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Abstract: To reduce the cost of regression testing, we propose a test case classification methodology based 

on clustering techniques to classify test cases into effective and non-effective groups. The clustering 

strategy is based on the coverage information obtained for the earlier releases of the program under test. 

We employed two common clustering algorithms namely centroid-based and hierarchical clustering. The 

empirical study results showed the test case clustering can effectively identify effective test cases with high 

recall ratio and considerable accuracy percentage. The paper also investigates and compares the 

performance of the proposed clustering-based approach with some other factors including coverage criteria, 

construction of features, and quantity of faults in the earlier releases.  
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1. Introduction 

Regression testing is an expensive yet important activity in software maintenance. In a typical regression 

testing activity, a software tester endeavors exposing newly introduced or even hidden existing software 

defects. The test practitioner may focus on the portions of the program that has been affected through the 

maintenance and refactoring activities. The objective of regression testing is to ensure correctness of the 

revised program and its behavior after imposing some modifications and changes to the code. It is generally 

reported that emergence of new and re-emergence of existing but hidden faults is quite common as 

software is being operated. The defects exposed during regressions testing are mainly observed through 

two sources: 1) new faults introduced by the modified or added code, and 2) already exiting but hidden 

faults which have remained unexposed during testing stages performed for earlier releases but revealed for 

the new release. 

A typical regression testing procedure relies on re-executing all or portion of test cases devised for the 

program under test. A major problem is the cost associated with re-executing a large test suite. It has been 

reported that the cost of regression testing is as much as two thirds of the overall software life cycle [1]. 

Therefore, a better and wiser selection of regression tests is desirable to 1) select proper test cases, 2) 

search for the most cost-effective execution order of selected test cases, and 3) minimize the set of relevant 

test cases that can be utilized to exercise a newly released version. 

This paper proposes classifying test cases into two groups using clustering techniques. The idea is to 

identify and focus only on effected test cases and thus avoid the needs for re-executing non-effected test 

cases. When tests cases are clustered into two groups, the test cases in the same group are more similar to 

each other (in some sense). Therefore, the cluster that contains previously failing test cases, should be given 
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higher priority of execution. The test case clustering when applied to regression testing can reduce the cost 

of regression testing substantially [2]. 

From a statistical point of view, the purpose of cluster analysis is to group a set of objects such that the 

objects clustered in the same group or cluster are more similar to each other than to those in the other 

groups or clusters [3]. In practice, there are four categories of clustering techniques, two of which, namely, 

connectivity-based and centroid-based clustering are suitable for the regression testing problem. More 

specifically, we apply k-means and hierarchical algorithms to cluster test cases. The k-means algorithm aims 

to partition n observations into k clusters in which each observation belongs to the cluster with the nearest 

mean [4], while the core idea of hierarchical clustering algorithm is to keep objects that are more related to 

nearby objects together than to objects which are farther away [5], [6]. The contributions of this paper are 

as follows:  

 Introduce a test case clustering-based approach for reducing the cost of regression testing;  

 Adopt k-means and hierarchical clustering algorithms with test cases’ profile information to effectively 

cluster test cases;  

 Evaluate the performance of the proposed technique when a number of factors pertinent to source 

code coverage, feature construction, and quantity of faults. 

The rest of this paper is organized as follows: Section 2 describes the background knowledge of 

regression testing, and reviews the techniques and algorithms that are referred to in this paper. Section 3 

formulates the research problem we aim to address. In Section 4, we evaluate our technique based on a 

number of experiments. Section 5 provides further discussion. Section 6 presents threats to validity. Section 

7 concludes our study and discusses possible future research directions. 

2. Background 

2.1. Regression Testing 

There exist relatively a great number of regression testing techniques such as prioritization-based test 

case execution, test case selection, and test suite minimization. Various techniques have been proposed to 

prioritize test cases for regression testing [7]-[10]. The general test case prioritization approach follows 

two basic key ideas: 1) the utilization of greedy search algorithms with its aims at ranking test cases in a 

descending order with the hope of detecting newly injected faults in earlier stages of regression testing, and 

2) the heuristic-based search approaches to expose remaining and newly introduced faults with the 

minimum number of test cases selected and to be exercised. Regardless of which search strategy is used, the 

existing search-based approaches fall short to determine adequacy criteria for regression testing. More 

precisely, the tester may not be aware when a regression testing process has reached its goal and the testing 

is adequate enough. Therefore, it is likely that the test practitioner re-run the entire test suite for the newly 

released version of software system. 

The selection-based regression testing techniques intend to determine a subset of a test suit from the 

previously released software by highlighting affected portions of the code, which have the potential to 

induce errors. A typical selection technique consists of two major activities: 1) highlight the changed 

portions of the code, and 2) select test cases which are likely to detect bugs caused by the affected and 

changed parts. It has widely been reported that use of this technique can reduce the cost of regression 

testing [11]-[13]. However, several surveys and studies show that very few software industries deploy 

systematic test selection strategies in their testing activities [14]. 

Test suit minimization techniques focus on identifying redundant test cases and avoiding their execution 

with the objective of reducing test suite size and thus reducing the time and effort needed to perform 

regression test. There exist some research grounded on the assumption that the validation of a specific 
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requirement can be satisfied by a single test case [15], [16]. However, in practice this assumption is not true 

because of the complex characteristic of software system, especially for some functional requirements. 

2.2. Clustering 

As a major approach in data mining and a common technique in statistical data analysis, the most 

prominent model of clustering algorithms could be categorized into four models: connectivity-based 

clustering, centroid-based clustering, distribution-based clustering, and density-based clustering. In this 

section we briefly review two of them, which fit in the regression testing problem very well.  

1) Centroid-based Clustering: In centroid-based clustering, clusters are represented by a central vector. 

k-means is one of the simplest yet most popular centroid-based algorithms that are widely used to 

cluster a set of data points. It is easy to implement and apply this technique even on large data sets and 

therefore the k-mean clustering technique has been successfully applied in various areas, ranging from 

statistics, data mining, and information technology [3] [4]. Given a set of observations (x1, x2 , ..., xn), 

where each observation is a d-dimensional real vector, k-means clustering aims to partition the n 

observations into k sets S = {S1, S2, ..., Sk}, with the objective of minimizing the within cluster sum of 

squares : 

1

|| ||
k

j xi Sj

xi uj
 
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where uj is the mean of cluster Sj. A typical k-means clustering algorithm consists of the following basic 

steps:  

• Initializing: Place k points into the space to represent the centroid of each group; 

• Clustering: Assign each object to the group that has the closest centroid; 

• Updating: Update the centroid of each group; 

• Repeating: Repeat clustering until the termination conditions are satisfied. 

2) Hierarchical Clustering: In data mining, hierarchical clustering is a method of cluster analysis, which 

seeks to build a hierarchy of clusters. A simple and common strategy for hierarchical clustering 

generally adopts a bottom up approach [5] [6], so-called agglomerative model, where each observation 

starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. Usually the 

distance between two clusters A and B is measured as the mean distance: 
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where d is the Euclidean distance. A typical agglomerative clustering algorithm consists of the following 

basic steps: 

• Assigning: build clusters for each item, so that if there are N items, N clusters are constructed, each 

containing just one item. Let the distances (similarities) between the clusters equal the distances between 

the items they contain; 

• Merging: Find the closest (most similar) pair of clusters and merge them into a single cluster, so the 

quantity of clusters is reduced by one in each iteration; 

• Repeating: Repeat steps 2 (the merging step) until all items are clustered into a single cluster of size N. 

The output of the clustering technique is a tree-like structure in which each node represents a cluster. 

3. Methodology 
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3.1. The Problem Formulation 

 
Fig. 1. The proposed clustering-based approach for regression testing. 

 

Suppose there are two consecutive versions released for a given program by fixing the previous faulty 

statements and updating/changing some executable statements. Given a set of test cases, we aim at 

classifying each test case into one of the two groups: effective and non-effective test cases. It is our goal to 

determine effective test cases, exercise only the effective test cases and avoid non-effective test cases and 

thus minimize the number of test cases that need to be executed for the newly released program. To ease 

the presentation, let us define a number of terminologies: 

• P is the program under test. 

• P’ is the modified version of P. 

• T = {tc1, tc2, ..., tcn } is a suit of n test cases for P. 

• C = {ci} is the set of statements affected in P when upgraded to P’ where 1 ≤ i ≤ #loc where loc is the 

line of codes. 

• TE is a subset of T, which contains effective test cases. 

• TN is a subset of T, which includes non-effective test cases. 

As shown in Figure 1, the basic idea of regression test is to re-run test cases in T to test P’. In terms of the 

terminologies we just developed, we define test case classification when applied to regression testing as: 

Given a program P and its new release P’, and a suit of test cases T, initially developed for testing P and will be 

reused for testing P’; A clustering-based test case classification aims at dividing T into two subsets, i.e. TE and 

TN such that every defect exposed when P’ is executed with T is also detected when P’ is executed with TE. 

3.2. The Algorithms 

The approach employs Euclidean distance metric along with code coverage information to measure the 

similarities/dissimilarities between two test cases. Code coverage is a measure used in software structure 

testing to determine the adequacy of testing. The code coverage based on program statements is the 

simplest form of this adequacy criterion, which aims at checking whether each executable statement in a 

given program has been exercised. In the proposed technique, using the binary numeric values 1 and 0 to 

represent covered/not covered statement; it is possible transform the representation of coverage of 

statements by each test case to a real value vector. If the Euclidean distance between the vector 

representations of two test cases is zero then the two test cases are seemingly similar. Similarly, if the 

Euclidean distance value obtained is some non-zero value, we may assume that the two test cases are 

different. It is important to note that the magnitude of the Euclidean distance may reflect the significance 

differences between two test cases and thus their code coverage. A large Euclidean distance indicates that 

the difference between two test cases is significant. Algorithm 1 and Algorithm 2 describe the procedure of 

the proposed technique when k-means and hierarchical clustering algorithms are adopted, respectively. 
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Table 1. k-Means Clustering-Based Test Case Classification 

Algorithm 1 k-Means clustering-based test case classification (KMTC). 

Require: T 
Ensure: TE, TN 
1: Initialize TE, TN 
2: Compute meanTE, meanTN 
3: while meanTE, meanTN changed do 
4:  for each tci in T do 
5:    disTE=Dis(tci,meanTE) 
6:    disTN=Dis(tci, meanTN)   
7:    if(disTE> disTN) 
8:      TE = TE ∨ {tci} 
9:    else 
10:     TN = TN ∨ {tci} 
11:   end if 
12:  end for 
13: Update meanTE, meanTN 
14: end while 
 

 

Table 2. Hierarchical Clustering-Based Test Case Classification  

Algorithm 2: Hierarchical clustering-based test case classification (HBTC). 

Require: T 
Ensure: TE, TN 
1:  C={} 
2:  for each tci in T do 
3:    Build a cluster ci for tci 
4:    C=C ∨ {ci} 
5:  end for 
6:  while there are more than two clusters do 
7:    Find the closest pair of clusters  
8:    Merge the pair into one cluster  
9:    Remove the pair of clusters from C 
10:   Add the new cluster into C 
11:  end while 
12:  ci = the cluster which contains the previous failing test cases  
13:  TE=ci 
14:  TN=T/TE 

 
Fig. 2. Results of hierarchical clustering. 

 

3.3. An Illustrative Example 

In order to have a better insight of the proposed technique, we present an illustrative example. The code 

snippet given in Table 3 implements a class to compute sum of the abstract values of two values. Since the 
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input numbers could be either double or integer, an override method is implemented which can take 

different input types. The code is composed of 13 lines with one class AbsSum along with two methods. A 

fault is injected on line 11. Eight test cases are devised for the purpose of testing the class and its 

functionality, and the coverage profile is shown in Table 1 where  “−“ means non-covered, and ”√” 

indicates the underlying line is covered.  

 

Table 3. An Illustrative Example 

  TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 

a 

b 

-1 

-2 

-1.5 

-3.5 

-1.5 

3.5 

-3 

-4 

1 

2 

3 

4 

1.5 

2.5 

1 

-1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

public class{ 

  public int getAbsSum(int a, int b){ 

    if(a<0)  

      a=-a; 

    if(b<0)  

      b=-b; 

    return a+b;} 

  public int getAbsSum(double a, double b){ 

    if(a<0)  

      a=-a; 

    if(b<-2)  

      b=-b; 

    return a+b;}} 

√ 

√ 

√ 

√ 

√ 

√ 

√ 
− 
− 
− 
− 
− 
− 

√ 
− 
− 
− 
− 
− 
− 

√ 

√ 

√ 

√ 

√ 

√ 

√ 
− 
− 
− 
− 
− 
− 

√ 

√ 

√ 

√ 
− 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 
− 
− 
− 
− 
− 
− 

√ 

√ 

√ 
− 

√ 
− 

√ 
− 
− 
− 
− 
− 
− 

√ 

√ 

√ 
− 

√ 
− 

√ 
− 
− 
− 
− 
− 
− 

√ 
− 
− 
− 
− 
− 
− 

√ 

√ 
− 

√ 
− 

√ 

√ 

√ 

√ 
− 

√ 

√ 

√ 
− 
− 
− 
− 
− 
− 

  P F P P P P P P 

 
Machine learning algorithms often involve building vectors, in which intermediate data are held for 

further processes. Moreover, the vectors represent a high-dimensional space and hold values for possible 

features that have been taken into account while performing the classification. We simply use binary value 0 

or 1 for the purpose of building read value vectors. Table 3 shows the vectors representing each test case. 

By calling Algorithms 1 and 2, we obtain the classification results. The k-means clustering divides the test 

cases into two sets, {1, 4, 5, 6, 8} and {2, 3, 7}, labeled as 1 and 2. The previously failing test cases fall into 

cluster 2. Therefore, we label all the test cases in cluster 2 as effective test cases. When performing 

regression testing, the test cases in this cluster will be re-executed. Similarly, cluster 1 holds non-effective 

test cases. Fig. 2 depicts the results of hierarchical clustering.  As shown in Figure 2,, the results of 

hierarchical clustering and k-means clustering are consistent.  

4. Experimental Study 

4.1. Subject Programs 

Table 4 lists the subject programs used for the experimentation. We obtained these extensively used 

modest sized Java programs, including Nanoxml, Jtopas, Jmeter, XML-security, and ant from the Software 

Infrastructure Repository [17]. The first two programs are TSL (Test Specification Language) test suits, and 

the last three are based on Junit test framework. Nanoxml is an XML parser for Java. Jtopas is a small Java 

library for tokenizing and parsing texts. Jmeter is a Java desktop designed to load test functional behavior 

and measure performance. XML-security library includes a mature digital signature and encryption 

implementation. The ant program is a Java library and command line tool whose mission is to drive 

processes described in build files as targets and extension points dependent upon each other. Table 4 lists 

the number of versions for each program, the number of class files in the most recent version, the number 
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of lines of statements in the most recent version, and the number of test cases available for the most recent 

version.  

Table 4. Subject Programs. LOC: Lines of Codes, NC: Number of Classes, NT: Number of Test Cases, NV: Number of 
Versions 

Program Description NV NC LOC NT  

NanoXML XML parser 6 26 7,646 216 

Jtopas XML encryption 3 50 5,400  126 

Jmeter Text parser 6 389 43,400  78 

XML-security Load tester 4 143 21,613  83 

Ant Text parser 9 627 85,400  877 

 

4.2. Experimental Setup 

To perform test case classification, we require two sets of information: coverage information and initial 

clustering data (i.e., training data). The TE includes all the failing test cases in the previous version, and the 

TN contains just one case, the virtual test case that covers no statements. We obtained coverage information 

by running test cases on the instrumented subject programs. We instrumented each program by inserting 

print statement into each block to get the converge information. The coverage information obtained for the 

original program was then used to cluster current version’s test cases.  

4.3. Evaluation Metric 

In the field of statistics and for the classification purposes, four key terms including true positives (tp), 

true negatives (tn), false positives (fp), and false negatives (fn) are usually computed for comparing the 

results and assessing the performance of the classifier utilized. The terms positive and negative refer to the 

classifier’s prediction, also known as the expectation, and the terms true and false refer to whether that 

prediction corresponds to the external judgment, also known as the observation [18]. These terms and their 

associations are illustrated in Table 5 for classification of test cases. 

 

Table 5. Test Cases Classification 

 Truly Effective True Non-effective 

Predicted Effective tp fp 
Predicted Non-Effective fn tn 

 

Accordingly, three major measurement metrics, i.e. accuracy, precision and recall are usually used to 

assess how well a binary classification is performed. The accuracy of a measurement system is the degree of 

closeness of measurements of a quantity to that quantity’s actual (true) value. It is the percentage of sum of 

all true positives and false negatives out of the sum of all the true positives, true negatives, false positives, 

and false negatives [18]. 

tp tn
accuracy

tp tn fp fn




  
 

The precision of a measurement system, also called as reproducibility or repeatability, is the degree to 

which the repeated measurements under unchanged conditions show the same results [18]. It is formulated 

as the fraction of the number of true positives to the sum of true positives and false positives.  

tp
precision

tp fp



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The recall measurement in this context is also referred to as the true positive rate or sensitivity, is the 

ratio of true positives over the sum of true positives and false negatives or the percentage of flows in an 

application class that are correctly identified [18]. 

tp
recall

tp fn



 

4.4. Evaluation 

 
Fig. 2. The performance of the two techniques. 

 

Table 6 reports the performance of the proposed clustering-based approach for classifying regression 

tests. For k-means-based technique, the overall accuracy (73.18%) and recall (100.00%) ratios are 

considerably good. The precision is measured as 19.32% and it is not so significant when compared to the 

other two metrics. The hierarchical technique underperforms the k-means based technique; similarly the 

accuracy (53.97%) and the recall (100.00%) ratios are considerably good. The precision is measured as 

16.32%. It is important to note that we were not able get the data for ant when hierarchical technique was 

used, since the failing test cases were always assigned into different clusters. Boxplots in Figure 2 

demonstrate and compare the distribution of accuracy and recall for k-means and the hierarchical 

technique. 

 

Table 6 The Performance of the Proposed Techniques 

 KMTC HTC 

Accuracy Precision Recall Accuracy Precision Recall 

nanoXML-V2 

V3 

V4 

V5 

78.50% 

63.89% 

70.37% 

81.94% 

32.35% 

17.89% 

30.34% 

22.00% 

100% 

100% 

100% 

100% 

53.52% 

35.78% 

40.37% 

49.21% 

11.23% 

11.96% 

10.34% 

13.83% 

100% 

100% 

100% 

100% 

Jtopas-V2 

V3 

66.67% 

59.52% 

16.00% 

15.00% 

100% 

100% 

66.67% 

59.52% 

16.00% 

15.00% 

100% 

100% 

Jemeter-V2 

V3 

V4 

V5 

V6 

82.05% 

73.08% 

76.92% 

60.26% 

84.62% 

33.33% 

22.22% 

28.00% 

20.51% 

42.86% 

100% 

100% 

100% 

100% 

100% 

63.89% 

73.08% 

76.92% 

60.26% 

84.62% 

17.89% 

22.22% 

28.00% 

20.51% 

42.86% 

100% 

100% 

100% 

100% 

100% 

XMLsec-V2 

V3 

V4 

V5 

66.27% 

62.65% 

46.99% 

59.04% 

6.67% 

11.43% 

6.68% 

10.53% 

100% 

100% 

100% 

100% 

66.27% 

62.65% 

46.99% 

59.04% 

6.67% 

11.43% 

6.68% 

10.53% 

100% 

100% 

100% 

100% 
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ant-V2 

V3 

V4 

V5 

91.33% 

90.88% 

88.71% 

86.77% 

12.64% 

14.89% 

16.81% 

7.20% 

100% 

100% 

100% 

100% 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 
NA 
NA 
NA 

Aveage 73.18% 19.32% 100% 53.97% 16.32% 100% 

 

For the five subjects programs, the recall ratio is 100% demonstrating that we can effectively identify 

almost all of the actual effective test cases. In other words, the value 100% indicates that all test cases, 

which can expose a fault, were classified into the effective category by our approach. High accuracy 

indicates that for most cases, both the actual effective and actual non-effective test cases are classified 

properly and thus minimizing the cost of regression testing by not running non-effective test cases. 

5. Results 

5.1. Coverage Criteria 

The proposed technique uses coverage information to compute the distance between two test cases. In 

practice, there are three widely used coverage criteria: function, statement, and block coverage. A research 

question we would like to investigate is whether achieving a certain level of different coverage criteria will 

have any significant impact on the performance of our proposed technique? The answer to this question 

will help us decide which coverage criterion to utilize. To address this question, we conduct further 

experiments. We set up the experiments following the same steps as discussed in Section 4 base on k-means 

clustering except that the coverage information is measured for function and block criteria in addition to 

the statement coverage. 

 

Table 7. Performance When the Coverage Criteria are Under Control 

Feature Accuracy Precision Recall 

Statement 73.18% 19.32% 100% 

Block 72.25% 18.59% 100% 

Method 58.70% 14.36% 100% 

 

Table 7 demonstrates the effect of different coverage criteria on the performance of our approach. The 

data is presented in term of the means of overall observations for all the subjects programs. We noticed that 

different coverage criteria have different impact on the performance of technique. The block coverage 

criterion is comparable to the statement coverage, where the differences are around 1% on both accuracy 

and precision. However, both of these coverage criteria are more effective than the function-level coverage 

criterion, and the difference is significant, i.e. 4% on both accuracy and precision. 

5.2. The Choice of Features 

In order to adapt clustering technique, features are defined according to the numerical representation 

used in the statements. In our recent study and in a similar scenario [19] [20], we developed three feature 

construction methods, called Single (1-mer), Pairwise (2-mer), and 3-Ways (3-mer). The set of pairwise 

features contained all the possible pairwise sequences of statements. The output for each test case is a 

N^2-dimensional vector where N is the total number of statements in the test suits. Similar to the pairwise 

feature construction, 3-ways check the coverage of each generated 3-way permutation of all the statements. 

The output for each test case is an N^3-dimensional vector. An interesting question arises is whether the 

way of constructing feature have any influence on the effectiveness of the technique? We developed some 

Java utility programs to extract the values of each features from the profile files of test output, and 

re-conducted the experimental study based on one of the subject program, i.e. NanoXML using K-means 
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clustering. 

 

 
Fig. 3. Bar plots for single, pairwise and 3-mer features.     Fig. 4. KMTC for different number of faults. 

 

Table 8. Performance When the Way to Construct Feature is Under Control 

Feature Accuracy Precision Recall 

single 73.67% 24.66% 100% 

pairwise 74.24% 19.99% 100% 

3-way 69.62% 17.73% 100% 

 

The experiments results are shown in Table 8 and Figure 3 where data are presented in terms of the 

means. The performance of single and pairwise are competitive, and the difference of precision and 

accuracy is no more than 1%, which are negligible. However, both outperform the 3-way case by 4% to 5% 

in accuracy and by 2% to 8% in precision. 

5.3. The Quantity of Faults  

 
Table 9. Performance When the Number of Faults is Under Control 

Quantity  Accuracy Precision Recall 

1 73.67% 25.66% 100% 

2 68.11% 22.74% 100% 

3 69.72% 22.91% 100% 

4 59.30% 16.92% 100% 

5 51.21% 14.65% 100% 

 

The faults in the subjects programs are hand-seeded by other researchers and only a single fault exists in 

any version. However, in practice there are multiple faulty statements in the program under test causing a 

large number of test cases failing [21]. It is important to investigate the performance of the proposed 

technique when multiple faults are in present. We instrumented each program with its faults and controlled 

the activation of the faults incorporated using preprocessors. We repeatedly activated a desired number of 

faults incorporated in each program. More specifically, we generated faulty versions with k faults by 

activating simultaneously n instrumented faults. 

We re-conducted the experimental study based on one of the subject program, i.e. nanoXML, using 

K-means clustering. The visualization analysis illustrated in Table 9 and Figure 4 show that overall the 

accuracy and recall decrease with the increase of quantity of faults. 
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6. Threats to Validity 

Internal Threats relates to the approximate truth about inferences, cause-effect, and confounding 

relationships among variables as well as the reliability and correctness of the tools utilized in the 

experiment and the intermediate processes employed while conducting the experiment. In order to get the 

profile, i.e., coverage information, we instrumented each program in the statement level manually instead of 

using any tools. Furthermore, we instrumented each block and function instead of statements to capture the 

statistics. 

External Threats relates to the generalization of the results observed through the experiments to 

larger scales. The experiments in this study are based on some mid-size Java programs containing 

hand-seeded faults. The hand-seeding faults may introduce some external threat to the validity of 

experiment. 

Construct Threats relates to metrics and measurement and whether they measure the properties that 

are to be captured. In this study, we utilized the formulas of accuracy, precision and recall to measure the 

performance of the proposed technique. All the metrics are in the view of classification. In practice, there 

might be other computation methodologies to assess the performance of regression test cases reduction. 

7. Conclusion 

We introduced a test case classification methodology based on k-means clustering to enhance 

regression testing. Based on our empirical study we came to the conclusion that the clustering based test 

case classification can partition test cases with high recall ratio and considerable accuracy percentage. The 

paper also found out that the clustering-based approach performs better when first the block coverage 

criterion is utilized, second when single statement or pairwise feature are constructed, and third the 

performance deteriorated when the number of faults increases. We also observed that for some subject 

programs failing test cases are always assigned into different clusters thus make it impossible to do binary 

clustering. One possible solution is to build more than one clusters and further experiments are needed. 
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