering, 22(10), 751-761.

[23] Kentaro, K., Ryosuke, T., Hironori, W., & Yoshiaki, F. (2012). Supporting commonality and variability

analysis of requirements and structural models. Proceedings of the 4th International Workshop on

Model-driven Approaches in Software Product Line Engineering.

[24] Ryosuke, T., Hironori, W., Yoshiaki, F., Tadahisa, K., Masumi, K., Kentaro, Y. (2013). Recovering traceability

links between requirements and source code in the same series of software products. Proceedings of 17th

International Software Product Line Conference.

[25] Ryosuke, T., Hironori, W., Yoshiaki, F., Tadahisa, K., Masumi, K., Kentaro, Y. (2015). Recovering traceability

links between requirements and source code using the configuration management log. IEICE Transactions

on Information and Systems.

Rizki Amelia is currently working as radio network performance engineer at MOTiV Research

in Tokyo, Japan. She received her master's degree in computer science and engineering from

Waseda University in 2015. Her bachelor degree in information system was obtained from

University of Indonesia in 2013 with advantage of attending one year exchange program in

ICT Area at Daejeon University, Korea. Her research interests are mainly focus on software

quality in software development and engineering.

Hironori Washizaki is the director and a professor at Global Software Engineering

Laboratory, Waseda University, Japan. He also works at the National Institute of Informatics as

a visiting professor and at System Information CO.,LTD. as an outside director. He was a

visiting professor at Ecole Polytechnique de Montreal in 2015. He obtained his doctor’s degree

in information and computer science from Waseda University in 2003. His research interests

include systems and software requirements, design, modeling, reuse, quality assurance,

processes, management, and education.

 He has been involved in organizing a number of international conferences, including serving as the program

co-chair of SPAQu 2007-2009, ICST 2017, CSEE&T 2017 and APSEC 2018, the chair of AsianPLoP 2011-2016, the

co-organizer of MAPLE/SCALE 2013 and PPAP 2016, the local chair of SPLC 2013 and COMPSAC 2018, the

workshop co-chair of ASE 2006, the Publicity Chair of APSEC 2007, ASE 2012, CSEE&T 2015 and BICT 2015, and

the steering committee of DEPEND 2016-2017 and FASSI 2016-2017. He has served as the chair of IEEE

Computer Society Japan Chapter, the Chair of SEMAT Japan Chapter, the Convenor of ISO/IEC JTC1/SC7/WG20,

the Director of ACM-ICPC 2014 Asia Regional Tokyo Contest, and the Director of IPSJ SamurAI Coding 2014-17.

He has served as a member of the Editorial Board for many journals, including Int. J. Soft. Eng. & Know. Eng.,

Author’s formal

photo

324 Volume 12, Number 5, May 2017

Journal of Software

IEICE Trans. Info. & Sys., Heliyon, and the Journal of Information Processing. He is appointed as IEEE Computer

Society Member-at-Large for the Professional and Educational Activities Board, and Editor in Chief of Int. J. of

Agile and Extreme Software Development.

Yoshiaki Fukazawa received the B.E., M.E. and D.E. degrees in electrical engineering from

Waseda University, Tokyo, Japan in 1976, 1978, and 1986, respectively. He is currently a

professor of the Department of Information and Computer Science, Waseda University as well

as the director, Institute of Open Source Software, Waseda University. His research interests

include software engineering, especially reuse of object-oriented software and agent-based

software.

Keishi Oshima is a senior researcher of systems innovation center at Hitachi. He received his

masters degree in information science and technology from Waseda University in 2002. His

research interests are centered on legacy system analysis and repository mining.

Ryota Mibe is a senior researcher of systems innovation center at Hitachi. He received his

masters degree in information science and technology from the Tokyo Institute of Technology

in 1992. His research interests are centered on legacy system analysis and repository mining.

Ryosuke Tsuchiya is a researcher of systems innovation center at Hitachi. He received his

masters degree in computer science and engineering from Waseda University in 2015. His

research interests are centered on legacy system analysis and traceability recovery.

325 Volume 12, Number 5, May 2017

Journal of Software

