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Abstract: The development of adequate scientific software within the framework of a research project 

plays a key role in the success of the research itself. However, not all research teams complete the 

development of a specific software within the deadlines and with the necessary quality standards. These 

difficulties have been studied for a lot of years and we can conclude that these applications are difficult to 

create because defining their requirements is a complex task and usually developers are not fully skilled in 

construction of these. The following systematic literature review characterizes this kind of development 

and exposes its difficulties. A number of methodological solutions as well as a series of widespread 

practices are presented, aimed at improving the development of such kinds of software. A combination of 

elements is offered which would allow software development teams to choose the most adequate solution 

according to their specific requirements. The research results show the difference between engineering and 

scientific disciplines from the type of problems that it solves. Because of this, it is difficult to use a software 

development technique to work well in both cases and for this reason, the proposals are very useful for the 

future of scientific software development.  
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1. Introduction 

The development of scientific or research software is of fundamental importance for the success of 

projects that require them. It is understood that a scientific software is an application constructed within 

the framework of scientific research [1]. 

The difficulties related to the construction of this kind of software have been studied for more than ten 

years [2], [3]. It can be concluded that these applications are difficult to create because defining their 

requirements is a complex task, and in general, the developers are not necessarily experts in their 

construction. Although there are practices in the field of Software Engineering that can be applied as help, 

they have been little adopted for the construction of scientific software [4], in part because the scientists 

who lead the research do not have formal training in those matters. 
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The main activities related to the development of scientific software can be summarized from the analysis of the 

stages of a complex systems modeling simulation called CoSMoS [5]. Figure 1 shows the development stages as 

ellipses and the related products as rectangles. The solid arrows correspond to interactions and the dotted arrows 

indicate the creation of documents. In the figure, it is seen that the scientific software is developed from the discovery 

that takes place after the development. This software development in turn supports the exploration. It should be noted 

that the exploration is within a research context the same as the discovery, and it generates a results model. The 

discovery updates the domain model, and the software development is made on a work platform. 

 

 
Fig. 1. Main stages in the creation of scientific software, based on [5]. 

 

In recent years several proposals meant to improve the development of scientific software have appeared. 

Some of them suggest the use of agile processes, i.e., those that privilege the creation of functional code over 

complying with formal stages [1], [6]-[9]. However, a knowledge gap persists between the scientists who 

head the projects and the software engineers who participate in them, hindering the use of those methods. 

As an example we can mention how complicated it is to implement the test-driven development (TDD), 

because it requires generating multiple revisions of the code as it is being written [9]. On the other hand, 

the increased complexity of the modeled problems that require scientific software demands high 

performance computational abilities, dedicated platforms, and sometimes the possibility of incorporating 

special hardware and specific software parts [10]. 

The growing complexity of the problems that scientists deal with adds a further difficulty to the 

development of the software constructed to solve them. A complexity factor inherent to these developments 

is due to the fact that the requirements are changing as the degree of understanding of the science that 

provides the project’s context varies [11]. Consequently, the creation of software in scientific research is 

increasingly relevant [12], and therefore the methodology used for its development and in its tests becomes 

more important [1]. 

Many of the tools belonging to Software Engineering used in the development of traditional applications 

are often not useful for the construction of scientific software. Because of this, the concept of Computational 

Science and Engineering (CSE) [13], which defines the context of this type of development, is introduced. 

CSE tries to apply properly Software Engineering tools in the scientific research projects. In fact, the authors 

point out the publication of three special issues on this matter [14], [15], [16]. These kinds of efforts allow 

avoiding dramatic experiences, such as retracting on the knowledge published in research journals due to 

the faulty construction of the software detected after finishing the project [1], [17]. 

The present paper analyzes the development characteristics of scientific software, its main difficulties, 
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and methodological proposals are made to overcome them. Some conclusions of the study are also made, 

and two future lines of work are proposed 

2. Methodology 

The systematic review was based on three important sources of information: IEEE, Science Direct, and 

Springer. In all these cases use was made of the following string: “scientific software development or software 

development practice.” Then a filter was used according to the year (2013 to 2016) and the type of 

publication, considering conferences and journals. It was also required that the documents should be full 

text and written in English. This led to the following breakdown: 

1) 18 articles from IEEE 

2) 41 articles from Science Direct 

3) 15 articles from Springer. 

Then the results were arranged according to relevance, and they were reviewed one by one, selecting 

only the ten first of each list that had content relevant to the research. To the articles selected by the search, 

13 other references were added that were considered useful and were included in the reviewed papers. 

Then they were classified according to their subjects, and the common matters were analyzed to extract useful elements 

for writing the article.  

Finally, these matters were arranged, forming the coherent product that is presented. 

3. Characteristics of the Development of Scientific Software 

From the main studies reviewed, the following characteristics of the development of scientific software 

stood out [18]-[20]: 

1) The software is oriented at supporting the scientific question. 

2) It is developed by experts in the studied matter.  

3) It had to be designed before finishing the research.  

These three characteristics are analyzed in detail below. 

The software must be constructed to answer the question that gives origin to the research. This means 

that at the beginning of the project there is only a very imprecise idea of the requirements of the software to 

be constructed. This perception changes as the research progresses, and consequently when the research 

group goes deeper into the studied subjects. Furthermore, although the construction of the software is not 

necessarily the main reason for the research, it is usually an important aspect of it. 

The second characteristic of the development of the scientific software is that it is created by experts in 

the subject that is being investigated, i.e., by members of the team. Therefore, unless a member of the team 

is a software engineer, the construction of the applications falls on persons who do not necessarily manage 

the proper techniques. On the other hand, the incorporation of engineers in the research group requires 

them to become immersed in the issues that are being studied [12]. Both situations cause difficulties in the 

creation of software pieces that fulfill the requirements and have an acceptable quality. Obviously, if in a 

research project there are only engineers, it may be very difficult to face developments that go beyond a 

certain level of complexity as a result of the subject that is being studied. It is also mentioned that few 

scientists have the technical knowledge to carry out the testing of the software correctly [12]. 

The third characteristic comes from the uncertainty with respect to the result that would be obtained 

with the developed application. This is important if it is considered that, it is difficult to force the evolution 

of the project, as well as to calculate precisely the number of developers needed and the skills that they 

must manage. Some authors [21], [4] analyze two options to overcome this uncertainty: use either a 

prescriptive framework of the Software Process Improvement (SPI) that defines the specific practices and 

their priorities for achieving a quality level, or else use an SPI support that leaves the selection of the 
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process improvements to the research team. 

In practice, it is better to use a hybrid decision model based on the experience of the team in the domain 

of the research subject. This proposal makes sense only when dealing with projects carried out by teams 

that already have a common experience. In spite of this, it is interesting to analyze the three research 

questions that must be answered to apply this Scientific Software Process Improvement Framework, 

SciSPIF [21]: 

 What conventional planning criteria are applicable to the scientific software development projects? 

 What other factors affect the priorities and decisions during the planning activities of scientific 

software development processes? 

 What planning criteria of the scientific software development process apply to the decisions on the 

specific practices of Software Engineering? 

These questions give an idea of the challenges of developing this type of software. Anyway, the above 

authors explain that until more data are available, it cannot clarify the SciSPIF decisions. Now, unfortunately, 

this framework is not ready for the scientific community utilizes it as a resource [4]. Several of the 

problematic characteristics of the development of scientific software can be approached by the agile 

methodologies [9], which have many common characteristics with the construction of the scientific software. 

In fact, several agile practices support the development of this type of software, as shown in Table 1. 

 

Table 1. Comparative Agile Development / Scientific Software Development 

Agile 
development  

Characteristics of scientific software development 

Modularity of 
activity 
development  

1. Scientists and developers have some activities in the software development process. 

Iteration with 
cycles 

2. Scientists and developers can modify both the model and the code when unexpected 
results appear. 

Limited time 
with iterations 

3. Since the scientists need to execute the experiment as soon as possible, work is 
done with very limited and defined time in each iteration. 

Parsimony 
4. Scientists and developers do not execute unnecessary activities due to the time 
restrictions. 

Adaptive 
5. Scientific software tends to evolve due to the new results obtained in the 
experiments, the development of models, and the continuous increase of the 
functionality. 

Incremental 
6. New characteristics coming from new findings may be added to the application. 
These new characteristics are added in small steps. 

Convergence 
7. The developers do not know the details of all the requirements, since they write the 
code as needed. 

People-oriented 
8. Strict planning may not be adequate for the development of the scientific software 
because the researchers need flexibility to carry out the experiment as fast as possible. 

Collaborative 
9. The developers can be supported by the scientists to understand well the problem 
that is being studied. 

 

From Table 1 it is possible to identify the main complexities of the creation of the scientific software:  

i. Urgency in executing the experiments with the developed software. 

ii. Evolution of the software as the research progresses. 

iii. Difficulty for planning the activities due to the changing nature of the research. 

These challenges are commented below. 

Executing software in a research project, an activity called experiment, involves coding qualitative data and 

narratives in theoretical constructs and defining the relations between them [22]. In this way, the qualitative information 

can be analyzed systematically to generate new theories based on real world data, adding even more complexity to these 

kinds of developments [4]. Managing this evolution is not trivial, especially if one must plan the software development 

activities as one goes deeper into the topics belonging to the research. 
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The characteristics presented in Table 1 allow identifying the main difficulty to be solved: how to set up a research 

team such that there is sufficient coordination to construct the scientific software at the required time with an acceptable 

quality. 

Although the difficulty to form an appropriate development team will also be present in the development of the 

commercial software, it is aggravated due to the complexity of the domain of the problem that is being studied and the 

probable lack of software engineering knowledge by the developers [23]. In fact, three large steps are defined for the 

construction of the scientific software [24]: 

1) Prepare discrete models. 

2) Translate the models into algorithms. 

3) Code the models using programming languages. 

Due to the complexity of this activity, errors can be introduced in any of the steps [1]. 

In this way, the developers should have two basic characteristics to perform their job: mastery of the subject and 

creativity. The former allows to understand the context of the problem and what it is desired to program; the latter 

allows, in the words of Edward De Bono: “breaking out of established patterns in order to look at things in a different 

way” [25]. Creativity is considered as a determining factor in software engineering, and it is fundamental when finding 

different solution alternatives to unexpected problems is needed. 

Added to the above, the question that should be asked is what challenges must be solved. 

4.  Main Difficulties and Challenges of the Development of Scientific Software 

Answering the scientific question of the research generates a very dynamic and demanding development 

environment [10]. This forces the work team to have the ability to communicate correctly both in and out of 

the research. Furthermore, the addition of the difficulty of having to adapt new technologies and tolerate 

the ambiguities characteristic of the research generated during the development of the project, is also 

common. In this context, the role of the software developer is seen as increasingly important. This 

developer is seen as capable of constructing the required application by himself, since the rest of the team 

put their best efforts in the initiatives belonging to the research more than on the generation of the code. 

Due to the characteristics of the research projects, one of the problems for the construction of software corresponds to 

the difficulty to define all the requirements at the beginning of the project [9]. 

Other problems are also identified in the literature on scientific software development projects [10]: 

1) Ambiguities and misunderstandings. 

2) Teams distributed in different geographic areas, causing time differences, problems for sharing 

knowledge, and complications for clarifying the requirements. 

3) Researchers who tend to generate rapidly a code that works, but whose results are difficult to repeat 

[12]. This has to do with the specificity of the generated code and its apparent or real inability to 

extrapolate from that code a generalization applicable to other research. 

In brief, the development of scientific software that is fast, reliable, and fulfills the required functionalities 

is needed. This represents a great challenge because the developers are not necessarily trained in software 

engineering. In any decision associated with the development it must be kept in mind that the research 

depends strongly on the construction of the software, and any fault or delay can retard getting the scientific 

discoveries. 

5. Methodological Proposals for Improving the Development of Scientific Software 

After presenting the difficulties detected in the development of scientific software, the proposals of 

solutions found can be presented. These solutions have been grouped on the one hand into methodological 

improvements referred to the different forms of construction of the software, and on the other hand into 

the agile practices that are feasible of incorporating in the development. 
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5.1. Methodological Improvements 

In general, researchers do not have training in software engineering, so it is difficult for them to interact 

in multidisciplinary teams [6]. This has led software to be historically undervalued and disregarded in 

research, even though it is fundamental for its success [18]. Based on this analysis, the following 

suggestions are made [12]: 

1) To set up Research Software Engineering (RSE) groups. 

2) To incorporate basic software development training in all doctoral programs. 

3) To apply policies to ensure that software is recognized as important in the researcher community. 

4) To disseminate the benefits of open source. 

5) To use the software of other research and give credit to the creators. 

With respect to the use of open source applications, there are authors who suggest using their concepts in 

scientific areas, i.e. [6], [26]: 

1) Create and share software without restriction. 

2) Generate improvement of the applications in the scientific community and make them available to 

everyone. 

3) Not having ownership of the code by anyone in particular. 

These initiatives have aroused interest although they have not been consolidated yet. 

The analyzed proposals also consider making use of the experience in software construction or startup 

companies (emergent companies that rely strongly on technology and need to generate rapidly applications 

that allow them to operate). The similarities with scientific software construction are found in the search 

for rapid creation in a highly changing environment where the requirements are not clear at the beginning 

of the project, and they can change substantially as time goes by. 

The suggestions taken from these types of enterprises are [27]: 

1) To create flexible teams that adapt to change the direction of the development according to the 

modifications of the target market. 

2) To use light methodologies to achieve flexibility when adapting practices and reacting to the 

software changes according to the business strategies that appear. 

3) To generate fast release of applications to create an evolutionary prototype with the purpose of 

achieving rapid feedback from the users. 

4) To empower the team members to achieve great flexibility that will allow them to explore different 

alternative solutions autonomously. 

The proposal arises for automating the data recovery and preparation process for the analysis, i.e., for 

performing the experiments [28]. In this case the described experience refers to an application made to 

measure for the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program). 

Another relevant issue is the possibility of sharing software made by specialized scientists. For example, 

in the matter of visual display of research data [29], to generate an open code components standard to 

facilitate the integration to construct solutions for the simulation [30]. An additional example would be to 

create a work environment for the operation and analysis of experimental data [31]. Combining 

characteristics of dynamic libraries with an interpreter that has image processing functions can be 

mentioned [32]. The CoSMoS model could also be used to validate complex simulation systems [5] or else 

support the data follow-up and analysis stages [33]. All these proposals coincide in that they are based on 

constructing and sharing with the scientific community solutions created by specialized researchers in each 

of the topics. This presents the challenge of coordination and support among the different research groups 

around the world, a fact that forces to define common standards. In fact, one of the articles describes the 

challenges for creating an integrated environment that allows modeling processes of the Earth’s surface by 
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the Community Surface Dynamics Modeling System (CSCDM) [34]. 

Other authors propose the development of a system for gathering and using the scientific and 

technological results generated in the research and development [35]. There also are researchers who use 

software packages dedicated to processing the generated data [36][37] and even applications developed by 

themselves [38]. 

With respect to testing of the constructed applications, it should be noted that the challenges can be 

grouped into two main categories [1][39]: 

1) Those that are produced due to the characteristics belonging to the scientific software. 

2) Those related to cultural differences between the scientists and the software engineering 

community. 

Among the former we can find those related to the development of test cases, the difficulty to determine 

which should be the correct outputs to be compared, the excessive times for the execution of the tests, or 

rounding or truncating errors. Among the latter, we can highlight those relative to the limited 

understanding of the testing concepts, the use of unsystematic testing techniques, or faults in the execution 

of the unit tests. 

Finally, it should be mentioned that the processing of the data generated in the research can be facilitated 

by means of Cloud Computing types of applications [40]. However, this requires the researchers to acquire 

solid knowledge and skills in the development of sequential and High Performance Computing (HPC), 

something that has not happened yet. 

5.2. Incorporation of Agile Practices 

As a way of overcoming the difficulty of not having the requirements defined from the beginning of the 

project, it is proposed to use agile development to decrease the risks in these kinds of projects [9]. In fact, 

Table 1 presented all the characteristics of the development of scientific software, proposing an agile 

practice to solve it. However, the authors themselves comment that it is difficult to introduce these agile 

practices in the development teams. They point out that it is necessary to make a great effort to train them 

and motivate them. Finally, they conclude that agile practices are useful for exploratory, iterative, and 

collaborative developments, something characteristic of scientific research. This is confirmed by Jirotka, Lee, 

& Olson [7], who point out that an agile approximation facilitates the interaction between the scientists and 

the engineers. In fact, they mention that the use of peer programming is more useful than using software 

development methods guided by plans. 

However, an inappropriate use of the agile methods can inhibit creativity. Trying to develop a solution 

without a careful monitoring framework can be a disaster. Software engineers must keep an open mind and 

understand their role and responsibilities with the research team. 

Agility also proposes improvements for testing the constructed applications. One of the most solid and 

widely disseminated proposals is that called Test-Driven Development (TDD), which provides the XP, or 

Extreme Programing method [11]. This technique allows the generation of a test for each code line that has 

failed, in this way creating a more robust software from the begnning of the coding. However, it demands 

great skill by the programmer that uses it and the constant support of the researchers with respect to the 

topic that is being studied. 

Another issue analyzed in the literature is related to the contribution of the agile methods to the 

communication problems when the project’s teams are physically apart. In this context it stands out that 

there are occasions in which development teams are formed with the logic of “following the Sun”, i.e., 

succeeding in having at all times team members making developments around the world [8]. With teams 

constituted according to this scheme, problems appear related to the temporal, geographic, and cultural 

distance. The following problems can be highlighted: 
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1) Temporal distance: Communication must take place at unconventional times due to the lack of 

superposition of work hours, leading to overtime. Delays can be caused when some of the 

researchers need to interact with others who are not available. 

2) Geographic distance: “Face-to-face” meetings are difficult to carry out, and informal communication 

is often insufficient. This complicates the sharing of ideas. 

3) Cultural distance: It generates many misunderstandings because there are very different ways of 

thinking and acting between the different components of the project’s team. 

The following is proposed to solve these difficulties [8]:  

1) To assign to parts of the team the creation of the requirements documents which are then shared 

with the remaining components. Although this requires good coordination with and trust in others, 

it allows all to review what is being done, in order to detect errors and share the advances made. 

2) To make the definition of the delivery of advances in two stages. In a pre-stage, the aim is to achieve 

a mutual understanding of what will be implemented in the later stages. The pre-stage meetings 

will take place at a time at which the person responsible for defining the requirements can 

participate. This leads to the meeting of the stages proper as a very realistic vision of what is 

needed. 

3) To make the revisions of the closure of each software delivery with two different audiences: first 

with the person responsible for defining the requirements, and then with the rest of the team. This 

allows having the ideas of what needs to be constructed well clarified before discussing it with the 

whole team.  

To carry out a retrospective study at the end of each important stage to detect what was done well and 

reinforce it, and on the other hand, to discover what was done badly to correct it. This activity is generally 

ignored when trying to go rapidly to the next stage, causing repetitions of the errors and inefficiencies over 

time. Spending some time in these retrospective studies leads to increased productivity. 

6. Conclusions and Proposals 

In the analysis that has been presented it can be stressed that work is done in various fronts to overcome 

the detected weaknesses [41]. Among them, the efforts made in the community that uses the applications to 

get training in their use can be mentioned. Along this line, the development and use of sophisticated 

frameworks such as AIBench, based on the Java programming language and has been applied mainly in 

biomedicine, should be mentioned [42]. 

It also aims to influence the policies that motivate those involved in the scientific software community so 

that they venture to use support solutions. 

The difference between engineering and scientific disciplines starting with the nature of the problems 

that they solve allows understanding why the tools that work in the former do not work in the latter. 

Engineering refers to the social needs to be satisfied, while science deals with the relation with one or more 

scientific theories and the phenomena that describe them [43]. Obviously, it is difficult for a software 

development technique to work well in both situations. 

Different authors also suggest that the agile practices analyzed are naturally useful for exploratory, 

iterative, and collaborative developments, something quite characteristic of scientific experiments [9]. The 

challenge is defined as how to inculcate software development practices in the researchers, taking into 

account that they were not trained in this field during their professional formation [6]. These same authors 

rely on changing the research and software development culture by integrating better the agile practices. 

The proposals that suggest improving the testing techniques to prevent the undetected errors from 

seriously damaging the research are also highlighted [1]. 
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The analysis presented indicates that the contributions for improving the development of scientific 

software have decanted into the two suggested lines: methodological improvements in general, and the use 

of agile practices in particular. 

An important contribution that would be very useful is the proposal of a development method that 

arranges the work of the researchers and Software Engineers. This method would have to incorporate the 

identified agility proposals, and it must be easy to understand and apply by the researchers and all the 

participants in the projects. 

The following activities are proposed for future work: 

1) Coordinating the researchers to share pieces of software that are useful to all. 

2) Developing a simple and noninvasive method that allows the research teams to coordinate better 

and increase productivity. 
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