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Abstract: Early bug detection reduces the cost of software maintenance, but previous works have not 

utilized requirement traceability links (RTLs) as predictors for bugs. To discuss how to use RTLs to predict 

the number of bugs, we propose an RTL recovery approach classification based on the ease of the recovery 

process. We investigate the relationship using data from industrial software. Classes related to more RTLs 

tend to have more bugs. The classification provides better correlations, and including RTLs in the bug 

prediction model does not affect the performance. Some class files with no and low RTLs also have bugs; we 

hypothesize that this occurs because the actual RTL is missing or not established, which is supported by the 

observation that bugs in these classes are highly correlated with the maximum cyclomatic complexity.  
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1. Introduction 

Traceability indicates that the relationship between two objects can be traced [1]. Empirical evidence has 

shown that requirement traceability links (RTLs), which are specified associations between requirements and 

other artifacts, support maintenance [2], [3]. Many studies have revealed that software maintenance is the most 

expensive phase in the software lifecycle. Currently maintenance accounts for 60–90% of the total software costs 

and at least 50% of the total man hours for a software system [3], [4]. We argue that predicting bugs is one way 

to improve the efficiency of maintenance activities. This leads to the question, “Can RTLs be used to predict bugs 

as early as possible in order to minimize the maintenance costs?” Previous works have not utilized RTLs as 

predictors for bugs. 

Before using RTLs to predict bugs, whether RTLs and the number of bugs have a positive relationship must be 

investigated. We hypothesize that as the number of RTLs of a class increases, the likelihood that the class has 

entangled concerns increases. Thus, classes with many traceability links should have more bugs. This is 

supported by [6] in which tangled source code related to other concerns causes defects. 

Traceability is a key issue to ensure consistency among software artifacts of subsequent phases in the 

development cycle [7]. Despite the importance and advantages of traceability links, explicit traceability is rarely 

established unless there is a regulatory reason [8]. Herein we propose an RTL recovery approach classification 

based on the ease of the recovery process. The classification is divided into four types. Type I is an explicit RTL, 

whereas Types II–IV are implicit RTLs. In our approach, RTLs are modified to recover missing links using 
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software from a company.  

We aim to answer the following research questions:  

RQ1 Do classes that are related to more requirements as indicated by more RTLs tend to have more bugs? 

RQ2 Does the type of implicit RTL recovery classification affect the relationship between RTLs and bugs? 

RQ3 Does including RTLs influence the bug prediction model performance?  

This paper makes the following contributions:  

 An RTL recovery approach classification based on the ease of the recovery process is proposed. 

 The results of an extensive investigation on the relationship between RTLs and bugs are discussed.  

 A new bug prediction model with RTLs as a prediction factor is presented.  

 The proposed RTL recovery classification successfully identifies class files that are most difficult to maintain 

(i.e., class files without explicit RTLs and ones with the highest number of bugs). 

The rest of paper is organized as follows: Section 2 presents our RTL recovery approach classification. Section 

3 details the design. Section 4 provides the analysis results, while Section 5 shows the experiment. Section 6 

addresses the research questions. Section 7 presents related works. Finally, section 8 provides a conclusion and 

future direction. 

2. RTL Recovery Approach Classification 

[9] defined three possible scenarios to recover traceability links. In this study, we adopted a similar approach 

to recover implicit traceability links. In addition to the three implicit traceability links, we also include one 

explicit traceability link. This setup realizes the following:   

1) There are two types of traceability links: explicit and implicit. 

2) Implicit traceability links are classified by the ease of the recovery process using the recovery scenarios in 

[9]. 

Therefore, our proposed RTL recovery approach (depicted in Fig. 1) is classified into the following four types:  

 Type I contains explicit traceability links established during the software development process using 

knowledge of the developers. We assume that an ideal explicit traceability link is delivered after all links 

between related sources and target artifacts are completely established. However, the link’s consistency 

must be verified if one or both of the linked artifacts are altered.  

 Type II is the first implicit scenario in [5], which is manual tracing. All tracing activities and decisions are 

rendered by a human analyst. Assuming that both the source and target artifacts have representative titles 

for their contents, this process is considered easy because associating artifact titles recovers the links. It is 

less time consuming, and human knowledge can associate polysemy terms well when associating artifacts 

titles.  

 Type III, which is the second implicit scenario, is automated tracing. In automated tracing, an analyst inputs 

the appropriate tracing tools and all necessary files. Then traceability links are automatically determined by 

examining content similarities between the source and target artifacts. This process is somewhat difficult 

and time consuming. Automated tracing provides candidates with the limitation that the retrieved links may 

be insufficient to directly use as explicit traceability links. 

 Type IV, which is the third implicit scenario, is semi-automated tracing. These RTLs are difficult to recover. 

First, tools are used for automatic tracing. Then the candidate RTLs are studied by an analyst to determine 

the correctness and to thoroughly explore both the source and target artifacts to elucidate subtle 

traceability links not offered by the tools. 

3. Study Design 

3.1. Software under Study 

We collected data from an enterprise software project developed by a Japanese company. The project 

consisted of 830 KLOC from 793 Java class code files with 962 requirements. We chose a project written in Java®  
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due to the domain expert’s familiarity with Java®.  

A traceability link is a specified association between a pair of artifacts where one represents the source artifact 

and other is comprised of the target artifacts. Links can be traversed in both directions [10]. Hence, an RTL is a 

specified association between the requirements and class files. In this project, class files have unique IDs, which 

represent an implemented requirement. Thus, the class file name and requirement name are matched using the 

same ID.  
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form = ・・・

ScoreCalc.java

LinkRecover.java
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Fig. 1. RTL recovery approach classification. 

 

3.2. RTL Recovery Approach Classification  

Type I RTLs occur based on ID matching where the requirement ID and the class file ID are related via a 

one-to-one relationship. Type II RTLs are impossible to recover for the software in this study as the class files 

contain IDs only.  

Type III RTLs have either a requirement ID or title in the class file contents. Because TraceLab [11], which is a 

common traceability link recovery tool, is limited to documents with English contents, we created our own 

simple tool for similarity analysis between the requirement ID and title with the class file’s contents to find Type 

III RTLs. If class file contents contain either an ID or title, then whether the artifacts are related can be 

determined. 

For Type IV RTLs, we treated the results from [12] since it targeted the same software. The results were 

obtained by applying various traceability recovery techniques [12], [23]-[25] with manual analysis and 

determination. We did not validate candidate links from Type III RTLs due to time and cost restrictions.  

We grouped the class files based on the existence of the type RTLs as shown in Table I for further analysis. For 

example, a class with Type III and Type IV RTLs without Type I ones is grouped in g4. Due to the limitation of 

Type IV RTL recovery, some classes do not have any RTLs (grouped in g1). 

Table 1. Class Groups Based on the Existence of RTL Type 

Group 
Type 

Class Group 
Type 

Class 
I III IV I III IV 

g1 0 0 0 24 g4 0 1 1 55 
g2 0 0 1 2 g5 1 1 0 13 
g3 0 1 0 21 g6 1 1 1 678 

 

3.3. Code Metrics for Predictors 

To build a bug prediction model, we also analyzed other code metrics as candidates of predictors. Based on 

existing work [13], we analyzed similar metrics: CK metrics [14], OO metrics, complexity metrics, and volume 

metrics; these metrics were selected by following the work in [13]. The values of these metrics were measured 
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from the project using Understand [15]. Complexity was based on McCabe’s cyclomatic complexity. Table II lists 

the code metrics included in our analysis. 

3.4. Correlation Analysis 

Correlation analysis aims to determine the correlations between RTLs and bugs as well as to determine 

correlations between code metrics and bugs. We employed correlation coefficient analysis using Pearson’s 

correlation coefficient (r). Although Spearman’s rank correlation coefficient is robust towards a nonlinear 

association, we selected r because this research focuses on linear correlations between two objects to build a 

prediction model using multiple linear regressions. 

To investigate the correlation between RTL and bugs, the class files were sorted into three groups based on 

the amount of RTLs: zero, low, and high. The classes were divided based on the RTL median. Then the 

distribution of the number of bugs in each group was analyzed. The population significance was determined 

using a Wilcoxon rank sum test between the zero group and the target group. 

To investigate the correlations between code metrics and bugs, we computed r for each metric and extracted 

the p-value to find the significance of the correlation. Only metrics with p-values < 0.05 were compared. Metrics 

strongly correlated with bugs were employed as predictors in the bug prediction model. To determine the 

relationship strength based on the obtained r, we used an existing categorization [7]. 

4. Analysis Results 

4.1. Number of Bugs in Class Files Grouped by RTL Type 

Figure 2 shows that g4 followed by g6 are the class files with the highest number of bugs (by mean and 

median). We hypothesize that class files in this group will be difficult to maintain. Without considering the 

existence of Type III and Type IV RTLs, g4 will be very costly with respect to bug fixing activities relative to other 

groups without RTLs because g4 has many bugs but lacks Type I RTLs, creating difficulties when tracing code 

specifications. To reduce the maintenance costs, software engineers should establish explicit RTLs. Similarly, 

Type III and Type IV RTLs should help reduce the maintenance cost. 

4.2. Correlation between RTL and Bugs 

The boxplots in Fig. 3, Fig. 4, Fig. 5 and Table III show the difference in the number of bugs by group. Groups 

with more RTLs tend to have more bugs. The Type III RTL group shows the strongest difference. In contrast, the 

Type I class file groups do not differ significantly. There are only two Type I groups because the company tried to 

match the requirement and class files in a one-to-one relationship using artifacts’ IDs. 

We conducted further analysis to determine which metrics contribute most to the number of bugs. Nine of the 

28 metrics in Table II show uniform low values for the class files in the zero group without bugs (Table IV). The 

Pearson’s r between these metrics and bugs for classes in the zero group with bugs indicates that only 

MaxCyclomatic has a strong correlation to the number of bugs. Thus, MaxCyclomatic is used as a metric to 

predict bugs in class files with no and low RTLs. 

 

Table 2. Code Metrics Used 

Catg. Name Description 

CK 

WMC Count of Methods 
LCOM Percent Lack of Cohesion 
DIT Max Inheritance Tree 
CBO Count of Coupled Classes 
NOC Count of Derived Classes 
RFC Count of All Methods 

OO 
NIM Number of instance methods 
NIV Number of instance variables 
IFANIN Count of Base Classes 
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Units 
Number of non-nested modules, block 
data units, and subprograms 

Comx 

MaxCyclomatic 
Maximum cyclomatic complexity of all 
nested functions or methods. 

AvgCyclomatic 
Average cyclomatic complexity for all 
nested functions or methods 

Modified Modified cyclomatic complexity 
Strict Strict cyclomatic complexity 
Essential Essential complexity 

Vol 

AvgLines 
Average number of lines for all nested 
functions or methods 

AvgCodes 
Average number of lines containing 
source code for all nested functions or 
methods 

AvgComment 
Average number of lines containing 
comments for all nested functions or 
methods 

AvgBlank 
Average number of blanks for all nested 
functions or methods 

Lines Total lines in a file 
Comments Total lines with a comment  
Blanks Total lines without a comment or code 
Code Total lines with code   

ExeLines 
Number of lines containing an 
executable code 

DecLines Total lines with declarative code  
ExeStmt Number of executable statements 
DecStmt Number of declarative statements 

RatioComment Ratio of comment lines to code lines 

 

 
Fig. 2. Bugs distribution in the class files grouped by RTL type.  
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Fig. 3. Number of bugs in the class files with type I RTLs (zero, low, high in terms of the number of RTLs). 



  

 
Fig. 4. Number of bugs in the class files with type III RTLs (zero, low, high in terms of the number of RTLs). 

 

 

Fig. 5. Number of bugs in the class files with type IV RTLs (zero, low, high in terms of the number of RTLs). 

Table 3. Distribution of the Number of Bugs by Group 

Type Group Total Class Mean s.d. Wilcox p-value Pearson’s r 

I 
zero 102 3.324 8.138  

-0.083 low 691 2.111 4.173 0.795 
high 0 NA NA NA 

III 
zero 26 0.5 0.99  

0.409 low 560 1.411 3.011 0.226 
high 207 4.807 7.605 6.01E-18 

IV 
zero 58 0.569 1.855  

0.384 low 629 1.943 4.092 0.001 
high 106 5.123 8.179 1.5E-15 

 

Table 4. Correlation between Metrics and Bugs by Group  

Catg. Metrics 
No Bugs: uniformity With Bugs: Pearson's r 
zero low zero Low 

CK 
DIT Yes Yes NA 0.079 
NOC Yes Yes 0.097 NA 

OO IFANIN Yes Yes 0.097 0.066 

Comx 

Modifier Yes No 0.54 0.48 
Strict Yes No 0.44 0.5 
AvgCyclo Yes No 0.54 0.48 
MaxCyclo Yes No 0.97 0.73 

Vol 
AvgLines Yes No 0.42 0.52 
AvgComment Yes No 0.27 0.54 
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4.3. Correlation between Code Metrics and Bugs 

Of the 28 code metrics in Table II, 12 have correlations with significant values (i.e., < 0.05): MaxCyclomatic 

(0.714), ExeStmt (0.712), ExeLines (0.703), LOC (0.533), Strict (0.497), AvgComment (0.49), AvgCode (0.475), 

AvgLines (0.473), Modified (0.46), CBO (0.446), and Essential (0.394). 

4.4. RTL Recovery Approach Classification Application 

Type IV and Type III show weak and moderate correlations between RTLs and bugs, respectively. There is 

almost no correlation for Type I. Among the metrics analyzed, RTL is the second weakest, indicating that code 

metrics play a larger role in predicting bugs in class files. Consequently, only Type III RTLs and code metrics with 

moderate and strong correlations were used as predictors in our experiment. 

5. Bug Prediction Based on Relationship Analysis 

5.1. Experimental Setup 

We used a standard evaluation technique called data splitting [16] to evaluate the predictive performance. We 

randomly chose two-thirds of all class files as training data to build the prediction models. The remaining 

one-third was used as test data. We performed 50 random splits to ensure the stability and repeatability of our 

results. 

To build a multiple regression model, we analyzed the multi-collinearity among the independent variables. 

Because the common indicator of multi-collinearity is the variance inflation factor (VIF), we removed metrics 

with VIF ≥ 4 iteratively. Hence, none of the metrics displayed statistical evidence of multi-collinearity. The 

metrics with VIF < 4 after eight iterations are LOC, AvgComment, MaxCyclomatic, CBO, and the number of Type 

III RTLs since they showed the highest correlations with bugs among all types of RTLs.  

Using these four metrics and RTLs, we built our bug prediction models. Two types of models were constructed: 

(M1) with RTLs and (M2) without RTLs. The models’ performances were assessed via an explanatory power 

evaluation and a predictive power evaluation. To measure the quality of the model built from the training data, 

we computed R-square ranging from 0 to 1, where a higher value indicates a higher explanative power. The 

evaluation of the predictive power of the model was performed with respect to accuracy and sensitivity. For the 

accuracy, we computed the root mean squared error (RMSE) to determine the difference between the predicted 

number of bugs and the actual number of bugs. We chose RMSE instead of MSE because RMSE has the same unit 

as the dependent variable, making the results easier to interpret. A smaller RMSE value indicates fewer errors 

and a smaller difference between the predicted and actual bugs. For the sensitivity, we computed the Pearson’s r 

to assess the correlation between the predicted bug and the actual bugs; the closer the absolute value is to 1, the 

stronger the correlation. 

5.2. Experimental Results 

 

Table 5. Results of Model Performance in 50 Splits 

  Min Max Mean s.d. 

M1. 
With 
RTL 

R-squared 0.573 0.723 0.648 0.038 
RMSE 2.290 3.870 3.197 0.440 
Pearson’s r 0.650 0.868 0.775 0.046 

M2. 
Without 
RTL 

R-squared 0.562 0.719 0.644 0.037 
RMSE 2.300 3.880 3.159 0.437 
Pearson’s r 0.657 0.873 0.779 0.044 

 
Table V summarizes the explanatory power (R-squared) and predictive power (RMSE and Pearson’s r) from 

the 50 random splits. Neither bug prediction model (with or without RTLs) performs strongly. The R-squared 

shows that the model with RTLs performs slightly better, but the predictive power performance of the bug 

prediction model without RTLs is slightly better according to the mean of RMSE and Pearson’s r. These results 
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imply that the model with RTLs is not more accurate than the model without RTLs. Additionally, the low value of 

the standard deviation of the performance measures indicates both models provide consistent results. 

6. Discussion 

6.1. Research Questions  

RQ1 Do classes related to more requirements as indicated by more RTLs tend to have more bugs? 

Classes related to more RTLs tend to have more bugs as moderately supported by the correlation analysis 

result of Pearson’s r of 0.409 (significant below the 0.05 level). We assume that class files in the zero or low 

groups have numerous missing RTLs. It is likely that the correlations will improve as the RTLs in these classes 

are recovered.  

RQ2 Does the type of implicit RTL recovery classification affect the relationship between RTLs and bugs? 

The recovery classification gives insights into correlations between the recovered RTLs and bugs. For the 

current project, the best relationship is shown by Type III RTLs. 

RQ3 Does including RTLs influence the bug prediction model performance?  

The explanatory power of the model with RTLs is slightly better than the model without RTLs, but the 

difference is insignificant. However, the model without RTLs has a slightly better predictive power than the 

model with RTLs. These results suggest that including RTLs in the bug prediction model does not affect the 

performance, at least for the current project. 

6.2. Usage of Findings 

  Establishing RTLs explicitly helps trace the code from the class files to the requirements, improving the 

efficiency of fixing bugs. Moreover, engineers should be able to allocate their resources more effectively as it 

should be intuitive that class files with more RTLs have more bugs than class files with fewer RTLs. The 

proposed RTL recovery classification approach groups the class files based on the existence of RTLs by type to 

confirm which groups are in endangered states and whether they are maintained easily. Our findings indicate 

that software engineers should be aware of the maximum cyclomatic complexity of class files in a development 

because this will lead to bug-prone class files. 

6.3. Threats to Validity 

External Validity: Because the analysis results and current prediction model cannot be generalized beyond the 

specific software used in the experiment, validation using other software projects is necessary. 

Internal Validity: Determining a strong relationship between RTLs and bugs is challenging. We suspect that 

the established RTLs are incomplete or missing for the current project.  

Statistical Validity: All the results from the analysis and experimental study, including the performance of the 

bug prediction model, are significant below the 0.05 level. 

7. Related Works 

A previous study demonstrated that crosscutting concerns do cause defects by examining three small-sized to 

medium-sized Java®  open-source projects [6]. On the other hand, our work focuses on analyzing tangling 

concerns indirectly. [6] suggested a method to realize software reliability by modularizing crosscutting concerns, 

whereas our work suggests that software developers establish RTLs, which are used to predict bugs, to estimate 

the maintenance costs. If RTLs are not established during development, we suggest using our proposed approach 

to recover implicit RTLs. 

Many works [13], [17]-[22] have examined bug prediction models using code metrics. One standard set of 

metrics is the Chidamber and Kemerer (CK) metrics suite, which is used in [17], [18], [21], [22]. The bug 

prediction models built in [13], [19], [20] used other code metrics as predictors, while [14] found that a 

predictor only performed well in the project it was originally designed. Marco D’Ambros et al. compared the 
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performance of models with CK alone, OO alone, CK + OO, and LOC alone as predictors, and found that the model 

with CK + OO metrics exhibit the best predictor performance [13]. 

8. Conclusion and Future Work 

There is a moderate correlation between RTLs and bugs. Some class files with no and low RTLs also have bugs. 

We hypothesize that this is because the actual RTL is missing or not established, which is consistent with the 

observation that bugs in these classes are highly correlated with maximum cyclomatics. Our findings suggest that 

the RTL is missing for class files with a high maximum complexity since they must implement at least one 

requirement. Hence, implementing an explicit RTL recovery tool is recommended as it can reduce the corrective 

maintenance phase for class files with many bugs. On the other hand, including RTLs in a bug prediction model 

does not affect the model performance.  

In the future, we plan to investigate which bugs in class files in g4 (Section 4) are actually due to missing links 

to strengthen our suggestions about the importance of explicit RTLs. We also plan to recover actual Type IV RTLs 

on the same software and repeat the analysis to evaluate the impact on the results. We will replicate the analysis 

for different datasets from the software as well as employ other models for bug prediction such as 

machine-learning ones. 
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