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Abstract: Software reliability engineering has recently turned out to be an interesting research topic in the 

field of software engineering. For the purpose of reliability calculation of software, various software 

reliability models have been designed based on the application of software in particular fields. The ability of 

the particular model in estimating the failure rate, reliability, and cost of the software are the major 

requirement in reliability modeling since any sort of failure or fault in the software can make the entire 

system unreliable to perform the desired operation. This paper proposes an efficient software reliability 

growth model (SRGM) model selection for estimating the reliability of the software. The reliability model 

selection criteria are generally based on the improved computational time and better failure rates. The 

selection of the model is done by utilizing optimization techniques. Here we have used modified cuckoo 

search optimization and modified ABC in order to find the effectiveness of the reliability model. Using these 

optimization algorithms, we evaluate various measures of the reliability models and are compared with that 

of other models. Here two different optimization approaches are used since we can efficiently find the best 

model using these algorithms.  

 

Key words: Modified cuckoo search algorithm, modified artificial bee colony optimization, genetic 
algorithm, software reliability modeling, software reliability growth model, optimization techniques. 

 

 

1. Introduction 

Computer systems have become a very important and essential part of our daily lives. Computer 

hardware and software together form a complete system. A software system automates the working of a 

system. In this century, we hardly ever see any industry or other firms functioning without the help of an 

entrenched software scheme. Such an addiction on software systems has ended it indispensable to 

construct more reliable software’s. The reliability requirement is even higher for the safety critical real-time 

control system software’s [1]. The advancements in the information technology have changed the human 

life and society as well as software development dynamically. It has added a variety of dimensions like e-

learning, e-conferencing, e- commerce, e-meeting, e-governance and the list is now becoming endless 

[2].Building reliability growth models for predicting software reliability represents a challenge for software 

testing engineering. The forecast of the amount of defects in software aid in figuring out the software 

release day and supervise project assets. Most software reliability growth models, known in history, have 

1 Volume 12, Number 1, January 2017

Journal of Software

mailto:rao.mkrao@gmail.com


  

two or three parameters to be estimated. They include the expected number of failures in the software by 

the end of the testing process and the initial failure intensity [3].  

Developing and maintaining the software reliability has become essential due to its escalating 

dependence and demands as well as the functionality has become decisive bearing in mind the factors like 

reliability, safety of human lives and security issues as well. On the developers and users point of view, the 

major issues are specification, assessment and verification of these quality descriptions [4]-[5]. Diverse 

Machine Learning (ML) and Soft Computing techniques, such as Genetic Programming (GP), Artificial 

Neural Networks (ANN), Genetic Algorithms (GAs), Fuzzy Logic (FL), Evolutionary Strategies (ESs), and 

Particle Swarm Optimization (PSO) are using in solving the problems existing in software engineering in the 

21 century. The recent trend being the usage of Particle Swarm Optimization (PSO) algorithm to calculate 

approximately the SRGM parameters. The technique illustrated considerable advantages in managing a 

wide range of modeling problems such as the Exponential Model (EXPM), power model (POWM) and 

Delayed S-Shaped Model (DSSM). Similar to the above process, Parameter assessment of Hyper-Geometric 

Distribution Software Reliability Growth Model by utilizing Genetic Algorithms is an additional paradigm 

[6].  

Execution time is one of the critical parameters in estimating the reliability of a system since it affects 

system usage to a great extent. Reliability is not time dependent. If a system logic path contains error, 

failures occur when it is executed. Reliability growth is enhanced when the detected errors are corrected [7]. 

Reliability of software defined as the probability that the software will work before it struck with an error 

in the given conditional environment. The behaviors of the software reliability in terms of different failure 

rates are being explained. Describing the complete software resting in terms of mathematical equations are 

called reliability growth model [8]. Measuring or prophesying reliability has always been an innate task. In 

the case of software’s, researches have been done to make this work more scientific rather than intuitive. 

The present paper adds a bit in this series of researches. Software reliability has continuously been one of 

the prime concerns of the researchers for a very extended period of time. Optimization techniques inspired 

by SI have become increasingly popular during the last decade. SI can be applied to several aspects of 

computer science [9]. 

The rest of the paper is organized as follows. Section II presents the various researches performed in 

relation to our suggested work. Section III elucidates the plan, approach, and the advanced technique. 

Section IV proves and details about the results of our suggested technique, and finally, section V closes our 

proposed method for selection of software reliability growth model. 

2. Related Work 

Numerous researches are done in the field of software reliability growth model selection for software 

reliability checks. Some of the recent researches are given below, 

In order to estimate the reliability of software as SRGMs, many software reliability growth models have 

been suggested in recent past. The proper parameter assessment was tedious since the functions 

recommended were non-linear in nature. Shanmugam and Florence [10] have discussed an estimation 

method based on Ant Colony Algorithm in which parameters are assessed. Statistical illustration based on 

five sets of actual failure data were examined by utilizing existing methods feasible solutions for some of the 

models, and data sets could not be obtained, whereas; in the proposed method, at least one solution could 

be obtained.  

Due to the growth in demand for software with high reliability and safety, software reliability prediction 

becomes more and more essential. Software reliability was an important part of software quality. Over the 

years, many software reliability models have been successfully utilized in practical software reliability 
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engineering; however, no single model could obtain an accurate prediction for all cases. So in order to 

improve the accuracy of software reliability prediction Rita G. Al Gargoor et al. [11] have proposed a model 

which combined the software reliability models with the neural networks (NN). To opt for the most 

excellent structural design of the neural network, Particle swarm optimization (PSO) algorithm have been 

preferred and applied for learning procedure. The applicability of the proposed model was demonstrated 

through three software failure data sets. The results exhibited that the proposed model has good prediction 

capability and more applicable for software reliability prediction. 

Software reliability, defined as the likelihood of software to function devoid of malfunction for a precise 

phase of time in a specific environment. Diverse software reliability growth models have been proposed to 

envisage the reliability of software. These models help traders to predict the actions of the software before 

consignment. The reliability was forecasted by approximating the constraints of the software reliability 

growth models. Traditional techniques like Maximum Likelihood and least Square Estimation finds it 

difficult to estimate best possible parameters since the model parameters are generally in nonlinear 

relationships. Parameter estimation of NHPP based reliability models, using MLE and using an evolutionary 

search algorithm called Particle Swarm Optimization, has been explored by Bidhan and Awasthi [12]. 

Various stochastic search algorithms have been introduced which have made the task of parameter 

estimation, more reliable and computationally easier. 

Software Reliability Model was categorized into two; one was the static model and the other one was the 

dynamic model. Dynamic models observed the temporary behavior of debugging process during the testing 

phase. In Static Models, modeling and analysis of program logic were done on the same code. A Model which 

describes error detection in software Reliability was called Software Reliability Growth Model. Aggarwal 

and Gupta [13] have reviewed various existing software reliability models and their failure intensity 

function and the mean value function. On the basis of this review, a model was proposed for the software 

reliability having different mean value function and failure intensity function. 

For software testing engineers and project managers, it’s been a challenge for developing reliability 

growth models to forecast software reliability to identify and remove errors. Predicting the fault in software 

helps radically in estimating the software release date and to manage scheme resources. The majority of 

growth models consider two or three parameters to assess the amassed defects in the testing course. The 

concern in utilizing evolutionary computation to resolve forecast and modeling problems has grown rapidly. 

Alweshah et al. [14] have explored the use of genetic programming (GP) as a tool to help in building growth 

models that could accurately predict the number of faults in software early on in the testing process. The 

proposed GP model was based on a recursive relation derived from the history of measured faults. The 

developed model was tested on real-time control, military, and operating system applications. 

3. Proposed Methodology 

Software reliability growth model plays a significant role in identifying the quality and reliability of 

software being designed. A software reliability growth model is the one in which various measures like 

failure rate, number failures decreased and other such measures needed for estimating the quality of 

software are measured. In our proposed system, an efficient software reliability growth model (SRGM) 

selection for determining the reliability of the software. The reliability model selection criteria are based on 

the improved computational time and better failure rates. The selection of the model is done by utilizing 

optimization techniques. Here we have used modified cuckoo search optimization and modified ABC in 

order to find the effectiveness of the reliability model. Various parameters of reliability models are 

estimated using the proposed algorithm and are compared with some existing techniques. Here two 

different optimization approaches are used since we can effectively find the best model using these 
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algorithms. The structural view of our proposed method is shown in Fig. 1 below, 

 
Fig. 1. Architectural representation for proposed SRGM model selection. 

 

3.1.   Test Case Generation 

Test cases are employed to test all possible combinations in the application, and as well it offers the user 

just to replicate the steps that were assumed to expose a defect that as identified during the test. Test cases 

can be charted directly and obtained from use cases. Test cases can as well be obtained from system 

requirements. Moreover, when the test cases are produced early, Software Engineers can frequently 

discover ambiguities and inconsistencies in the requirements specification and design documents. It will 

get down the cost of building the software systems as faults are eradicated early during the life cycle. Test 

case generation is a method where the test cases are produced not based on an algorithm but based on the 

one’s statement of the application. Classes will be checked and test different inputs will be offered to make 

sure for the faults in the application. 

3.2.   Parameter Estimation Criteria 

Generally, software reliability growth model success rate determines based on the collected failure data. 

4 Volume 12, Number 1, January 2017

Journal of Software



  

In order to estimate the parameters of SRGM, Maximum Likelihood Estimation (MLE) is employed because 

of its simplicity with the combination of Logistic exponential TEF. Usually, the logistic exponential TEF 

follows the Non-homogeneous Poisson process (NHPP) and it is highly helped in fault exclusion process.  

The estimation of various parameter measures and optimization of the parameter values can result in an 

enhanced reliability model.  The various parameters estimation criteria we used are illuminated as follows, 

1)  Mean value of number of Faults [15] 

 

       ( )= (1-exp(- * ))/(1+ *exp(- * ) m f R n T n T                                                              (1) 

It is useful to find the mean value of number of faults after finding the total number of failures.  
2)  Mean value of failures measures the failure rate [15] 

 

( )  /i nf t f f                                                                                         (2) 

                                                                                                     

3)  Software reliability measure is used to verify the performance of the particular software component. 

Also, it helps in software quality prediction. It is defined as [15]  

 

        hCTfMhCTfMCTsR /,/,exp,/  
                                                            (3) 

where  

RS is the software reliability measure 

TΠ is the testing termination time 

CΠ is the testing coverage  

h represents the total parameter estimate 

Mf  is the mean number of faults detected 

3.3.    Various Software Reliability Growth Models Used  

Numerous researchers proposed various SRGMs to predict the quality of software components. The 

Several SRGMs we have employed are given in below sections,  

chosen some of them such as Yamada Rayleigh Model, Two-Dimensional S-shaped Model, and Huang 

Logistic Model.   

1) Two-Dimensional S-shaped model [16] 

Two-Dimensional S-shaped Model evaluates the reliability growth based on the combined effect of testing 

time and testing coverage during testing. It is defined as  

 

               frfNF                                                                                       (4) 

where,  

μf is the Mean number of faults detected with respect to the Coverage and time. 

μfr is the mean number of failures with respect to the Coverage and time  

2) Yamada Rayleigh Model [16] 

The Yamada Rayleigh model estimates the cumulative number of faults in the software application and 

plots in terms of S-shaped curves. Usually, the failure rate is found using the Rayleigh function. It is 

expressed as  

                tmtKftF ,,                                                                                      (5) 
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where K is total defects observed, tm is the maximum peak time, and t is the actual time. 

3) Huang Logistic Model [16] 

The Huang logistic model uses the logistic functions. Because of simplicity, the logistic exponential 

Testing effort function is widely used technique in modeling software reliability. The following expression 

measures the logistic functions                   

                 kk f

k

n

cftL  /

1

)( 


                                                                                     (6)     

where 

cf - mean value of the cumulative number of failures 

kf
 - mean value of failure. 

3.4.   Proposed SRGM Selection Using Modified Cuckoo Search Algorithm 

The Cuckoo search algorithm is an optimization technique which is a biologically inspired algorithm 

based on the behaviors of the bird cuckoo. In Cuckoo search, the main factor is the levy flight equation 

employed updation procedure. In our proposed modified cuckoo search algorithm, the levy flight equation 

is modified by including Gaussian function. The flow chart for modified cuckoo search algorithm as shown 

in below Fig. 2,  

The various phases of the cuckoo search algorithm is given in the below steps, 

Step1: Give software application as input 

Step2: Compute the Reliability and Fitness values of the software application.  

Step 3: Initialization Phase 

In this phase we initialize the population randomly i.e. mi, where i=1, 2,…, n. 

Step 4: Generation of New Cuckoo Phase 

New solution is generated randomly by utilizing levy flights. The worst and the best cuckoo are selected 

based on the objective function obtained and we neglect the worst case. 

Step 5: Fitness Evaluation Phase 

The best solution is selected by calculating the fitness value using the expressions given below, 
 

                                  
To

Sel
M

Q

Q
Q                                                                                             (7) 

                                  fitness maxpopularity MQ                                                                           (8) 

where, 

SelQ - signifies the selected population 

ToQ - represents the total population 

Step 6: Updation Phase 

In updation phase the solution is optimized by the levy flights. The nest is selected randomly depending 

on the quality of the new solution. The replacement of solution is made if the previous solution is inferior to 

the obtained new solution or vice versa. The expression given below shows the levy flight equation for 

finding out the best solution: 

 

                            )()()1(* pLevyt
izt

iziz                                                  (9) 

 
The above normal levy flight equation is modified by incorporating the gauss distribution which is given 

in below expressions, 
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where, 

                             )exp(* Cg                                                                             (11)
 

 ,0
*   - represents the constants 

C  – Symbolizes the current generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flow diagram for modified cuckoo search algorithm. 
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Step 7: Worst Nest rejection Phase 

In worst nest rejection phase the worst cases are ignored based on the fitness value and new solutions 

are selected. And the selected best solutions are ranked depending upon their fitness value 

Step 8: Termination 

.The above process will be continued till the termination criteria is achieved. Thus we utilized the MCS 

algorithm for selecting the SRGM which can help in effectively estimating the software reliability. 

In our proposed system we employ another optimization process to select the better model. We can 

compare the outcome of the two optimization techniques to choose the better model. The algorithm utilized 

here is modified ABC algorithm, and the process is explained in the below section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flow diagram for Modified ABC. 

 

3.5.   Proposed Modified Artificial Bee Colony for Optimization 

In an ABC model, a food source position refers to a possible solution for the optimization problem, 
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whereas nectar quantity of a food source refers to the quality (fitness) of the respective solution. The 

objective of bees is set as to determine the best solution [17]. Each employed bee shares the information 

with an onlooker bee and flies back to the food source, which was visited by it in the previous wandering. 

This process is undertaken since the memory keeps the record of the food source. The employed bee selects 

a new food source using the visual knowledge about the neighborhood of the one stored in the memory and 

assesses the nectar amount [18]. The normal ABC contains three phases like employee bee phase, onlooker 

bee phase, and scout bee phase. In our proposed scheme, instead of the scout bee phase, we incorporate the 

genetic operators like crossover and mutation for the better optimization process. The flow diagram for 

modified ABC as shown in Fig. 3 above. The procedure for our proposed optimization is explained below,   

3.5.1.    Employee bee phase 

The colony of artificial bees is home to three categories of bees such as the employed bees, onlooker bees 

and the scout bees. A bee hanging around on the dance area for taking a decision to select a food source is 

known as an onlooker bee.  Whereas a bee moving towards the food source visited earlier is labelled as an 

employed bee. Further, a bee entrusted with the task of performing arbitrary search is termed as a scout 

bee.  One half of the colony is occupied by the employed artificial bees and the other half is inhabited by the 

onlookers. In respect of each food source, there is only one employed bee. Thus, the number of employed 

bees matches exactly with the number of food sources around the hive. The employed bee whose food 

source is used up by the employed and onlooker bees emerges as a scout. At the initialization phase, a set of 

food source locations are arbitrarily chosen by the employed bees and their nectar quantities are estimated 

like Ei with m solutions, where each solution is the food source position and Psz is the population size is 

generated. The solution representation can be given as Si where 1≤ i ≤m  and M is the number of parameters 

to be optimized Subsequently, these bees come into the hive and exchange the nectar data of the sources 

with the onlooker bees staying on the dance area within the hive.  

3.5.2.    Onlooker bee phase 

In this stage, the selection of the food sources by the onlookers after getting the data from the employed 

bees and generation of novel solution are performed.  The onlooker bee favors a food source area based on 

the nectar data supplied by the employed bees on the dance area. Along with the enhancement in the nectar 

quantity of a food source the probability of selection of the corresponding food source by an onlooker 

increases. When the nectar of a food source is thrown away by the bees, a fresh food source is arbitrarily 

decided by a scout bee and substituted with the discarded one. An artificial onlooker bee probabilistically 

generates an alteration on the location (solution) in her recollection for discovering a fresh food source and 

assesses the nectar quantity (fitness value) of the fresh source (new solution). The probability of food 

source selection by onlooker bee is expressed as below, 

                                       

1

j
fs n

i

i

F
P

F






                                                                                    (12) 

 where, 
 Fj=Fi refers to fitness of the solution and 

n refers to the number of food sources which is equal to the number of employed bees.  

On reaching the chosen zone, onlooker selects a fresh food source in the vicinity of the one in the 

recollection according to the visual data, which is invariably dependent on the analysis of food source 

locations. When the nectar of a food source is thrown away by the bees, a fresh food source is arbitrarily 

decided by a scout bee and substituted with the discarded one.  
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Let the old location be characterized by 
kjz ,

and the new position by
kjy ,

, which is expressed by the 

equation as shown below, which manages the generation of a neighbour food source location around kjy ,

and the renovation, characterizes the analysis and contrast of the neighbour food locations visually by the 

bee. 

, , , , ,( ),j k j k j k j k i kz y y y i j                                                  (13) 

 

where, 

},...,2,1{ nk   

},...,2,1{ Ni   

ij , is an arbitrary number in the range[ −1, 1].  

The above equation can be reformulated by rearranging the position values which is shown in the eqn 

below, 

                                                                                                                                                                                                                                                                             
(14) 

                                 
For the above equation we define the time domain form by substituting certain factors for each position 

value like kjy ,  as 
lX  when kjz , is taken as

1l
X .  

                                                                                                       
(15) 

 
The above eqn can be reformed since 

lXX
l


1

 is the discrete version of the derivative of order 1 ,  

 
                                                                                

(16) 
 

After the onlooker bee phase we have incorporated the genetic operators like crossover and mutation in 

order to refine the optimization process. The process is explained in the section below, 

3.5.3.    Crossover 

After selecting the individuals, the next step is the crossover where two parents are made to mate each 

other. In the crossover process, the particles from different position are interchanged to generate better 

offspring so that the particle can generate better fitness value compared to the parent particle.  Select the 

particle with the best fitness value, reinitialize its position. Along with this evaluate the particle with the 

worst fitness value, whether its new position is acceptable, if it is within an acceptable range then update its 

position or else a new position is assigned to the particle randomly in its neighbourhood and then renew 

the position and velocity of other particles. In our proposed technique we employ two point crossover 

techniques with the crossover rate of CO Rate. The eqn 17 and 18 shows the crossover point selection. The 

genes in between the two points 1ovrc  and 2ovrc  are interchanged between the parent chromosomes and so 

Np/2 children chromosomes are obtained. The crossover points 1ovrc  and 2ovrc  are determined as follows 

                            
3

)(

1

i

f

ovr

S
c                                                                                (17) 

)( ,,,1 kikjkjl yyXX
l






)(][ ,,,1 kikjkjl yyXD  
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Pseudo code for Crossover 

function C = CrossOver(C,Psize) 

for t = 1 : size(C,1) 

%     tmp1 = C(t,1); 

%     tmp2 = C(t+1,1); 

%     C(t+1,1) =  randi([1,Psize]); 

 C(t,1) =  randi([1,Psize]); 

end 

3.5.4.   Mutation 

After crossover, a new set of populations is produced. In order to provide individuality to each 

chromosome, mutation operation is performed where we replace any value with a new value to form a new 

individual. 

Pseudo code for Mutation 

function M = Mut(M,Psize) 

r = randi([1 2],1); 

for t = 1 : r 

 r1 = randi([1 size(M,2)],1) ; 

M(t,r1) =randi([1,Psize]); 

end 

Thus using the proposed MABC the parameters are optimized and the models are selected. The selected 

models using MCS and MABC are the compared to find out the better model. Along with these proposed 

algorithms, we compare the performance of Genetic Algorithm as well. 

4. Results and Discussions 

 

Table 1. Cumulative Number of Failures before and after Optimization at Various Time Intervals 

Time 

(sec) 

Cumulative number of  failures 

Before Optimization After optimization 

1 4.23 0.38 

5 3.15 0.25 

10 6.65 0.19 

20 5.21 0.29 

25 5.01 0.13 

 

Normally, SRGMs are means that is utilized in order to determine the quantifiable temperament of 

software, to extend test status, to plan status and to observe reliability values. The quality of software can 

be estimated based on the prediction of software reliability. In our proposed scheme we have developed a 

novel technique for software reliability growth model selection, where we utilize optimization techniques to 

select the models based on the failure rate of the software. This prediction method proves to be more 

efficient in terms of selection of SRGMs as it utilizes double optimization scenario. The implementation of 

the proposed scheme is done using JAVA and Netbeans tools and the software’s being used as inputs are 

banking application software, hospital healthcare management systems, and library management software. 

The various measures that we employ in our proposed system to show the effectiveness of the technique 
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are mentioned below. 

For various time instants, the aggregate number of failure prior and after optimization are presented in 

Table 1 given below. 

The graphical analysis of cumulative number of failure for the above table values is shown in Fig. 4. 

 

 

Fig. 4.  Graphical depictions for comparison of cumulative number of failures before and after optimization. 

 

4.1.    Application Examples 

DS1: We have proved the effectiveness of our proposed system by considering various application 

examples. First among the application example is the banking application software.  The different 

parameters like the number of failures, the cumulative number of faults, the mean value of number of faults, 

and reliability are measured for the banking application software. The proposed MCS and MABC have 

delivered better results. Table 2 given below shows the decreased number of failures obtained for various 

models for banking application software.  

 

Table 2. Reduced Failure Rate for Different SRGM Models at Different Time Intervals 

 

Time Interval 

(sec) 

Number of failures Reduced 

Yamada Rayleigh 

Model 

Huang Logistic 

Model 

Two-Dimensional 

S- Shaped Model 

1 2.1345 2.0213 8 

5 4.1526 3.9832 12 

10 7.3265 7.1212 13 

20 9.1235 8.2312 9 

25 10.2301 9.9621 15 

 

The graphical analysis of the values for failure rate decreased at various time instant for different SRGM 

models are plotted as shown in the Fig. 5 given below  

DS 2: The second application example we employed is the library management system software.  The 

different parameters like the number of failures, the cumulative number of faults, the mean value of number 

of faults, and reliability are measured for library management application. The proposed MCS and MABC 

have delivered better results. Table 3 given below shows the decreased number of failures obtained for 

various models for library management system software.  
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Fig. 5 Graphical representation of failure rate for different SRGMs at different time intervals. 

 

Table 3. Reduced Failure Rate for Different SRGM Models at Various Time Intervals 

 

Time Interval (s) 

The Number of failures Decreased 

Yamada Rayleigh 

Model 

Huang Logistic 

Model 

Two-Dimensional  

S- Shaped Model 

1 12.1563 12.9621 19 

5 7.4123 9.2315 15 

10 5.2314 6.3251 10 

20 4.2135 2.3265 12 

25 8.2314 5.3658 9 

 

The graphical analysis of the values for failure rate decreased at various time intervals for different SRGM 

models are plotted as shown in Fig. 6 given below 

DS 3: The final example application is hospital healthcare management system software.  The different 

parameters like the number of failures, the cumulative number of faults, the mean value of number of faults, 

and reliability are measured for library management application.  The proposed MCS and MABC have 

delivered better results. Table 4 given below shows the decreased number of failures obtained for various 

models for hospital management system software. 
 

 

Fig. 6. Graphical representation of failure rate for different SRGMs at various time intervals. 
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Table 4. Reduced Failure Rate for Different SRGM Models at Various Time Instants 

Time 
Interval (sec) 

Number of failures Decreased 

Yamada Rayleigh 

Model 

Huang Logistic 

Model 

Two-Dimensional S- Shaped 

Model 

1 16.2314 15.2314 18 

5 12.3245 11.2312 14 

10 9.2356 8.2325 9 

20 5.2134 2.3265 11 

25 6.2154 5.3658 7 

 

The graphical analysis of the values for failure rate decreased at various time instant for different SRGM 

models are plotted as shown in the Fig. 7given below 

 

 

Fig. 7. Graphical representation of failure rate for three different models at various time intervals. 

 

4.2.   Comparison of SRGM’s Using MCS with MABC and GA  

Table 5 given below shows the failure numbers that are generated before and after applying optimization 

techniques. From the table, we can find that the number of failures has bettered when optimization 

technique are applied to the system. 

 

Table 5. Number of Failures at different Time Intervals before and after Optimization Using MCS, MABC, 

and GA Algorithms 

 

 

Time (s) 

No of failures 

Before 

Optimizatio

n 

After 

optimization 

(MCS) 

After optimization 

(MABC) 

After 

optimization 

(GA) 

1 19 13 15 17 

5 23 16 21 22 

10 41 29 34 38 

20 30 19 28 29 

25 35 23 32 33 

  

The Fig. 8 given below shows the representation of the number of failures obtained before and after 

optimizations in graphical form. The proposed approach has delivered better results when compared to 

existing techniques. 
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Fig. 8. Comparison of no of failures before and after optimizations at various time intervals. 

 

The reliability values obtained for the software is shown in Table 6 below. From the values obtained, we 

can infer that once optimization is done, the reliability of the software gets improved, and our proposed 

algorithms display better reliability values than other algorithms. 

 

Table 6 Reliability at Different Time Intervals before and after Optimization Using MCS, MABC, and GA 

Algorithms 

 

 

Time (s) 

Reliability 

Before 

Optimization 

After optimization 

(MCS) 

After optimization 

(MABC) 

After optimization 

(GA) 

1 0.3216 1.2352 0.9821 0.6524 
5 0.2923 1.9231 1.2352 0.8962 
10 0.3621 1.5231 1.0124 0.7542 
20 0.4962 1.6214 1.3214 0.9623 
25 0.2536 1.1132 1.0035 0.8213 

 

The graphical representation of the comparison of reliability value using proposed MCS algorithm, MABC 

and GA are shown in Fig. 9 below. The graph shows that our proposed method delivers better reliability 

when compared to that of the existing MABC, GA process. 

 

 

     Fig. 9. Reliability comparison before and after optimizations at different time intervals using different 

optimization techniques. 

The decreased failure rate for software reliability growth model with different optimization technique is 

shown in  Table 7 below, 
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Table 7. Decreased Failure Rate for Software Reliability Growth Models Using different Optimization 

Techniques 

Methods 

The Number of  failures Decreased 

Two-Dimensional 

S-shaped Model 

Yamada 

Rayleigh Model 

Huang Logistic 

Model 

MCS 19 18 18 

MABC 16.2314 15.2314 14.2135 

GA 12.9621 12.1214 11.2389 

The graphical representation of reduced failure rate for software reliability growth models using 

different optimization techniques is shown in Fig. 10 below. 

 

Fig. 10. Comparison of various software reliability growth models using MCS, MABC and GA optimization 

techniques. 

 

Based on the failure rate for different models the efficiency is estimated which is tabulated in the below 

Table 8. 

Table 8. Efficiency for Different Software Reliability Growth Models 

S.No Models Efficiency (%) 

 
Two-Dimensional 
S-Shaped Model 

79.23 

2 Yamada Rayleigh Model 69.11 

3 Huang Logistic Model 58.21 

 
Fig. 11. Graphical representation of efficiency for different SRGM like two-dimensional S-shaped, Yamada 

Rayleigh model, and Huang logistic model. 

The graphical analysis of the performance of the various SRGMs in terms of efficiency is displayed in  Fig. 

11 above. 
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5. Conclusion 

In this work, we have designed an innovative technique to select the software reliability growth model 

(SRGM). Here we have employed MCS and MABC optimization algorithms for the selection of SRGM. The 

selection of better model can assist in obtaining reliability of software. The major consideration for 

selecting the model in our proposed technique is the failure rate. The utilization of MCS and MABC have 

improved the selection rate as the optimization techniques are best suited for reducing the failure rate. The 

advantage of the proposed method is clear from the obtained results. In the proposed approach the major 

factor in selecting the reliability growth model is its efficiency, and the results prove that our proposed 

system has delivered better efficiency in selecting SRGM when compared with other algorithms.  
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