

A Clustering-Based Test Case Classification Technique for
Enhancing Regression Testing

Yulei Pang1*, Xiaozhen Xue2, Akbar Siami Namin2

1 Department of Mathematics, Southern Connecticut State University, New Haven, USA.
2 Department of Computer Science, Texas Tech University, Lubbock, USA.

* Corresponding author. Tel.:+1(203)392-7212; email:pangy1@southernct.edu
Manuscript submitted July 24, 2016; accepted December 23, 2016.
doi: 10.17706/jsw.12.3.153-164

Abstract: To reduce the cost of regression testing, we propose a test case classification methodology based

on clustering techniques to classify test cases into effective and non-effective groups. The clustering

strategy is based on the coverage information obtained for the earlier releases of the program under test.

We employed two common clustering algorithms namely centroid-based and hierarchical clustering. The

empirical study results showed the test case clustering can effectively identify effective test cases with high

recall ratio and considerable accuracy percentage. The paper also investigates and compares the

performance of the proposed clustering-based approach with some other factors including coverage criteria,

construction of features, and quantity of faults in the earlier releases.

Key words: Clustering, regression testing, test case classification.

1. Introduction

Regression testing is an expensive yet important activity in software maintenance. In a typical regression

testing activity, a software tester endeavors exposing newly introduced or even hidden existing software

defects. The test practitioner may focus on the portions of the program that has been affected through the

maintenance and refactoring activities. The objective of regression testing is to ensure correctness of the

revised program and its behavior after imposing some modifications and changes to the code. It is generally

reported that emergence of new and re-emergence of existing but hidden faults is quite common as

software is being operated. The defects exposed during regressions testing are mainly observed through

two sources: 1) new faults introduced by the modified or added code, and 2) already exiting but hidden

faults which have remained unexposed during testing stages performed for earlier releases but revealed for

the new release.

A typical regression testing procedure relies on re-executing all or portion of test cases devised for the

program under test. A major problem is the cost associated with re-executing a large test suite. It has been

reported that the cost of regression testing is as much as two thirds of the overall software life cycle [1].

Therefore, a better and wiser selection of regression tests is desirable to 1) select proper test cases, 2)

search for the most cost-effective execution order of selected test cases, and 3) minimize the set of relevant

test cases that can be utilized to exercise a newly released version.

This paper proposes classifying test cases into two groups using clustering techniques. The idea is to

identify and focus only on effected test cases and thus avoid the needs for re-executing non-effected test

cases. When tests cases are clustered into two groups, the test cases in the same group are more similar to

each other (in some sense). Therefore, the cluster that contains previously failing test cases, should be given

Journal of Software

153 Volume 12, Number 3, March 2017

higher priority of execution. The test case clustering when applied to regression testing can reduce the cost

of regression testing substantially [2].

From a statistical point of view, the purpose of cluster analysis is to group a set of objects such that the

objects clustered in the same group or cluster are more similar to each other than to those in the other

groups or clusters [3]. In practice, there are four categories of clustering techniques, two of which, namely,

connectivity-based and centroid-based clustering are suitable for the regression testing problem. More

specifically, we apply k-means and hierarchical algorithms to cluster test cases. The k-means algorithm aims

to partition n observations into k clusters in which each observation belongs to the cluster with the nearest

mean [4], while the core idea of hierarchical clustering algorithm is to keep objects that are more related to

nearby objects together than to objects which are farther away [5], [6]. The contributions of this paper are

as follows:

 Introduce a test case clustering-based approach for reducing the cost of regression testing;

 Adopt k-means and hierarchical clustering algorithms with test cases’ profile information to effectively

cluster test cases;

 Evaluate the performance of the proposed technique when a number of factors pertinent to source

code coverage, feature construction, and quantity of faults.

The rest of this paper is organized as follows: Section 2 describes the background knowledge of

regression testing, and reviews the techniques and algorithms that are referred to in this paper. Section 3

formulates the research problem we aim to address. In Section 4, we evaluate our technique based on a

number of experiments. Section 5 provides further discussion. Section 6 presents threats to validity. Section

7 concludes our study and discusses possible future research directions.

2. Background

2.1. Regression Testing

There exist relatively a great number of regression testing techniques such as prioritization-based test

case execution, test case selection, and test suite minimization. Various techniques have been proposed to

prioritize test cases for regression testing [7]-[10]. The general test case prioritization approach follows

two basic key ideas: 1) the utilization of greedy search algorithms with its aims at ranking test cases in a

descending order with the hope of detecting newly injected faults in earlier stages of regression testing, and

2) the heuristic-based search approaches to expose remaining and newly introduced faults with the

minimum number of test cases selected and to be exercised. Regardless of which search strategy is used, the

existing search-based approaches fall short to determine adequacy criteria for regression testing. More

precisely, the tester may not be aware when a regression testing process has reached its goal and the testing

is adequate enough. Therefore, it is likely that the test practitioner re-run the entire test suite for the newly

released version of software system.

The selection-based regression testing techniques intend to determine a subset of a test suit from the

previously released software by highlighting affected portions of the code, which have the potential to

induce errors. A typical selection technique consists of two major activities: 1) highlight the changed

portions of the code, and 2) select test cases which are likely to detect bugs caused by the affected and

changed parts. It has widely been reported that use of this technique can reduce the cost of regression

testing [11]-[13]. However, several surveys and studies show that very few software industries deploy

systematic test selection strategies in their testing activities [14].

Test suit minimization techniques focus on identifying redundant test cases and avoiding their execution

with the objective of reducing test suite size and thus reducing the time and effort needed to perform

regression test. There exist some research grounded on the assumption that the validation of a specific

Journal of Software

154 Volume 12, Number 3, March 2017

requirement can be satisfied by a single test case [15], [16]. However, in practice this assumption is not true

because of the complex characteristic of software system, especially for some functional requirements.

2.2. Clustering

As a major approach in data mining and a common technique in statistical data analysis, the most

prominent model of clustering algorithms could be categorized into four models: connectivity-based

clustering, centroid-based clustering, distribution-based clustering, and density-based clustering. In this

section we briefly review two of them, which fit in the regression testing problem very well.

1) Centroid-based Clustering: In centroid-based clustering, clusters are represented by a central vector.

k-means is one of the simplest yet most popular centroid-based algorithms that are widely used to

cluster a set of data points. It is easy to implement and apply this technique even on large data sets and

therefore the k-mean clustering technique has been successfully applied in various areas, ranging from

statistics, data mining, and information technology [3] [4]. Given a set of observations (x1, x2 , ..., xn),

where each observation is a d-dimensional real vector, k-means clustering aims to partition the n

observations into k sets S = {S1, S2, ..., Sk}, with the objective of minimizing the within cluster sum of

squares :

1

|| ||
k

j xi Sj

xi uj
 



where uj is the mean of cluster Sj. A typical k-means clustering algorithm consists of the following basic

steps:

• Initializing: Place k points into the space to represent the centroid of each group;

• Clustering: Assign each object to the group that has the closest centroid;

• Updating: Update the centroid of each group;

• Repeating: Repeat clustering until the termination conditions are satisfied.

2) Hierarchical Clustering: In data mining, hierarchical clustering is a method of cluster analysis, which

seeks to build a hierarchy of clusters. A simple and common strategy for hierarchical clustering

generally adopts a bottom up approach [5] [6], so-called agglomerative model, where each observation

starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. Usually the

distance between two clusters A and B is measured as the mean distance:

1
(,)

|| || || || x A x B

d x y
A B  



2(,) ()
i

d x y xi yj 

where d is the Euclidean distance. A typical agglomerative clustering algorithm consists of the following

basic steps:

• Assigning: build clusters for each item, so that if there are N items, N clusters are constructed, each

containing just one item. Let the distances (similarities) between the clusters equal the distances between

the items they contain;

• Merging: Find the closest (most similar) pair of clusters and merge them into a single cluster, so the

quantity of clusters is reduced by one in each iteration;

• Repeating: Repeat steps 2 (the merging step) until all items are clustered into a single cluster of size N.

The output of the clustering technique is a tree-like structure in which each node represents a cluster.

3. Methodology

Journal of Software

155 Volume 12, Number 3, March 2017

3.1. The Problem Formulation

Fig. 1. The proposed clustering-based approach for regression testing.

Suppose there are two consecutive versions released for a given program by fixing the previous faulty

statements and updating/changing some executable statements. Given a set of test cases, we aim at

classifying each test case into one of the two groups: effective and non-effective test cases. It is our goal to

determine effective test cases, exercise only the effective test cases and avoid non-effective test cases and

thus minimize the number of test cases that need to be executed for the newly released program. To ease

the presentation, let us define a number of terminologies:

• P is the program under test.

• P’ is the modified version of P.

• T = {tc1, tc2, ..., tcn } is a suit of n test cases for P.

• C = {ci} is the set of statements affected in P when upgraded to P’ where 1 ≤ i ≤ #loc where loc is the

line of codes.

• TE is a subset of T, which contains effective test cases.

• TN is a subset of T, which includes non-effective test cases.

As shown in Figure 1, the basic idea of regression test is to re-run test cases in T to test P’. In terms of the

terminologies we just developed, we define test case classification when applied to regression testing as:

Given a program P and its new release P’, and a suit of test cases T, initially developed for testing P and will be

reused for testing P’; A clustering-based test case classification aims at dividing T into two subsets, i.e. TE and

TN such that every defect exposed when P’ is executed with T is also detected when P’ is executed with TE.

3.2. The Algorithms

The approach employs Euclidean distance metric along with code coverage information to measure the

similarities/dissimilarities between two test cases. Code coverage is a measure used in software structure

testing to determine the adequacy of testing. The code coverage based on program statements is the

simplest form of this adequacy criterion, which aims at checking whether each executable statement in a

given program has been exercised. In the proposed technique, using the binary numeric values 1 and 0 to

represent covered/not covered statement; it is possible transform the representation of coverage of

statements by each test case to a real value vector. If the Euclidean distance between the vector

representations of two test cases is zero then the two test cases are seemingly similar. Similarly, if the

Euclidean distance value obtained is some non-zero value, we may assume that the two test cases are

different. It is important to note that the magnitude of the Euclidean distance may reflect the significance

differences between two test cases and thus their code coverage. A large Euclidean distance indicates that

the difference between two test cases is significant. Algorithm 1 and Algorithm 2 describe the procedure of

the proposed technique when k-means and hierarchical clustering algorithms are adopted, respectively.

Journal of Software

156 Volume 12, Number 3, March 2017

Table 1. k-Means Clustering-Based Test Case Classification

Algorithm 1 k-Means clustering-based test case classification (KMTC).

Require: T
Ensure: TE, TN
1: Initialize TE, TN
2: Compute meanTE, meanTN
3: while meanTE, meanTN changed do
4: for each tci in T do
5: disTE=Dis(tci,meanTE)
6: disTN=Dis(tci, meanTN)
7: if(disTE> disTN)
8: TE = TE ∨ {tci}
9: else
10: TN = TN ∨ {tci}
11: end if
12: end for
13: Update meanTE, meanTN
14: end while

Table 2. Hierarchical Clustering-Based Test Case Classification

Algorithm 2: Hierarchical clustering-based test case classification (HBTC).

Require: T
Ensure: TE, TN
1: C={}
2: for each tci in T do
3: Build a cluster ci for tci
4: C=C ∨ {ci}
5: end for
6: while there are more than two clusters do
7: Find the closest pair of clusters
8: Merge the pair into one cluster
9: Remove the pair of clusters from C
10: Add the new cluster into C
11: end while
12: ci = the cluster which contains the previous failing test cases
13: TE=ci
14: TN=T/TE

Fig. 2. Results of hierarchical clustering.

3.3. An Illustrative Example

In order to have a better insight of the proposed technique, we present an illustrative example. The code

snippet given in Table 3 implements a class to compute sum of the abstract values of two values. Since the

Journal of Software

157 Volume 12, Number 3, March 2017

input numbers could be either double or integer, an override method is implemented which can take

different input types. The code is composed of 13 lines with one class AbsSum along with two methods. A

fault is injected on line 11. Eight test cases are devised for the purpose of testing the class and its

functionality, and the coverage profile is shown in Table 1 where “−“ means non-covered, and ”√”

indicates the underlying line is covered.

Table 3. An Illustrative Example

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

a

b

-1

-2

-1.5

-3.5

-1.5

3.5

-3

-4

1

2

3

4

1.5

2.5

1

-1

1

2

3

4

5

6

7

8

9

10

11

12

13

public class{

 public int getAbsSum(int a, int b){

 if(a<0)

 a=-a;

 if(b<0)

 b=-b;

 return a+b;}

 public int getAbsSum(double a, double b){

 if(a<0)

 a=-a;

 if(b<-2)

 b=-b;

 return a+b;}}

√

√

√

√

√

√

√
−
−
−
−
−
−

√
−
−
−
−
−
−

√

√

√

√

√

√

√
−
−
−
−
−
−

√

√

√

√
−

√

√

√

√

√

√

√

√
−
−
−
−
−
−

√

√

√
−

√
−

√
−
−
−
−
−
−

√

√

√
−

√
−

√
−
−
−
−
−
−

√
−
−
−
−
−
−

√

√
−

√
−

√

√

√

√
−

√

√

√
−
−
−
−
−
−

 P F P P P P P P

Machine learning algorithms often involve building vectors, in which intermediate data are held for

further processes. Moreover, the vectors represent a high-dimensional space and hold values for possible

features that have been taken into account while performing the classification. We simply use binary value 0

or 1 for the purpose of building read value vectors. Table 3 shows the vectors representing each test case.

By calling Algorithms 1 and 2, we obtain the classification results. The k-means clustering divides the test

cases into two sets, {1, 4, 5, 6, 8} and {2, 3, 7}, labeled as 1 and 2. The previously failing test cases fall into

cluster 2. Therefore, we label all the test cases in cluster 2 as effective test cases. When performing

regression testing, the test cases in this cluster will be re-executed. Similarly, cluster 1 holds non-effective

test cases. Fig. 2 depicts the results of hierarchical clustering. As shown in Figure 2,, the results of

hierarchical clustering and k-means clustering are consistent.

4. Experimental Study

4.1. Subject Programs

Table 4 lists the subject programs used for the experimentation. We obtained these extensively used

modest sized Java programs, including Nanoxml, Jtopas, Jmeter, XML-security, and ant from the Software

Infrastructure Repository [17]. The first two programs are TSL (Test Specification Language) test suits, and

the last three are based on Junit test framework. Nanoxml is an XML parser for Java. Jtopas is a small Java

library for tokenizing and parsing texts. Jmeter is a Java desktop designed to load test functional behavior

and measure performance. XML-security library includes a mature digital signature and encryption

implementation. The ant program is a Java library and command line tool whose mission is to drive

processes described in build files as targets and extension points dependent upon each other. Table 4 lists

the number of versions for each program, the number of class files in the most recent version, the number

Journal of Software

158 Volume 12, Number 3, March 2017

of lines of statements in the most recent version, and the number of test cases available for the most recent

version.

Table 4. Subject Programs. LOC: Lines of Codes, NC: Number of Classes, NT: Number of Test Cases, NV: Number of
Versions

Program Description NV NC LOC NT

NanoXML XML parser 6 26 7,646 216

Jtopas XML encryption 3 50 5,400 126

Jmeter Text parser 6 389 43,400 78

XML-security Load tester 4 143 21,613 83

Ant Text parser 9 627 85,400 877

4.2. Experimental Setup

To perform test case classification, we require two sets of information: coverage information and initial

clustering data (i.e., training data). The TE includes all the failing test cases in the previous version, and the

TN contains just one case, the virtual test case that covers no statements. We obtained coverage information

by running test cases on the instrumented subject programs. We instrumented each program by inserting

print statement into each block to get the converge information. The coverage information obtained for the

original program was then used to cluster current version’s test cases.

4.3. Evaluation Metric

In the field of statistics and for the classification purposes, four key terms including true positives (tp),

true negatives (tn), false positives (fp), and false negatives (fn) are usually computed for comparing the

results and assessing the performance of the classifier utilized. The terms positive and negative refer to the

classifier’s prediction, also known as the expectation, and the terms true and false refer to whether that

prediction corresponds to the external judgment, also known as the observation [18]. These terms and their

associations are illustrated in Table 5 for classification of test cases.

Table 5. Test Cases Classification

 Truly Effective True Non-effective

Predicted Effective tp fp
Predicted Non-Effective fn tn

Accordingly, three major measurement metrics, i.e. accuracy, precision and recall are usually used to

assess how well a binary classification is performed. The accuracy of a measurement system is the degree of

closeness of measurements of a quantity to that quantity’s actual (true) value. It is the percentage of sum of

all true positives and false negatives out of the sum of all the true positives, true negatives, false positives,

and false negatives [18].

tp tn
accuracy

tp tn fp fn




  

The precision of a measurement system, also called as reproducibility or repeatability, is the degree to

which the repeated measurements under unchanged conditions show the same results [18]. It is formulated

as the fraction of the number of true positives to the sum of true positives and false positives.

tp
precision

tp fp




Journal of Software

159 Volume 12, Number 3, March 2017

The recall measurement in this context is also referred to as the true positive rate or sensitivity, is the

ratio of true positives over the sum of true positives and false negatives or the percentage of flows in an

application class that are correctly identified [18].

tp
recall

tp fn




4.4. Evaluation

Fig. 2. The performance of the two techniques.

Table 6 reports the performance of the proposed clustering-based approach for classifying regression

tests. For k-means-based technique, the overall accuracy (73.18%) and recall (100.00%) ratios are

considerably good. The precision is measured as 19.32% and it is not so significant when compared to the

other two metrics. The hierarchical technique underperforms the k-means based technique; similarly the

accuracy (53.97%) and the recall (100.00%) ratios are considerably good. The precision is measured as

16.32%. It is important to note that we were not able get the data for ant when hierarchical technique was

used, since the failing test cases were always assigned into different clusters. Boxplots in Figure 2

demonstrate and compare the distribution of accuracy and recall for k-means and the hierarchical

technique.

Table 6 The Performance of the Proposed Techniques

 KMTC HTC

Accuracy Precision Recall Accuracy Precision Recall

nanoXML-V2

V3

V4

V5

78.50%

63.89%

70.37%

81.94%

32.35%

17.89%

30.34%

22.00%

100%

100%

100%

100%

53.52%

35.78%

40.37%

49.21%

11.23%

11.96%

10.34%

13.83%

100%

100%

100%

100%

Jtopas-V2

V3

66.67%

59.52%

16.00%

15.00%

100%

100%

66.67%

59.52%

16.00%

15.00%

100%

100%

Jemeter-V2

V3

V4

V5

V6

82.05%

73.08%

76.92%

60.26%

84.62%

33.33%

22.22%

28.00%

20.51%

42.86%

100%

100%

100%

100%

100%

63.89%

73.08%

76.92%

60.26%

84.62%

17.89%

22.22%

28.00%

20.51%

42.86%

100%

100%

100%

100%

100%

XMLsec-V2

V3

V4

V5

66.27%

62.65%

46.99%

59.04%

6.67%

11.43%

6.68%

10.53%

100%

100%

100%

100%

66.27%

62.65%

46.99%

59.04%

6.67%

11.43%

6.68%

10.53%

100%

100%

100%

100%

Journal of Software

160 Volume 12, Number 3, March 2017

ant-V2

V3

V4

V5

91.33%

90.88%

88.71%

86.77%

12.64%

14.89%

16.81%

7.20%

100%

100%

100%

100%

NA

NA

NA

NA

NA

NA

NA

NA

NA
NA
NA
NA

Aveage 73.18% 19.32% 100% 53.97% 16.32% 100%

For the five subjects programs, the recall ratio is 100% demonstrating that we can effectively identify

almost all of the actual effective test cases. In other words, the value 100% indicates that all test cases,

which can expose a fault, were classified into the effective category by our approach. High accuracy

indicates that for most cases, both the actual effective and actual non-effective test cases are classified

properly and thus minimizing the cost of regression testing by not running non-effective test cases.

5. Results

5.1. Coverage Criteria

The proposed technique uses coverage information to compute the distance between two test cases. In

practice, there are three widely used coverage criteria: function, statement, and block coverage. A research

question we would like to investigate is whether achieving a certain level of different coverage criteria will

have any significant impact on the performance of our proposed technique? The answer to this question

will help us decide which coverage criterion to utilize. To address this question, we conduct further

experiments. We set up the experiments following the same steps as discussed in Section 4 base on k-means

clustering except that the coverage information is measured for function and block criteria in addition to

the statement coverage.

Table 7. Performance When the Coverage Criteria are Under Control

Feature Accuracy Precision Recall

Statement 73.18% 19.32% 100%

Block 72.25% 18.59% 100%

Method 58.70% 14.36% 100%

Table 7 demonstrates the effect of different coverage criteria on the performance of our approach. The

data is presented in term of the means of overall observations for all the subjects programs. We noticed that

different coverage criteria have different impact on the performance of technique. The block coverage

criterion is comparable to the statement coverage, where the differences are around 1% on both accuracy

and precision. However, both of these coverage criteria are more effective than the function-level coverage

criterion, and the difference is significant, i.e. 4% on both accuracy and precision.

5.2. The Choice of Features

In order to adapt clustering technique, features are defined according to the numerical representation

used in the statements. In our recent study and in a similar scenario [19] [20], we developed three feature

construction methods, called Single (1-mer), Pairwise (2-mer), and 3-Ways (3-mer). The set of pairwise

features contained all the possible pairwise sequences of statements. The output for each test case is a

N^2-dimensional vector where N is the total number of statements in the test suits. Similar to the pairwise

feature construction, 3-ways check the coverage of each generated 3-way permutation of all the statements.

The output for each test case is an N^3-dimensional vector. An interesting question arises is whether the

way of constructing feature have any influence on the effectiveness of the technique? We developed some

Java utility programs to extract the values of each features from the profile files of test output, and

re-conducted the experimental study based on one of the subject program, i.e. NanoXML using K-means

Journal of Software

161 Volume 12, Number 3, March 2017

clustering.

Fig. 3. Bar plots for single, pairwise and 3-mer features. Fig. 4. KMTC for different number of faults.

Table 8. Performance When the Way to Construct Feature is Under Control

Feature Accuracy Precision Recall

single 73.67% 24.66% 100%

pairwise 74.24% 19.99% 100%

3-way 69.62% 17.73% 100%

The experiments results are shown in Table 8 and Figure 3 where data are presented in terms of the

means. The performance of single and pairwise are competitive, and the difference of precision and

accuracy is no more than 1%, which are negligible. However, both outperform the 3-way case by 4% to 5%

in accuracy and by 2% to 8% in precision.

5.3. The Quantity of Faults

Table 9. Performance When the Number of Faults is Under Control

Quantity Accuracy Precision Recall

1 73.67% 25.66% 100%

2 68.11% 22.74% 100%

3 69.72% 22.91% 100%

4 59.30% 16.92% 100%

5 51.21% 14.65% 100%

The faults in the subjects programs are hand-seeded by other researchers and only a single fault exists in

any version. However, in practice there are multiple faulty statements in the program under test causing a

large number of test cases failing [21]. It is important to investigate the performance of the proposed

technique when multiple faults are in present. We instrumented each program with its faults and controlled

the activation of the faults incorporated using preprocessors. We repeatedly activated a desired number of

faults incorporated in each program. More specifically, we generated faulty versions with k faults by

activating simultaneously n instrumented faults.

We re-conducted the experimental study based on one of the subject program, i.e. nanoXML, using

K-means clustering. The visualization analysis illustrated in Table 9 and Figure 4 show that overall the

accuracy and recall decrease with the increase of quantity of faults.

Journal of Software

162 Volume 12, Number 3, March 2017

6. Threats to Validity

Internal Threats relates to the approximate truth about inferences, cause-effect, and confounding

relationships among variables as well as the reliability and correctness of the tools utilized in the

experiment and the intermediate processes employed while conducting the experiment. In order to get the

profile, i.e., coverage information, we instrumented each program in the statement level manually instead of

using any tools. Furthermore, we instrumented each block and function instead of statements to capture the

statistics.

External Threats relates to the generalization of the results observed through the experiments to

larger scales. The experiments in this study are based on some mid-size Java programs containing

hand-seeded faults. The hand-seeding faults may introduce some external threat to the validity of

experiment.

Construct Threats relates to metrics and measurement and whether they measure the properties that

are to be captured. In this study, we utilized the formulas of accuracy, precision and recall to measure the

performance of the proposed technique. All the metrics are in the view of classification. In practice, there

might be other computation methodologies to assess the performance of regression test cases reduction.

7. Conclusion

We introduced a test case classification methodology based on k-means clustering to enhance

regression testing. Based on our empirical study we came to the conclusion that the clustering based test

case classification can partition test cases with high recall ratio and considerable accuracy percentage. The

paper also found out that the clustering-based approach performs better when first the block coverage

criterion is utilized, second when single statement or pairwise feature are constructed, and third the

performance deteriorated when the number of faults increases. We also observed that for some subject

programs failing test cases are always assigned into different clusters thus make it impossible to do binary

clustering. One possible solution is to build more than one clusters and further experiments are needed.

References

[1] Pressman, R. (2002). Software Engineering: A Practitioner Approach. McGraw-Hill, New York.

[2] Pang, Y., Xue, X., & Namin, A. S. (2013). Identifying effective test cases through k-means clustering for

enhancing regression testing. Proceedings of the 2013 12th International Conference on,Machine

Learning and Applications (pp. 78–83).

[3] Anderberg, M. R. (1973). Cluster analysis for applications. DTIC Document.

[4] J. MacQueen., et al. (1967). Some methods for classification and analysis of multivariate observations.

Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability.

[5] Sibson, R. (1973). Slink: An optimally efficient algorithm for the single-link cluster method. The

Computer Journal, 16(1), 30–34.

[6] Defays, D. (1977). An efficient algorithm for a complete link method. The Computer Journal, 20(4), 364–

366.

[7] Mirarab, S., & Tahvildari, L. (2008). An empirical study on Bayesian network-based approach for test

case prioritization.

[8] Elbaum, S. G., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization: A family of empirical

studies. IEEE Trans. Software Eng., 28(2), 159–182.

[9] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases for regression testing.

IEEE Trans. Software Eng., 27(10), 929–948.

[10] ASE 2009. Proceedings of the 24th IEEE/ACM International Conference on Automated Software

Journal of Software

163 Volume 12, Number 3, March 2017

Engineering.

[11] Harrold, M. J., Rosenblum, D. S., Rothermel, G., & Weyuker, E. J. (2001). Empirical studies of a prediction

model for regression test selection. IEEE Trans. Software Eng., 27(3), 248–263.

[12] (2009). Proceedings of the 25th IEEE International Conference on Software Maintenanc.

[13] Rothermel, G., & Harrold, M. J. (1998). Empirical studies of a safe regression test selection technique.

IEEE Trans. Software Eng., 24(6), 401–419.

[14] Travassos, G. H., Maldonado, J. C., & Wohlin, C. (2006). Proceedings of the International Symposium on

Empirical Software Engineerin.

[15] Marre, M., & Bertolino, A. (2003). Using spanning sets for coverage testing. IEEE Trans. Software Eng.,

29(11), 974–984.

[16] Ernst, M. D., & Jensen, T. P. (2005). Proceedingsofthe 2005 ACM Sigplan-Sigsoft Workshop on Program

Analysis for Software Tools and Engineering.

[17] Do, H., Elbaum, S. G., & Rothermel, G. (2005). Supporting controlled experimentation with testing

techniques: An infrastructure and its potential impact. Empirical Software Engineering: An

International Journal, 10(4), 405–435.

[18] Olson, D. L., & Delen, D. (2008). Advanced data mining techniques.

[19] Xue, X., Pang, Y. & Namin, A. S. (2014). Feature selections for effectively localizing faulty events in GUI

applications. Proceedings of the 2014 13th International Conference on Machine Learning and

Applications.

[20] Xue, X., Pang, Y. & Namin, A. S. (2014). Trimming test suites with coincidentally correct test cases for

enhancing fault localizations. Proceedings of the 2014 IEEE 38th Annual. Computer Software and

Applications Conference.

[21] Xue, X., & Namin, A. S. (2013). How significant is the effect of fault interactions on coverage-based fault

localizations?. Proceedings of the 2013 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement.

Yulei Pang received her M.S. degree in statistics and her Ph.D. degree in mathematics from Texas

Tech University in 2012 and 2014, respectively. She is currently working as an assistant

professor in the Department of Mathematics at Southern Connecticut State University, US. Her

current research interest includes applied mathematics and applied statistics.

Xiaozhen Xue received his B.S. and M.E. degree in software engineering from Beijing Jiaotong

University, China, in 2007 and 2010, respectively. He obtained his Ph.D. degree in computer

science from Texas Tech University in 2014. He is currently a software engineer in Amazon, Inc.

His current research interest includes software engineering and cyber security.

Akbar Siami Namin received his Ph.D. degree from the Department of Computer Science at the

University of Western Ontario, London, Canada in 2009. Currently He is an associate professor in

the Department of Computer Science at Texas Tech University. His research interests are

Software engineering, testing, and program analysis, cyber security and secure programming.

Journal of Software

164 Volume 12, Number 3, March 2017

