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Abstract: In K-means clustering, we are given a set of n data points in multidimensional space, and the 

problem is to determine the number k of clusters. In this paper, we present three methods which are used to 

determine the true number of spherical Gaussian clusters with additional noise features. Our algorithms 

take into account the structure of Gaussian data sets and the initial centroids. These three algorithms have 

their own emphases and characteristics. The first method uses Minkowski distance as a measure of 

similarity, which is suitable for the discovery of non-convex spherical shape or the clusters with a large 

difference in size. The second method uses feature weighted Minkowski distance, which emphasizes the 

different importance of different features for the clustering results. The third method combines Minkowski 

distance with the best feature factors. We experiment with a variety of general evaluation indexes on 

Gaussian data sets with and without noise features. The results showed that the algorithms have higher 

precision than traditional K-means algorithm.  
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1. Introduction 

Clustering is an effective tool for data mining, and it has been widely concerned by people. The previous 

classification algorithm is to divide the data into a pre-labeled class. But in some cases, we need to analyze a 

data set without knowing the structure and distribution of the data in advance, so that the classification 

algorithms have no ability to handle the data in this way, because the classification algorithms are 

supervised [1]. Then we can use the clustering algorithms to analyze the data.  

Clustering can help people analyze data and solve practical problems. In the fields of biological 

information processing, psychological research, business data analysis, network data analysis, geography 

and information retrieval, clustering has a wide range of applications [2]–[4].  

Clustering is a classical method of unsupervised data analysis. Up to now, there is no universally accepted 

clustering definition of the academic circle. Here, we quote the definition of the clustering which was given 

by the Everitt [5] in 1974: “It makes the data objects in the same cluster have high similarity, and the data 

objects in different clusters are not similar”. Cluster analysis is a technique that does not require prior 

knowledge of the class label.  

The existing clustering methods are divided into hierarchical clustering [6]–[10] , partition clustering [11] 

–[29], and Clustering algorithm based on grid and density [30]–[34].  

In the original K-Means, this similarity measure is the squared Euclidean distance. There are other 
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distance similarities, such as the Jaccard [35], Cosine [35], and Edit [36] similarity. Cosine distance, also 

known as cosine similarity, is used to measure the angle between two vectors in the vector space. It serves 

as a measure of the size of the difference between the two individual. Euclidean distance and cosine 

distance have different computing methods and characteristics, so they can be applied to different data 

analysis models: Euclidean distance can reflect the absolute difference among the individual numerical 

characteristics. Euclidean distance is used more to reflect the differences from the dimension sizes. Cosine 

distance is used more to reflect the differences from the direction, and is not sensitive to the absolute value, 

therefore Cosine distance is not appropriate for data sets with Gaussian distribution. 

Among all kinds of clustering algorithms, the K-means algorithm based on partition is widely used 

because of its simplicity and its ability to effectively cluster large data sets. The clustering results of the 

K-means algorithm are very sensitive to the initial center point, and the improper initial cluster centers will 

lead to the instability of the cluster structure. At the same time, the algorithm is sensitive to the data 

dimension, because the similarity measure of the algorithm is the Euclidean distance, and the importance of 

all features in the calculation of the distance is the same. This processing method, which is not distinguished 

from the importance of attributes, is likely to result in the distance distortion of the data points in the space. 

If the two points in the space are very close on the important features, but due to the amplification of the 

distance by other irrelevant features, these two points in the Euclidean space are likely to be the most 

measured. Because the Euclidean distance is relatively simple, and can basically reflect the performance of 

the algorithm, therefore, it was more commonly used. In the cluster analysis, the distance is not fixed. Other 

distances are also useful, and clustering algorithms can use different distances according to the specific 

problems. For example, we can use Mahalanobis distance to increase the recognition ability of the cluster 

structure of ellipsoidal shape. Mahalanobis distance is an extension of Euclidean distance and its 

equidistant points are composed of a hyper ellipsoid, while the equidistant points of Euclidean distance 

form a sphere. Another example, the distance function using exponential form can suppress noise.  

Clustering evaluation index is an essential part in the process of clustering, we can evaluate the 

advantages and disadvantages of the clustering algorithm through the cluster indicators. For example, the 

NMI index is calculated by comparing all the data mutual information of the two clusters to compare the 

similarity of the two clusters. But so far, there is not a common index can be applied to all the data sets and 

all the algorithms. Different clustering validation indexes can be applied to different clustering tasks. When 

performing a cluster analysis, we first have to determine what kind of clustering task we are going to 

perform. In this paper, we use a variety of general clustering validity indexes to test our algorithms.  

For the above defects of the K-means algorithm, the main contributions of this paper lie in the following 

three aspects: 

1) For concern that the K-means algorithm is suitable for the initial center points, a method choosing 

the initial center points is proposed. 

2) In view of the low noise suppression ability of K-means algorithm, a new algorithm based on feature 

importance is proposed. 

3) An algorithm combining the feature importance and the optimal feature is proposed. 

K-means and several validation indexes are reviewed in Section 2. Section 3 describes our algorithms. In 

Section 4 we present our simulation and analysis of the results. The conclusion is given in Section 5.  

2. Background 

2.1. K-means 

The procedure of the K-means algorithm is as follows. 

Distribute all objects to k number of different cluster at random; calculate the mean value of each cluster, 
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and use this mean value to represent the cluster; re-distribute the objects to the closest cluster according to 

its distance to the cluster center; update the mean value of the cluster, then calculate the mean value of the 

objects in each cluster; and calculate the criterion function until the criterion function converges. Usually, 

the K-mean algorithm criterion function adopts square error criterion, and is defined as 

 

          
 

    

 

   

                                                                                        

 

In which   is total square error of all the objects in the data cluster,   is the given data object,    is 

mean value of cluster    (  and   are both multi-dimensional). The function of this criterion is to make 

the generated cluster as compacted and independent as possible. 

2.2. Silhouette Index 

Silhouette index [37] was first described by Peter J. Rousseeuw in 1986. 

Assuming      is the average similarity or distance between the sample   in the clustering    and all 

other samples in the same clustering,         is the average similarity or distance between the sample   

and all the samples in another clustering   , then                               . Sil indicators 

calculate the distance between each sample and other samples in the same cluster, and the distance 

between the sample in other clusters, and the calculation formula of each sample   is as follows: 

 

       
         

               
                                                                                    

The formula can be also written as : 

       

 
 
 

 
   

    

    
             

                            

    

    
               

                                                                        

 
From the above definition, it is clear that:  

 

                                                                                                    
 

In general, the average Sil value of all samples in a data set is used to evaluate the quality of the clustering 

results. The greater the Sil index, the better the quality of the clustering. The maximum value of the Sil index 

corresponding to the number of clusters is regarded as the optimal number of clusters. 

2.3. Davies-Bouldin(DB) Index 

   index [38] is based on the class scatter of samples and the measure of the distance between the 

cluster centers. The number of the class corresponding to the minimum is the optimal number of clusters. 

Set     to represent the average distance between all the samples in the cluster    and their cluster 

centers,      indicates the distance between the cluster    center and the    center, then the    index 

is as follows : 
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2.4. Weighted Inter Intra Similarity Ratio (Wint) 

The goal of Wint is to maximize the similarity within the class and to minimize the similarity between 

classes. 

Usually, the Wint index with penalty term is used to estimate the class number, and its maximum value is 

regarded as the optimal number of clusters. 

Wint index is defined as: 

 

          
 

   
 
            

 
  

    

 

   

   

 

       

                                             

         
 

        
       

          

                                                                             

           
 

    
       

         

                                                                                    

 

2.5. Homogeneity-Separation (HS) Index 

   index uses homogeneity to represent the cohesive structure of samples in a cluster, and uses 

separation to represent classes that are well separated from each other. 

Homogeneity is defined as the average within class samples between similarity and separability is 

defined as the average similarity between samples of different classes. 

The class number corresponding to the maximum value of the HS index is the optimal number of clusters. 

Its definition is: 

 

                                                                                                              

 

In this equation, 

 

       
 

          
   

        

          

 

   

                                                                      

       
 

     
 
         

        

         

 

         

                                                                      

 

In this equation,        represents the similarity between the sample   and  .  

2.6. Dunn's Index 

Dunn's index [39] is defined as the ratio of the smallest distance between clusters, which estimates the 

separation of clusters, and the maximum cluster diameter, which estimates its cohesion. This index allows 

for general distance measures. 

The definition of Dunn is as follows: 
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In which,          is the inconsistency measure between cluster    and cluster   , which is the 

minimum distance between the two clusters.         is the diameter of the cluster  , which can be used 

to measure the degree of dispersion of the data in the cluster. The definition of      is as follows: 

           
     

                                                                                                  

The greater the Dunn value, the better the effect of clustering. 

3. Proposed Method 

Before KMENAS clustering, the initial center is selected firstly, and then the initial partition is carried on, 

however, the initial value of the selection and clustering results have a great association. If the choice of the 

initial center is poor, it may produce invalid clustering results. At the same time, the result of the clustering 

is different, which leads to the poor stability of the clustering results. Secondly, each cluster center is the 

average of all samples in each cluster, using the Euclidean clustering as the similarity metric, and the use of 

square error function as the criterion function clustering. This will cause that the globular clusters can be 

easily found, but when the difference of the cluster size and shape is relatively large, it is not easy to be 

found. There may be large clusters are segmentation, because the criterion function to achieve optimal 

results. Finally, because the algorithm uses the mean of all objects of each cluster as the cluster center, 

however, outlier data generally deviate from the cluster center, so it will bring greater effect on the 

calculation of mean. This will cause the deviation of the clustering center and inaccuracy of the clustering 

results. 

3.1. Relevant Definition 

3.1.1. Preliminary 

1) The     dimension objects are represented as following matrix form: 
 

   

          
          
    
          

                                                                                      

 
In order to make the data of different features comparable, and in order to calculate the contribution 

degree of features, the matrix is normalized according to the dimension [0.01, 1]. 

2) After the current iteration, the   objects is divided into   clustering. The number of objects in each 

cluster is           . Then the sum of the distance within a class of all   cluster on the feature   is: 

 

              
 

  

   

 

   

                                                              

 

    is the mean value of clustering   on the feature  . 

3) The sum of the distance within the class of all   clustering on the feature   is: 

 

            
 

 

   

                                                                                       

 

   is the mean value of data set on the feature  . 

4) According to the current iteration results, the contribution of feature   to the cluster is calculated: 
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Compactness and separation are usually used to measure the overall performance of clustering. 

For a single attribute, if the result of the clustering is that data objects within a class are compact and the 

data objects between classes are separative, then the ability of the feature to distinguish objects is strong, 

and the contribution to clustering is large. On the other hand, the contribution of the feature to clustering is 

small. 

3.1.2. Feature adjustment 

The feature weights of the feature   is: 

 

   
  

   
 
   

               

 

   

                                                                         

 
Using the modified Minkowski distance formula, the weighted Minkowski distance formula is obtained: 

 

                     
 

   

 

                                                                             

 
Feature weights are calculated according to the contribution of each attribute. 

The larger the feature weight, the more important the feature is, and the coordinate axis of the feature in 

the multidimensional space should be extended; The smaller the feature weight, the smaller effect the 

feature is, and the coordinate axis of the attribute in the Minkowski space should be reduced. 

Compared with the Minkowski space, the regulation of w can be used to cluster in the subspace, which 

can reflect the distribution of data set in Minkowski space, and improve the performance of clustering. 

3.1.3. Selection of initial cluster centers 

The K-means algorithm is sensitive to the initial clustering center and the different clustering centers lead 

to different clustering results. The traditional K-means algorithm does not consider the importance of each 

feature; there will be the distance distortion phenomenon. The selection of the initial cluster center does 

not completely describe the class structure of the data set. In order to improve the performance of the 

traditional K-means clustering algorithm, this paper put forward the following methods to determine the 

initial center point and determine in the center points of each features of the objects respectively. The 

center points of the entire data set are obtained through the center point of each features. The procedure is 

as follows: first, calculate the mean value in each features of the objects and all the variance, variance 

reflects the feature values with respect to discrete degree of mean value, then construct offset factor 

through the mean square deviation and the cluster number  . Finally, according to the mean and deviation 

factor, obtain initial cluster center. The algorithm is as follows: 
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 in the above formula are called offset factors. 
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3.2. Minkowski Weighted K-Means (MWK-Means) 

The MWK-Means [40,41] algorithm is an extension of the K-means algorithm to solve the main 

shortcomings of the K-means algorithm, meaning that the algorithm can not effectively deal with the 

features of the data set. In the original K-means algorithm, the V dimensional feature is considered to be 

important for clustering, which means that they have the same effect on clustering. In fact, even if there are 

two related features, they also have a different degree of correlation. These should be taken into account by 

the algorithm. 

The Minkowski metric, defined as                      
 
   

 
 for the  -dimensional    and   , is a 

generalization of the Manhattan (   ) [42], Euclidean (   ) [43] and Chebyshev (   ) [44] metrics. 

The MWK-Means actually uses the  th power of the Minkowski metric. 

3.3. Feature Adjusted Minkowski Weighted K-Means (FAMWK-Means) 

We combine K-means with the Feature Adjustment Minkowski distance and initial cluster centers for 

providing good initial centroids.  

The procedure of FAMWK-Means is as follows: 

1) Calculate mean and mean square deviation of each attribute of the object. 

2) Construct initial cluster center C according to formula (20). 

3) Initialize feature weight according to formula (17). 

4) Run K-means algorithm based on weighted Minkowski distance is run, and assign the cluster 

number to each object. Then the clustering center is re-calculated. 

5) To determine whether there is a number of 0 of the cluster; if there is, the data object distribution is 

very dense, and the migration factor is too large. Will be offset by half, to re select the cluster center. 

6) According to the result of iteration, the characteristic weight of each attribute is adjusted according 

to the formula. 

7) Repeated execution of 4) and 6) until a predetermined number of iterations is reached or each 

cluster is not changed. 

3.4. FAMWK-Means with Best Feature Adjustment 

Our third and last method takes the previous ideas even further. We now take into account that although 

K-means applies feature weights, these are not optimized in the beginning of the clustering process. This 

means that in most cases the optimal weights found by K-means are only used in the clustering in its very 

last iteration, while suboptimal weights are used in all previous iterations. For this reason, we proposed to 

re-cluster Y with the final weights from K-means using a fully iterated K-means. 

The procedure of this method is as follows: 

1) Calculate mean and mean square deviation of each attribute of the object. 

2) Construct initial cluster center C according to formula (20). 

3) Set feature weight according as the optimal features. 

4) Run K-means algorithm based on weighted Minkowski distance is run, and assign the cluster 

number to each object. Then the clustering center is re-calculated. 

5) Determine whether there is a number 0 of the cluster. If there is, the data object distribution is very 

dense, the migration factor is too large. Will be offset by half, to re select the cluster center. 

6) According to the result of iteration, the characteristic weight of each attribute is adjusted according 

to the formula. 

7) Repeated execution (4) and (6) until a predetermined number of iterations is reached or each cluster 

is not changed. 
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4. Implementation 

4.1. Data Set Preparation and Evaluation Standard 

The implementation is done by Matlab. The code is run on a Intel(R) Core(TM) I3 CPU M 380 @ 2.53, 

3.00GB Installed memory, 64 bit OS system.   

In this paper, we generated 600 data sets that obey the Gauss distribution. Each Gauss data set is subject 

to a distribution of variance of 0.5. We use 9 different configurations. Noise features are selected to obey the 

uniform distribution of white noise, the mean is 0.5, and the variance is 0.5. Specific configuration is shown 

as Table 1: 

 

Table 1. Different Configurations of Experimental Data Sets 

  
Entities features clusters 

noise 
features 

sum of total 
features   

600×6-2 600 6 2 0 6 

600×6-2+3NF 600 6 2 3 9 

600×6-2+6NF 600 6 2 6 12 

600×6-3 600 6 3 0 6 

600×6-3+3NF 600 6 3 3 9 

600×6-3+6NF 600 6 3 6 12 

600×12-2 600 12 2 0 12 

600×12-2+6NF 600 12 2 6 18 

600×12-2+12NF 600 12 2 12 24 

600×12-3 600 12 3 0 12 

600×12-3+6NF 600 12 3 6 18 

600×12-3+12NF 600 12 3 12 24 

 

In Table 1, 600×6-2 represents that this data set contains 1000 entities and 6 features, and these entities 

are divided into 2 clusters. 600×6-2+3NF means that this data set contains 1000 entities, 6 features and 3 

noise features, and these entities are divided into 2 clusters. The following configurations are also similar. 

Each configuration contains 50 randomly generated data sets. 

1) F-measure index. 

It is the combination of precision and recall. They are defined as follows: 

 

                 
   

  
                                                                         

              
   

  
                                                                             

 
Among them,     is the number of   in cluster  ,    is the number of all the objects in the cluster   ;   

is the number of all the objects in  . The F-measure of the clustering is defined as follows: 
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2) Rand index 

Assuming a clustering result of data set   is               , and the data set is known to be divided 

into               . we can evaluate he quality of clustering by comparing the   and   as well as the 

adjacent matrix. For each point (  ,   ) in the data set, calculate the following items: 

  : If two points belong to the same cluster in   and  ; 

  : If two points belong to the same cluster in  , and belong to different clusters in  ; 

  : If two points belong to the different cluster in  , and belong to same clusters in  ; 

  : If two points belong to the different cluster in   and  ; 

Let       and   represent the number of          and    respectively, then           

represents the maximum number of all pairs in the data set, that is,   
      

 
 . 

In this equation,   is the total number of data points. The similarity between   and   can be defined 

by the following validity index: 

 

  
     

 
                                                                                        

 

4.2. Results and Analysis 

Our first group of experiments run on the data sets with no noise features. We used K-means (baseline), 

MWK-MEANS, FAMWK-Means and FAMWK-Means with Best Feature Adjustment to carry out the 

experiments. The results are shown in the Table 2 and Table 3.  

The values of p in table 2 have two meanings in our experiments. Firstly, they mean that our clustering 

algorithms, as we describe above, use the p values to carry out clustering. Secondly, in cluster validity 

indexes of Silhouette, they are also used to evaluate the quality of the clustering results. For example, in 

Table 2, the entries under p=1.6 means that clustering algorithm was run with this particular p. The results 

presented for the Silhouette (Mink) in row p=1.6 also use the same p=1.6 for the distance used within the 

index calculation.  

In each table the row labeled     and     presents the results for a   very close to 1 (1.0001) 

and 3 (2.9999). We have not experimented with     and     because they may cause empty cluster.  

Table 2 shows K-means and MWK-MEANS methods produce better results. K-means has achieved the 

maximum value of 0.968; MWK-MEANS obtains the best value of this experiment at p=2 by Silhouette using 

the Euclidean distance. But we noticed that compared with the K-means, MWK-MEANS cannot improve the 

F-measure with most of     values because these data sets have been generated with the same Gaussian 

model, which means that each features has the same degree of relevance. It can be inferred that K-means 

and MWK-MEANS methods can be applied to noise-free data sets with similar processing capability. 

Table 3 gives the Rand index. Table 3 shows that when p=2, the RAND index has achieved the maximum 

value. At the same time, most of the P values did not achieve better results than the K-means method. This 

shows that the data set has the same relevance with the data set of Gauss distribution. And for Gauss 

distribution Euclidean distance has a good clustering effect, so K-means and MWK-MEANS with p=2 can 

achieve good results.  MWK-MEANS has achieved the maximum value of 0. 961 by Silhouette using the 

Euclidean distance. 

 

 Table 2. F-measure of Different Methods Applied in Data Sets with No Noise 

  Silhouette 

DB Wint HS Dunn   Eucl Manh Mink 
K-Means 0.968 0.959 0.968 0.927 0.962 0.947 0.951 

MWK-MEANS 
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p 1 0.951 0.948 0.951 0.849 0.935 0.937 0.939 
p=1.1 0.955 0.949 0.955 0.853 0.938 0.939 0.940 
p=1.2 0.959 0.951 0.959 0.858 0.938 0.941 0.943 
p=1.3 0.959 0.951 0.959 0.858 0.943 0.940 0.942 
p=1.4 0.960 0.952 0.960 0.891 0.946 0.941 0.943 
p=1.5 0.962 0.952 0.962 0.871 0.946 0.941 0.942 
p=1.6 0.962 0.956 0.962 0.866 0.949 0.945 0.946 
p=1.7 0.965 0.955 0.965 0.810 0.951 0.944 0.946 
p=1.8 0.966 0.956 0.966 0.812 0.954 0.945 0.946 
p=1.9 0.968 0.959 0.968 0.819 0.956 0.948 0.950 
p=2 0.969 0.962 0.969 0.824 0.956 0.950 0.953 

p=2.5 0.833 0.829 0.833 0.939 0.959 0.818 0.819 
p 3 0.736 0.732 0.736 0.943 0.959 0.721 0.723 

FAMWK-Means 
p 1 0.940 0.936 0.939 0.837 0.924 0.924 0.928 

p=1.1 0.943 0.938 0.943 0.842 0.926 0.926 0.928 
p=1.2 0.948 0.940 0.948 0.847 0.925 0.931 0.931 
p=1.3 0.948 0.939 0.946 0.846 0.931 0.929 0.932 
p=1.4 0.949 0.940 0.948 0.878 0.934 0.929 0.930 
p=1.5 0.951 0.941 0.950 0.860 0.935 0.930 0.929 
p=1.6 0.949 0.946 0.951 0.855 0.939 0.933 0.934 
p=1.7 0.955 0.944 0.953 0.798 0.939 0.934 0.935 
p=1.8 0.955 0.944 0.953 0.800 0.943 0.933 0.933 
p=1.9 0.958 0.947 0.957 0.807 0.946 0.936 0.938 
p=2 0.957 0.949 0.957 0.812 0.944 0.937 0.941 

p=2.5 0.821 0.816 0.822 0.927 0.947 0.806 0.808 
p 3 0.723 0.721 0.724 0.932 0.947 0.709 0.710 

FAMWK-Means with Best Feature Adjustment 
p 1 0.945 0.939 0.944 0.841 0.927 0.930 0.932 

p=1.1 0.947 0.941 0.946 0.847 0.929 0.931 0.932 
p=1.2 0.952 0.943 0.951 0.851 0.930 0.934 0.935 
p=1.3 0.950 0.943 0.952 0.851 0.936 0.932 0.935 
p=1.4 0.953 0.944 0.953 0.885 0.939 0.933 0.937 
p=1.5 0.954 0.945 0.954 0.863 0.939 0.934 0.935 
p=1.6 0.956 0.949 0.956 0.857 0.942 0.937 0.939 
p=1.7 0.958 0.947 0.957 0.803 0.944 0.935 0.940 
p=1.8 0.959 0.948 0.957 0.803 0.947 0.938 0.938 
p=1.9 0.961 0.953 0.960 0.813 0.948 0.941 0.942 
p=2 0.961 0.956 0.963 0.815 0.950 0.943 0.946 

p=2.5 0.825 0.822 0.825 0.931 0.952 0.811 0.812 
p 3 0.730 0.725 0.728 0.936 0.951 0.714 0.715 

 

Table 3. Rand Index of Different Methods Applied in Data Sets with No Noise 

  Silhouette 

DB Wint HS Dunn    Eucl Manh Mink 
K-Means 0.957  0.943  0.957  0.927  0.941  0.938  0.939  

MWK- Means 
p 1 0.939  0.938  0.942  0.840  0.925  0.929  0.929  

p=1.1 0.942  0.941  0.943  0.844  0.926  0.928  0.931  
p=1.2 0.949  0.941  0.948  0.845  0.928  0.928  0.932  
p=1.3 0.946  0.941  0.946  0.849  0.935  0.931  0.929  
p=1.4 0.950  0.942  0.948  0.878  0.937  0.929  0.931  
p=1.5 0.950  0.940  0.953  0.859  0.938  0.932  0.931  
p=1.6 0.951  0.944  0.952  0.854  0.938  0.937  0.937  
p=1.7 0.956  0.942  0.956  0.801  0.942  0.935  0.938  
p=1.8 0.956  0.945  0.953  0.802  0.943  0.932  0.938  
p=1.9 0.957  0.951  0.958  0.811  0.947  0.940  0.941  
p=2 0.961  0.951  0.961  0.812  0.944  0.941  0.941  

p=2.5 0.822  0.817  0.821  0.928  0.949  0.805  0.806  
p 3 0.726  0.719  0.724  0.933  0.947  0.712  0.715  

FAMWK- Means 
p 1 0.927  0.925  0.931  0.825  0.911  0.915  0.916  

p=1.1 0.932  0.928  0.935  0.831  0.914  0.914  0.917  
p=1.2 0.936  0.928  0.939  0.835  0.915  0.920  0.918  
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p=1.3 0.938  0.928  0.938  0.833  0.919  0.916  0.921  
p=1.4 0.936  0.929  0.937  0.868  0.923  0.918  0.922  
p=1.5 0.941  0.929  0.940  0.846  0.922  0.917  0.919  
p=1.6 0.938  0.932  0.938  0.842  0.928  0.923  0.921  
p=1.7 0.942  0.935  0.942  0.785  0.929  0.919  0.926  
p=1.8 0.945  0.934  0.943  0.791  0.933  0.923  0.922  
p=1.9 0.945  0.935  0.948  0.795  0.936  0.925  0.930  
p=2 0.946  0.940  0.948  0.799  0.936  0.929  0.930  

p=2.5 0.810  0.804  0.811  0.918  0.935  0.795  0.798  
p 3 0.715  0.709  0.715  0.922  0.937  0.699  0.699  

FAMWK- Means with Best Feature Adjustment 
p 1 0.930  0.926  0.930  0.828  0.912  0.916  0.917  

p=1.1 0.930  0.927  0.934  0.830  0.915  0.917  0.917  
p=1.2 0.938  0.930  0.939  0.837  0.914  0.919  0.922  
p=1.3 0.936  0.927  0.935  0.835  0.921  0.920  0.919  
p=1.4 0.936  0.929  0.939  0.869  0.924  0.916  0.920  
p=1.5 0.937  0.931  0.942  0.848  0.924  0.920  0.922  
p=1.6 0.940  0.931  0.938  0.842  0.926  0.923  0.922  
p=1.7 0.943  0.932  0.942  0.787  0.930  0.922  0.922  
p=1.8 0.944  0.935  0.945  0.787  0.934  0.924  0.923  
p=1.9 0.947  0.936  0.946  0.795  0.932  0.924  0.928  
p=2 0.948  0.939  0.949  0.803  0.933  0.928  0.933  

p=2.5 0.810  0.808  0.809  0.915  0.938  0.794  0.795  
p 3 0.712  0.712  0.712  0.922  0.938  0.699  0.702  

 
Table 4. F-measure of Different Methods Applied in Data Sets with 50% Noise 

  Silhouette 

DB Wint HS Dunn    Eucl Manh Mink 
K-Means 0.823 0.767 0.821 0.721 0.829 0.793 0.866 

MWK- Means 
p 1 0.890  0.888  0.891  0.784  0.872  0.872  0.876  

p=1.1 0.894  0.885  0.894  0.788  0.877  0.874  0.876  
p=1.2 0.895  0.887  0.896  0.796  0.875  0.878  0.882  
p=1.3 0.895  0.891  0.898  0.798  0.880  0.875  0.879  
p=1.4 0.900  0.892  0.896  0.827  0.883  0.879  0.880  
p=1.5 0.898  0.890  0.899  0.811  0.885  0.880  0.881  
p=1.6 0.900  0.891  0.901  0.806  0.885  0.885  0.886  
p=1.7 0.904  0.892  0.900  0.747  0.891  0.882  0.884  
p=1.8 0.903  0.893  0.905  0.751  0.893  0.884  0.884  
p=1.9 0.903  0.897  0.908  0.759  0.892  0.886  0.885  
p=2 0.907  0.898  0.906  0.764  0.891  0.890  0.888  

p=2.5 0.770  0.765  0.771  0.875  0.899  0.757  0.757  
p 3 0.673  0.669  0.674  0.883  0.894  0.660  0.658  

FAMWK-Means 
p 1 0.910  0.904  0.907  0.807  0.894  0.893  0.897  

p=1.1 0.913  0.907  0.913  0.811  0.895  0.895  0.897  
p=1.2 0.916  0.907  0.918  0.816  0.897  0.900  0.901  
p=1.3 0.917  0.907  0.916  0.813  0.899  0.896  0.898  
p=1.4 0.915  0.910  0.918  0.847  0.905  0.897  0.900  
p=1.5 0.918  0.908  0.920  0.830  0.905  0.897  0.901  
p=1.6 0.920  0.914  0.920  0.822  0.908  0.901  0.905  
p=1.7 0.924  0.914  0.923  0.766  0.907  0.899  0.903  
p=1.8 0.924  0.913  0.923  0.770  0.912  0.903  0.901  
p=1.9 0.927  0.918  0.925  0.775  0.916  0.905  0.905  
p=2 0.929  0.919  0.924  0.784  0.915  0.910  0.909  

p=2.5 0.792  0.784  0.792  0.896  0.915  0.773  0.778  
p 3 0.696  0.690  0.693  0.899  0.914  0.679  0.681  

FAMWK-Means with Best Feature Adjustment 
p 1 0.931  0.928  0.931  0.824  0.912  0.912  0.914  

p=1.1 0.933  0.926  0.932  0.829  0.916  0.915  0.918  
p=1.2 0.935  0.927  0.934  0.836  0.917  0.921  0.922  
p=1.3 0.935  0.931  0.935  0.835  0.919  0.918  0.922  
p=1.4 0.938  0.927  0.937  0.869  0.921  0.919  0.921  
p=1.5 0.940  0.930  0.941  0.847  0.925  0.917  0.920  
p=1.6 0.941  0.933  0.940  0.843  0.928  0.923  0.924  
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p=1.7 0.945  0.931  0.943  0.786  0.926  0.921  0.921  
p=1.8 0.943  0.933  0.944  0.790  0.931  0.921  0.922  
p=1.9 0.944  0.936  0.943  0.794  0.933  0.925  0.926  
p=2 0.948  0.938  0.946  0.804  0.933  0.929  0.930  

p=2.5 0.811  0.808  0.809  0.914  0.939  0.797  0.796  
p 3 0.716  0.707  0.712  0.919  0.938  0.698  0.699  

 
Table 5. Rand Index for Different Methods Applied in Data Sets with 50% Noise 

  Silhouette 

DB Wint HS Dunn    Eucl Manh Mink 
K-Means 0.775  0.679  0.768  0.786  0.811  0.729  0.821  

MWK- Means 
p 1 0.850  0.840  0.845  0.741  0.829  0.830  0.829  

p=1.1 0.849  0.842  0.848  0.748  0.833  0.830  0.832  
p=1.2 0.850  0.842  0.857  0.749  0.831  0.837  0.843  
p=1.3 0.857  0.842  0.854  0.754  0.834  0.835  0.839  
p=1.4 0.852  0.844  0.856  0.790  0.844  0.840  0.838  
p=1.5 0.861  0.845  0.854  0.762  0.841  0.835  0.839  
p=1.6 0.852  0.847  0.854  0.759  0.840  0.841  0.839  
p=1.7 0.862  0.847  0.863  0.704  0.851  0.842  0.843  
p=1.8 0.866  0.848  0.860  0.703  0.846  0.843  0.836  
p=1.9 0.860  0.853  0.866  0.719  0.848  0.839  0.846  
p=2 0.866  0.860  0.863  0.721  0.853  0.849  0.853  

p=2.5 0.726  0.721  0.730  0.829  0.857  0.708  0.711  
p 3 0.635  0.625  0.626  0.842  0.854  0.614  0.613  

FAMWK-Means 
p 1 0.919  0.912  0.917  0.813  0.901  0.899  0.902  

p=1.1 0.922  0.913  0.923  0.822  0.907  0.909  0.903  
p=1.2 0.923  0.914  0.922  0.828  0.903  0.911  0.906  
p=1.3 0.925  0.920  0.925  0.824  0.911  0.904  0.906  
p=1.4 0.929  0.920  0.926  0.854  0.909  0.906  0.910  
p=1.5 0.924  0.915  0.926  0.835  0.914  0.904  0.909  
p=1.6 0.928  0.920  0.926  0.830  0.915  0.911  0.914  
p=1.7 0.934  0.922  0.930  0.778  0.914  0.910  0.916  
p=1.8 0.935  0.924  0.936  0.776  0.922  0.912  0.913  
p=1.9 0.937  0.925  0.937  0.787  0.920  0.915  0.913  
p=2 0.938  0.931  0.937  0.788  0.925  0.917  0.921  

p=2.5 0.795  0.795  0.796  0.908  0.923  0.781  0.787  
p 3 0.699  0.698  0.703  0.911  0.925  0.684  0.690  

FAMWK-Means with Best Feature Adjustment 
p 1 0.907  0.903  0.906  0.803  0.888  0.891  0.895  

p=1.1 0.913  0.904  0.913  0.807  0.896  0.893  0.899  
p=1.2 0.911  0.906  0.911  0.818  0.892  0.896  0.899  
p=1.3 0.917  0.905  0.919  0.813  0.897  0.895  0.895  
p=1.4 0.914  0.905  0.916  0.848  0.899  0.898  0.899  
p=1.5 0.915  0.904  0.921  0.826  0.905  0.899  0.896  
p=1.6 0.920  0.909  0.917  0.819  0.902  0.903  0.902  
p=1.7 0.924  0.914  0.919  0.766  0.906  0.900  0.900  
p=1.8 0.923  0.908  0.924  0.769  0.914  0.902  0.898  
p=1.9 0.922  0.912  0.924  0.773  0.914  0.902  0.907  
p=2 0.929  0.922  0.927  0.777  0.915  0.907  0.908  

p=2.5 0.789  0.787  0.792  0.895  0.912  0.778  0.775  
p 3 0.692  0.691  0.690  0.900  0.912  0.675  0.676  

 

In the second group of experiments, 50% noise feature was added to each of our data sets. In this case, we 

find that the K-means method is less effective than the previous one under various of validity index. This 

indicates that noise has a great impact on the K-means algorithm. At the same time, the results produced by 

MWK-Means algorithm is not as good as the previous one. That shows MWK-Means is not able to find the 

true structure of the data set. We can see that our method produces better results. 

Table 4 shows FAMWK-Means has achieved its maximum value of 0. 929 by Silhouette using the 

Euclidean distance. Compared to MWK-Means, FAMWK-Means significantly improved the ability of 
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clustering, on average, higher than 0.02. FAMWK-Means with Best Feature Adjustment produce the best 

result of this experiment at p=2 using Silhouette index. 

Table 5 shows that FAMWK-Means presents the highest rand index of 0.938 at p=2 using silhouette index 

using Euclidean distance.  Compared to the first set of experiment, results provided by MWK-MEANS are 

clearly worse.  In the no noise data sets, the best value of the Rand index provided by MWK-MEANS is 

reached 0.961 at p=2, while in the 50 noise data sets, its best value drops to 0.866 at p=2.  On the contrary, 

although FAMWK-Means does not provide the better results in the noise data sets than in the no noise data 

sets, FAMWK-Means improves the results dramatically compared to the MWK-MEANS. This improvement is 

0.08. 

In the third group, we add 100% noise features to each data set. Table 6 and 7 show the results for this 

set of experiments regarding F-measure and the rand index. 

 

Table 6. F-measure of Different Methods Applied in Data Sets with 100% Noise 

  Silhouette 

DB Wint HS Dunn    Eucl Manh Mink 
K-Means 0.617 0.546 0.618 0.683 0.733 0.687 0.782 

MWK- Means 
p 1 0.869  0.867  0.870  0.763  0.851  0.851  0.854  

p=1.1 0.872  0.864  0.873  0.767  0.856  0.852  0.854  
p=1.2 0.874  0.867  0.874  0.774  0.854  0.857  0.861  
p=1.3 0.874  0.870  0.876  0.778  0.859  0.853  0.857  
p=1.4 0.879  0.870  0.876  0.806  0.862  0.857  0.859  
p=1.5 0.877  0.868  0.877  0.791  0.864  0.858  0.860  
p=1.6 0.880  0.870  0.881  0.785  0.865  0.864  0.866  
p=1.7 0.882  0.871  0.879  0.727  0.870  0.861  0.864  
p=1.8 0.883  0.872  0.884  0.730  0.871  0.863  0.863  
p=1.9 0.881  0.876  0.888  0.739  0.871  0.866  0.863  
p=2 0.886  0.878  0.884  0.744  0.870  0.869  0.868  

p=2.5 0.748  0.744  0.750  0.855  0.877  0.736  0.735  
p 3 0.652  0.649  0.654  0.863  0.873  0.639  0.638  

FAMWK- Means 
p 1 0.889  0.882  0.885  0.787  0.874  0.872  0.876  

p=1.1 0.892  0.887  0.893  0.790  0.874  0.874  0.875  
p=1.2 0.894  0.886  0.897  0.794  0.875  0.878  0.881  
p=1.3 0.896  0.886  0.895  0.792  0.879  0.876  0.876  
p=1.4 0.894  0.889  0.897  0.826  0.885  0.876  0.879  
p=1.5 0.897  0.888  0.900  0.808  0.885  0.876  0.880  
p=1.6 0.899  0.893  0.898  0.801  0.887  0.880  0.884  
p=1.7 0.902  0.894  0.902  0.745  0.885  0.879  0.883  
p=1.8 0.904  0.892  0.903  0.749  0.890  0.882  0.880  
p=1.9 0.906  0.897  0.904  0.753  0.894  0.885  0.883  
p=2 0.908  0.897  0.903  0.763  0.893  0.889  0.888  

p=2.5 0.771  0.764  0.770  0.876  0.893  0.752  0.758  
p 3 0.676  0.669  0.673  0.879  0.893  0.658  0.659  

FAMWK-Means with Best Feature Adjustment 
p 1 0.910  0.906  0.910  0.804  0.892  0.890  0.893  

p=1.1 0.912  0.905  0.912  0.808  0.895  0.893  0.897  
p=1.2 0.915  0.906  0.914  0.814  0.895  0.900  0.901  
p=1.3 0.914  0.910  0.913  0.815  0.899  0.897  0.901  
p=1.4 0.917  0.905  0.916  0.848  0.900  0.898  0.901  
p=1.5 0.918  0.909  0.920  0.827  0.904  0.896  0.900  
p=1.6 0.921  0.911  0.920  0.822  0.907  0.902  0.904  
p=1.7 0.924  0.910  0.922  0.765  0.904  0.900  0.901  
p=1.8 0.922  0.912  0.924  0.770  0.910  0.900  0.902  
p=1.9 0.922  0.915  0.921  0.774  0.913  0.903  0.905  
p=2 0.927  0.916  0.925  0.784  0.913  0.908  0.909  

p=2.5 0.790  0.787  0.787  0.893  0.917  0.777  0.775  
p 3 0.695  0.685  0.690  0.898  0.917  0.676  0.677  
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Table 7 shows that all the cluster validity indices are improved by using FAMWK-Means with Best Feature, 

at various values of p. The best result overall was obtained by FAMWK-Means with Best Feature Adjustment 

using the distance at p=1.8. 

 

Table 7. Rand Index for Different Methods Applied in Data Sets with 100% Noise 

  Silhouette 

DB Wint HS Dunn    Eucl Manh Mink 
K-Means 0.725  0.639  0.728  0.666  0.711  0.659  0.726  

MWK- Means 
p 1 0.820  0.806  0.813  0.709  0.798  0.798  0.797  

p=1.1 0.816  0.812  0.816  0.717  0.801  0.800  0.799  
p=1.2 0.817  0.810  0.827  0.715  0.800  0.807  0.811  
p=1.3 0.824  0.808  0.821  0.720  0.802  0.800  0.807  
p=1.4 0.818  0.812  0.826  0.758  0.811  0.807  0.805  
p=1.5 0.827  0.812  0.822  0.728  0.807  0.804  0.809  
p=1.6 0.819  0.816  0.824  0.725  0.806  0.806  0.804  
p=1.7 0.830  0.814  0.831  0.673  0.819  0.810  0.811  
p=1.8 0.836  0.817  0.828  0.671  0.813  0.813  0.805  
p=1.9 0.829  0.819  0.834  0.688  0.817  0.804  0.813  
p=2 0.831  0.828  0.829  0.689  0.821  0.814  0.821  

p=2.5 0.694  0.688  0.699  0.795  0.827  0.675  0.679  
p 3 0.601  0.595  0.596  0.808  0.820  0.580  0.581  

FAMWK-Means 
p 1 0.885  0.880  0.886  0.781  0.870  0.866  0.871  

p=1.1 0.891  0.880  0.889  0.791  0.872  0.875  0.868  
p=1.2 0.891  0.881  0.889  0.798  0.870  0.878  0.873  
p=1.3 0.891  0.885  0.892  0.791  0.880  0.872  0.874  
p=1.4 0.898  0.889  0.891  0.821  0.875  0.875  0.876  
p=1.5 0.891  0.884  0.895  0.801  0.880  0.871  0.878  
p=1.6 0.897  0.887  0.893  0.798  0.881  0.877  0.882  
p=1.7 0.900  0.888  0.897  0.748  0.883  0.878  0.882  
p=1.8 0.904  0.890  0.902  0.745  0.889  0.880  0.880  
p=1.9 0.899  0.894  0.904  0.753  0.888  0.882  0.882  
p=2 0.899  0.900  0.901  0.758  0.891  0.886  0.889  

p=2.5 0.761  0.761  0.764  0.874  0.888  0.746  0.754  
p 3 0.667  0.664  0.668  0.879  0.892  0.653  0.658  

FAMWK-Means with Best Feature Adjustment 
p 1 0.912  0.907  0.912  0.806  0.890  0.893  0.900  

p=1.1 0.917  0.905  0.918  0.808  0.901  0.894  0.902  
p=1.2 0.915  0.910  0.917  0.823  0.894  0.897  0.903  
p=1.3 0.922  0.907  0.920  0.815  0.903  0.897  0.899  
p=1.4 0.920  0.910  0.922  0.853  0.905  0.901  0.901  
p=1.5 0.919  0.908  0.922  0.829  0.908  0.901  0.901  
p=1.6 0.925  0.910  0.922  0.822  0.905  0.908  0.905  
p=1.7 0.929  0.915  0.924  0.768  0.911  0.904  0.901  
p=1.8 0.927  0.912  0.929  0.773  0.919  0.905  0.904  
p=1.9 0.925  0.916  0.926  0.777  0.919  0.907  0.909  
p=2 0.928  0.927  0.928  0.782  0.917  0.912  0.912  

p=2.5 0.793  0.791  0.795  0.896  0.914  0.781  0.779  
p 3 0.697  0.693  0.692  0.902  0.915  0.681  0.679  

 
In order to illustrate the results of the four methods more clearly, Fig. 1 shows the relationship between 

the F-measure value and the P value in the absence of the noise feature. Here, we adopt the Silhouette index 

(using Minkowski distance). Fig. 2 shows the relationship between the F-measure value and the P value 

with 50% extra noise feature using the Silhouette index (using Minkowski distance). Fig. 3 shows the 

relationship between the F-measure value and the P value with the 100% extra noise feature using the 

Silhouette index (using Minkowski distance). 

 
 

75 Volume 12, Number 1, January 2017

Journal of Software



 
 

 
Fig. 1. F-measure of different method on no noise data sets. 

 

 
Fig. 2. F-measure of different method on 50% extra noise data sets. 

 

 
Fig. 3. F-measure of different method on 100% extra noise data sets. 

 
From the tables, it can be inferred that in the case of noise features, the effect has been significantly 

improved by the methods we proposed. 

4.3. Time Consumption Analysis 

K-Means, MWK-Means, FAMWK-Means are carried on the 12 different data sets 10 times respectively, and 
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the average time is obtained as the final result..  

 

 

 

 

 
Fig. 4. F- The Average Time and the different P  value over 10 runs on the 12 data sets. 

 
From Fig. 4, we can see that the time consumption of K-Means is lowest on every data set. When the 

entities and features of the data sets increase, the time consumptions of the three algorithms raise 

accordingly, but not significantly. Although MWK-Means spends less time than FAMWK-Means in most of 

cases, they have similar values. In the most time consuming case, our algorithm has no more than 1 second. 

5. Conclusion 

This paper proposes three methods aiming at improving the precision to retrieve the true cluster number 

of spherical Gaussian data sets. These methods can describe the structure of data sets with or without noise 

features in different degrees, reduce the number of iterations, and improve the stability of the clustering 

algorithm. Feature weight is introduced to the similarity measure. According to the results of each iteration, 

calculate the ratio of distance between clusters and within clusters on each of the features, execute a certain 

degree of reduction in Minkowski space and eliminate the clustering effect of irrelevant features, so as to 
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reflect the similarity degree between objects more accurately. Experimental results show that compared 

with the traditional K-means algorithm, the clustering accuracy rate is higher, the clustering results are 

more stable, the algorithm can effectively improve the imbalanced medical data sets clustering 

performance.  
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