

An Efficient Method for Enhancing Reliability and
Selection of Software Reliability Growth Model through

Optimization Techniques

Mallikharjuna Rao K.1*, K. Anuradha2

Department of IT, GITAM University, Visakhapatnam, Andhra Pradesh, India.
Department of CSE, School of Computing, GRIET, Hyderabad, Telangana, India.

*Corresponding author. Tel.: +91-9652861997; email: rao.mkrao@gmail.com
doi: 10.17706/jsw.12.1.1-18

Abstract: Software reliability engineering has recently turned out to be an interesting research topic in the

field of software engineering. For the purpose of reliability calculation of software, various software

reliability models have been designed based on the application of software in particular fields. The ability of

the particular model in estimating the failure rate, reliability, and cost of the software are the major

requirement in reliability modeling since any sort of failure or fault in the software can make the entire

system unreliable to perform the desired operation. This paper proposes an efficient software reliability

growth model (SRGM) model selection for estimating the reliability of the software. The reliability model

selection criteria are generally based on the improved computational time and better failure rates. The

selection of the model is done by utilizing optimization techniques. Here we have used modified cuckoo

search optimization and modified ABC in order to find the effectiveness of the reliability model. Using these

optimization algorithms, we evaluate various measures of the reliability models and are compared with that

of other models. Here two different optimization approaches are used since we can efficiently find the best

model using these algorithms.

Key words: Modified cuckoo search algorithm, modified artificial bee colony optimization, genetic
algorithm, software reliability modeling, software reliability growth model, optimization techniques.

1. Introduction

Computer systems have become a very important and essential part of our daily lives. Computer

hardware and software together form a complete system. A software system automates the working of a

system. In this century, we hardly ever see any industry or other firms functioning without the help of an

entrenched software scheme. Such an addiction on software systems has ended it indispensable to

construct more reliable software’s. The reliability requirement is even higher for the safety critical real-time

control system software’s [1]. The advancements in the information technology have changed the human

life and society as well as software development dynamically. It has added a variety of dimensions like e-

learning, e-conferencing, e- commerce, e-meeting, e-governance and the list is now becoming endless

[2].Building reliability growth models for predicting software reliability represents a challenge for software

testing engineering. The forecast of the amount of defects in software aid in figuring out the software

release day and supervise project assets. Most software reliability growth models, known in history, have

1 Volume 12, Number 1, January 2017

Journal of Software

mailto:rao.mkrao@gmail.com

two or three parameters to be estimated. They include the expected number of failures in the software by

the end of the testing process and the initial failure intensity [3].

Developing and maintaining the software reliability has become essential due to its escalating

dependence and demands as well as the functionality has become decisive bearing in mind the factors like

reliability, safety of human lives and security issues as well. On the developers and users point of view, the

major issues are specification, assessment and verification of these quality descriptions [4]-[5]. Diverse

Machine Learning (ML) and Soft Computing techniques, such as Genetic Programming (GP), Artificial

Neural Networks (ANN), Genetic Algorithms (GAs), Fuzzy Logic (FL), Evolutionary Strategies (ESs), and

Particle Swarm Optimization (PSO) are using in solving the problems existing in software engineering in the

21 century. The recent trend being the usage of Particle Swarm Optimization (PSO) algorithm to calculate

approximately the SRGM parameters. The technique illustrated considerable advantages in managing a

wide range of modeling problems such as the Exponential Model (EXPM), power model (POWM) and

Delayed S-Shaped Model (DSSM). Similar to the above process, Parameter assessment of Hyper-Geometric

Distribution Software Reliability Growth Model by utilizing Genetic Algorithms is an additional paradigm

[6].

Execution time is one of the critical parameters in estimating the reliability of a system since it affects

system usage to a great extent. Reliability is not time dependent. If a system logic path contains error,

failures occur when it is executed. Reliability growth is enhanced when the detected errors are corrected [7].

Reliability of software defined as the probability that the software will work before it struck with an error

in the given conditional environment. The behaviors of the software reliability in terms of different failure

rates are being explained. Describing the complete software resting in terms of mathematical equations are

called reliability growth model [8]. Measuring or prophesying reliability has always been an innate task. In

the case of software’s, researches have been done to make this work more scientific rather than intuitive.

The present paper adds a bit in this series of researches. Software reliability has continuously been one of

the prime concerns of the researchers for a very extended period of time. Optimization techniques inspired

by SI have become increasingly popular during the last decade. SI can be applied to several aspects of

computer science [9].

The rest of the paper is organized as follows. Section II presents the various researches performed in

relation to our suggested work. Section III elucidates the plan, approach, and the advanced technique.

Section IV proves and details about the results of our suggested technique, and finally, section V closes our

proposed method for selection of software reliability growth model.

2. Related Work

Numerous researches are done in the field of software reliability growth model selection for software

reliability checks. Some of the recent researches are given below,

In order to estimate the reliability of software as SRGMs, many software reliability growth models have

been suggested in recent past. The proper parameter assessment was tedious since the functions

recommended were non-linear in nature. Shanmugam and Florence [10] have discussed an estimation

method based on Ant Colony Algorithm in which parameters are assessed. Statistical illustration based on

five sets of actual failure data were examined by utilizing existing methods feasible solutions for some of the

models, and data sets could not be obtained, whereas; in the proposed method, at least one solution could

be obtained.

Due to the growth in demand for software with high reliability and safety, software reliability prediction

becomes more and more essential. Software reliability was an important part of software quality. Over the

years, many software reliability models have been successfully utilized in practical software reliability

2 Volume 12, Number 1, January 2017

Journal of Software

engineering; however, no single model could obtain an accurate prediction for all cases. So in order to

improve the accuracy of software reliability prediction Rita G. Al Gargoor et al. [11] have proposed a model

which combined the software reliability models with the neural networks (NN). To opt for the most

excellent structural design of the neural network, Particle swarm optimization (PSO) algorithm have been

preferred and applied for learning procedure. The applicability of the proposed model was demonstrated

through three software failure data sets. The results exhibited that the proposed model has good prediction

capability and more applicable for software reliability prediction.

Software reliability, defined as the likelihood of software to function devoid of malfunction for a precise

phase of time in a specific environment. Diverse software reliability growth models have been proposed to

envisage the reliability of software. These models help traders to predict the actions of the software before

consignment. The reliability was forecasted by approximating the constraints of the software reliability

growth models. Traditional techniques like Maximum Likelihood and least Square Estimation finds it

difficult to estimate best possible parameters since the model parameters are generally in nonlinear

relationships. Parameter estimation of NHPP based reliability models, using MLE and using an evolutionary

search algorithm called Particle Swarm Optimization, has been explored by Bidhan and Awasthi [12].

Various stochastic search algorithms have been introduced which have made the task of parameter

estimation, more reliable and computationally easier.

Software Reliability Model was categorized into two; one was the static model and the other one was the

dynamic model. Dynamic models observed the temporary behavior of debugging process during the testing

phase. In Static Models, modeling and analysis of program logic were done on the same code. A Model which

describes error detection in software Reliability was called Software Reliability Growth Model. Aggarwal

and Gupta [13] have reviewed various existing software reliability models and their failure intensity

function and the mean value function. On the basis of this review, a model was proposed for the software

reliability having different mean value function and failure intensity function.

For software testing engineers and project managers, it’s been a challenge for developing reliability

growth models to forecast software reliability to identify and remove errors. Predicting the fault in software

helps radically in estimating the software release date and to manage scheme resources. The majority of

growth models consider two or three parameters to assess the amassed defects in the testing course. The

concern in utilizing evolutionary computation to resolve forecast and modeling problems has grown rapidly.

Alweshah et al. [14] have explored the use of genetic programming (GP) as a tool to help in building growth

models that could accurately predict the number of faults in software early on in the testing process. The

proposed GP model was based on a recursive relation derived from the history of measured faults. The

developed model was tested on real-time control, military, and operating system applications.

3. Proposed Methodology

Software reliability growth model plays a significant role in identifying the quality and reliability of

software being designed. A software reliability growth model is the one in which various measures like

failure rate, number failures decreased and other such measures needed for estimating the quality of

software are measured. In our proposed system, an efficient software reliability growth model (SRGM)

selection for determining the reliability of the software. The reliability model selection criteria are based on

the improved computational time and better failure rates. The selection of the model is done by utilizing

optimization techniques. Here we have used modified cuckoo search optimization and modified ABC in

order to find the effectiveness of the reliability model. Various parameters of reliability models are

estimated using the proposed algorithm and are compared with some existing techniques. Here two

different optimization approaches are used since we can effectively find the best model using these

3 Volume 12, Number 1, January 2017

Journal of Software

algorithms. The structural view of our proposed method is shown in Fig. 1 below,

Fig. 1. Architectural representation for proposed SRGM model selection.

3.1. Test Case Generation

Test cases are employed to test all possible combinations in the application, and as well it offers the user

just to replicate the steps that were assumed to expose a defect that as identified during the test. Test cases

can be charted directly and obtained from use cases. Test cases can as well be obtained from system

requirements. Moreover, when the test cases are produced early, Software Engineers can frequently

discover ambiguities and inconsistencies in the requirements specification and design documents. It will

get down the cost of building the software systems as faults are eradicated early during the life cycle. Test

case generation is a method where the test cases are produced not based on an algorithm but based on the

one’s statement of the application. Classes will be checked and test different inputs will be offered to make

sure for the faults in the application.

3.2. Parameter Estimation Criteria

Generally, software reliability growth model success rate determines based on the collected failure data.

4 Volume 12, Number 1, January 2017

Journal of Software

In order to estimate the parameters of SRGM, Maximum Likelihood Estimation (MLE) is employed because

of its simplicity with the combination of Logistic exponential TEF. Usually, the logistic exponential TEF

follows the Non-homogeneous Poisson process (NHPP) and it is highly helped in fault exclusion process.

The estimation of various parameter measures and optimization of the parameter values can result in an

enhanced reliability model. The various parameters estimation criteria we used are illuminated as follows,

1) Mean value of number of Faults [15]

 ()= (1-exp(- *))/(1+ *exp(- *) m f R n T n T (1)

It is useful to find the mean value of number of faults after finding the total number of failures.
2) Mean value of failures measures the failure rate [15]

() /i nf t f f (2)

3) Software reliability measure is used to verify the performance of the particular software component.

Also, it helps in software quality prediction. It is defined as [15]

        hCTfMhCTfMCTsR /,/,exp,/  
 (3)

where

RS is the software reliability measure

TΠ is the testing termination time

CΠ is the testing coverage

h represents the total parameter estimate

Mf is the mean number of faults detected

3.3. Various Software Reliability Growth Models Used

Numerous researchers proposed various SRGMs to predict the quality of software components. The

Several SRGMs we have employed are given in below sections,

chosen some of them such as Yamada Rayleigh Model, Two-Dimensional S-shaped Model, and Huang

Logistic Model.

1) Two-Dimensional S-shaped model [16]

Two-Dimensional S-shaped Model evaluates the reliability growth based on the combined effect of testing

time and testing coverage during testing. It is defined as

 frfNF   (4)

where,

μf is the Mean number of faults detected with respect to the Coverage and time.

μfr is the mean number of failures with respect to the Coverage and time

2) Yamada Rayleigh Model [16]

The Yamada Rayleigh model estimates the cumulative number of faults in the software application and

plots in terms of S-shaped curves. Usually, the failure rate is found using the Rayleigh function. It is

expressed as

    tmtKftF ,, (5)

5 Volume 12, Number 1, January 2017

Journal of Software

where K is total defects observed, tm is the maximum peak time, and t is the actual time.

3) Huang Logistic Model [16]

The Huang logistic model uses the logistic functions. Because of simplicity, the logistic exponential

Testing effort function is widely used technique in modeling software reliability. The following expression

measures the logistic functions

 kk f

k

n

cftL  /

1

)(


 (6)

where

cf - mean value of the cumulative number of failures

kf
 - mean value of failure.

3.4. Proposed SRGM Selection Using Modified Cuckoo Search Algorithm

The Cuckoo search algorithm is an optimization technique which is a biologically inspired algorithm

based on the behaviors of the bird cuckoo. In Cuckoo search, the main factor is the levy flight equation

employed updation procedure. In our proposed modified cuckoo search algorithm, the levy flight equation

is modified by including Gaussian function. The flow chart for modified cuckoo search algorithm as shown

in below Fig. 2,

The various phases of the cuckoo search algorithm is given in the below steps,

Step1: Give software application as input

Step2: Compute the Reliability and Fitness values of the software application.

Step 3: Initialization Phase

In this phase we initialize the population randomly i.e. mi, where i=1, 2,…, n.

Step 4: Generation of New Cuckoo Phase

New solution is generated randomly by utilizing levy flights. The worst and the best cuckoo are selected

based on the objective function obtained and we neglect the worst case.

Step 5: Fitness Evaluation Phase

The best solution is selected by calculating the fitness value using the expressions given below,

To

Sel
M

Q

Q
Q  (7)

 fitness maxpopularity MQ  (8)

where,

SelQ - signifies the selected population

ToQ - represents the total population

Step 6: Updation Phase

In updation phase the solution is optimized by the levy flights. The nest is selected randomly depending

on the quality of the new solution. The replacement of solution is made if the previous solution is inferior to

the obtained new solution or vice versa. The expression given below shows the levy flight equation for

finding out the best solution:

)()()1(* pLevyt
izt

iziz   (9)

The above normal levy flight equation is modified by incorporating the gauss distribution which is given

in below expressions,

6 Volume 12, Number 1, January 2017

Journal of Software

 g

t

i

t

ii zzz  
)()1(*

 (10)

where,

)exp(* Cg   (11)

 ,0
* - represents the constants

C – Symbolizes the current generation

Fig. 2. Flow diagram for modified cuckoo search algorithm.

Input Software System

Population Initialization of n host nests

Compute Failure Rate and Reliability

Values of Software System

Randomly obtain Cuckoo using

modified levy flight

Fitness Evaluation Fv

Nest selection among n randomly, u

Fv ≤ Fu

Solution = u

Replace u be new solution

Abandon worse nest and build new one at

new location using modified levy eqn

Retain current best

Th ≤ Imax

Find best Objective

End

Yes

No

No

Yes

Start

7 Volume 12, Number 1, January 2017

Journal of Software

Step 7: Worst Nest rejection Phase

In worst nest rejection phase the worst cases are ignored based on the fitness value and new solutions

are selected. And the selected best solutions are ranked depending upon their fitness value

Step 8: Termination

.The above process will be continued till the termination criteria is achieved. Thus we utilized the MCS

algorithm for selecting the SRGM which can help in effectively estimating the software reliability.

In our proposed system we employ another optimization process to select the better model. We can

compare the outcome of the two optimization techniques to choose the better model. The algorithm utilized

here is modified ABC algorithm, and the process is explained in the below section.

Fig. 3. Flow diagram for Modified ABC.

3.5. Proposed Modified Artificial Bee Colony for Optimization

In an ABC model, a food source position refers to a possible solution for the optimization problem,

Input Software System

Initialization of Solution

Compute Failure Rate and Reliability

Values of Software System

Employ Bee Phase

Probability Estimation

Onlooker Bee Phase

Fitness and Updation Process

Refining Solution using crossover and mutation

Termination

Criteria Reached

Final Solution

End

No

Yes

Start

Bee Colony Initialization

8 Volume 12, Number 1, January 2017

Journal of Software

whereas nectar quantity of a food source refers to the quality (fitness) of the respective solution. The

objective of bees is set as to determine the best solution [17]. Each employed bee shares the information

with an onlooker bee and flies back to the food source, which was visited by it in the previous wandering.

This process is undertaken since the memory keeps the record of the food source. The employed bee selects

a new food source using the visual knowledge about the neighborhood of the one stored in the memory and

assesses the nectar amount [18]. The normal ABC contains three phases like employee bee phase, onlooker

bee phase, and scout bee phase. In our proposed scheme, instead of the scout bee phase, we incorporate the

genetic operators like crossover and mutation for the better optimization process. The flow diagram for

modified ABC as shown in Fig. 3 above. The procedure for our proposed optimization is explained below,

3.5.1. Employee bee phase

The colony of artificial bees is home to three categories of bees such as the employed bees, onlooker bees

and the scout bees. A bee hanging around on the dance area for taking a decision to select a food source is

known as an onlooker bee. Whereas a bee moving towards the food source visited earlier is labelled as an

employed bee. Further, a bee entrusted with the task of performing arbitrary search is termed as a scout

bee. One half of the colony is occupied by the employed artificial bees and the other half is inhabited by the

onlookers. In respect of each food source, there is only one employed bee. Thus, the number of employed

bees matches exactly with the number of food sources around the hive. The employed bee whose food

source is used up by the employed and onlooker bees emerges as a scout. At the initialization phase, a set of

food source locations are arbitrarily chosen by the employed bees and their nectar quantities are estimated

like Ei with m solutions, where each solution is the food source position and Psz is the population size is

generated. The solution representation can be given as Si where 1≤ i ≤m and M is the number of parameters

to be optimized Subsequently, these bees come into the hive and exchange the nectar data of the sources

with the onlooker bees staying on the dance area within the hive.

3.5.2. Onlooker bee phase

In this stage, the selection of the food sources by the onlookers after getting the data from the employed

bees and generation of novel solution are performed. The onlooker bee favors a food source area based on

the nectar data supplied by the employed bees on the dance area. Along with the enhancement in the nectar

quantity of a food source the probability of selection of the corresponding food source by an onlooker

increases. When the nectar of a food source is thrown away by the bees, a fresh food source is arbitrarily

decided by a scout bee and substituted with the discarded one. An artificial onlooker bee probabilistically

generates an alteration on the location (solution) in her recollection for discovering a fresh food source and

assesses the nectar quantity (fitness value) of the fresh source (new solution). The probability of food

source selection by onlooker bee is expressed as below,

1

j
fs n

i

i

F
P

F






 (12)

 where,
 Fj=Fi refers to fitness of the solution and

n refers to the number of food sources which is equal to the number of employed bees.

On reaching the chosen zone, onlooker selects a fresh food source in the vicinity of the one in the

recollection according to the visual data, which is invariably dependent on the analysis of food source

locations. When the nectar of a food source is thrown away by the bees, a fresh food source is arbitrarily

decided by a scout bee and substituted with the discarded one.

9 Volume 12, Number 1, January 2017

Journal of Software

Let the old location be characterized by
kjz ,

and the new position by
kjy ,

, which is expressed by the

equation as shown below, which manages the generation of a neighbour food source location around kjy ,

and the renovation, characterizes the analysis and contrast of the neighbour food locations visually by the

bee.

, , , , ,(),j k j k j k j k i kz y y y i j    (13)

where,

},...,2,1{ nk 

},...,2,1{ Ni 

ij , is an arbitrary number in the range[−1, 1].

The above equation can be reformulated by rearranging the position values which is shown in the eqn

below,

(14)

For the above equation we define the time domain form by substituting certain factors for each position

value like kjy , as
lX when kjz , is taken as

1l
X .

(15)

The above eqn can be reformed since

lXX
l


1

 is the discrete version of the derivative of order 1 ,

(16)

After the onlooker bee phase we have incorporated the genetic operators like crossover and mutation in

order to refine the optimization process. The process is explained in the section below,

3.5.3. Crossover

After selecting the individuals, the next step is the crossover where two parents are made to mate each

other. In the crossover process, the particles from different position are interchanged to generate better

offspring so that the particle can generate better fitness value compared to the parent particle. Select the

particle with the best fitness value, reinitialize its position. Along with this evaluate the particle with the

worst fitness value, whether its new position is acceptable, if it is within an acceptable range then update its

position or else a new position is assigned to the particle randomly in its neighbourhood and then renew

the position and velocity of other particles. In our proposed technique we employ two point crossover

techniques with the crossover rate of CO Rate. The eqn 17 and 18 shows the crossover point selection. The

genes in between the two points 1ovrc and 2ovrc are interchanged between the parent chromosomes and so

Np/2 children chromosomes are obtained. The crossover points 1ovrc and 2ovrc are determined as follows

3

)(

1

i

f

ovr

S
c  (17)

)(,,,1 kikjkjl yyXX
l






)(][,,,1 kikjkjl yyXD  

),,(,,, kiykjykjkjykjz  

10 Volume 12, Number 1, January 2017

Journal of Software

2

)(

12

i

f

ovrovr

S
cc  (18)

Pseudo code for Crossover

function C = CrossOver(C,Psize)

for t = 1 : size(C,1)

% tmp1 = C(t,1);

% tmp2 = C(t+1,1);

% C(t+1,1) = randi([1,Psize]);

 C(t,1) = randi([1,Psize]);

end

3.5.4. Mutation

After crossover, a new set of populations is produced. In order to provide individuality to each

chromosome, mutation operation is performed where we replace any value with a new value to form a new

individual.

Pseudo code for Mutation

function M = Mut(M,Psize)

r = randi([1 2],1);

for t = 1 : r

 r1 = randi([1 size(M,2)],1) ;

M(t,r1) =randi([1,Psize]);

end

Thus using the proposed MABC the parameters are optimized and the models are selected. The selected

models using MCS and MABC are the compared to find out the better model. Along with these proposed

algorithms, we compare the performance of Genetic Algorithm as well.

4. Results and Discussions

Table 1. Cumulative Number of Failures before and after Optimization at Various Time Intervals

Time

(sec)

Cumulative number of failures

Before Optimization After optimization

1 4.23 0.38

5 3.15 0.25

10 6.65 0.19

20 5.21 0.29

25 5.01 0.13

Normally, SRGMs are means that is utilized in order to determine the quantifiable temperament of

software, to extend test status, to plan status and to observe reliability values. The quality of software can

be estimated based on the prediction of software reliability. In our proposed scheme we have developed a

novel technique for software reliability growth model selection, where we utilize optimization techniques to

select the models based on the failure rate of the software. This prediction method proves to be more

efficient in terms of selection of SRGMs as it utilizes double optimization scenario. The implementation of

the proposed scheme is done using JAVA and Netbeans tools and the software’s being used as inputs are

banking application software, hospital healthcare management systems, and library management software.

The various measures that we employ in our proposed system to show the effectiveness of the technique

11 Volume 12, Number 1, January 2017

Journal of Software

are mentioned below.

For various time instants, the aggregate number of failure prior and after optimization are presented in

Table 1 given below.

The graphical analysis of cumulative number of failure for the above table values is shown in Fig. 4.

Fig. 4. Graphical depictions for comparison of cumulative number of failures before and after optimization.

4.1. Application Examples

DS1: We have proved the effectiveness of our proposed system by considering various application

examples. First among the application example is the banking application software. The different

parameters like the number of failures, the cumulative number of faults, the mean value of number of faults,

and reliability are measured for the banking application software. The proposed MCS and MABC have

delivered better results. Table 2 given below shows the decreased number of failures obtained for various

models for banking application software.

Table 2. Reduced Failure Rate for Different SRGM Models at Different Time Intervals

Time Interval

(sec)

Number of failures Reduced

Yamada Rayleigh

Model

Huang Logistic

Model

Two-Dimensional

S- Shaped Model

1 2.1345 2.0213 8

5 4.1526 3.9832 12

10 7.3265 7.1212 13

20 9.1235 8.2312 9

25 10.2301 9.9621 15

The graphical analysis of the values for failure rate decreased at various time instant for different SRGM

models are plotted as shown in the Fig. 5 given below

DS 2: The second application example we employed is the library management system software. The

different parameters like the number of failures, the cumulative number of faults, the mean value of number

of faults, and reliability are measured for library management application. The proposed MCS and MABC

have delivered better results. Table 3 given below shows the decreased number of failures obtained for

various models for library management system software.

12 Volume 12, Number 1, January 2017

Journal of Software

Fig. 5 Graphical representation of failure rate for different SRGMs at different time intervals.

Table 3. Reduced Failure Rate for Different SRGM Models at Various Time Intervals

Time Interval (s)

The Number of failures Decreased

Yamada Rayleigh

Model

Huang Logistic

Model

Two-Dimensional

S- Shaped Model

1 12.1563 12.9621 19

5 7.4123 9.2315 15

10 5.2314 6.3251 10

20 4.2135 2.3265 12

25 8.2314 5.3658 9

The graphical analysis of the values for failure rate decreased at various time intervals for different SRGM

models are plotted as shown in Fig. 6 given below

DS 3: The final example application is hospital healthcare management system software. The different

parameters like the number of failures, the cumulative number of faults, the mean value of number of faults,

and reliability are measured for library management application. The proposed MCS and MABC have

delivered better results. Table 4 given below shows the decreased number of failures obtained for various

models for hospital management system software.

Fig. 6. Graphical representation of failure rate for different SRGMs at various time intervals.

13 Volume 12, Number 1, January 2017

Journal of Software

Table 4. Reduced Failure Rate for Different SRGM Models at Various Time Instants

Time
Interval (sec)

Number of failures Decreased

Yamada Rayleigh

Model

Huang Logistic

Model

Two-Dimensional S- Shaped

Model

1 16.2314 15.2314 18

5 12.3245 11.2312 14

10 9.2356 8.2325 9

20 5.2134 2.3265 11

25 6.2154 5.3658 7

The graphical analysis of the values for failure rate decreased at various time instant for different SRGM

models are plotted as shown in the Fig. 7given below

Fig. 7. Graphical representation of failure rate for three different models at various time intervals.

4.2. Comparison of SRGM’s Using MCS with MABC and GA

Table 5 given below shows the failure numbers that are generated before and after applying optimization

techniques. From the table, we can find that the number of failures has bettered when optimization

technique are applied to the system.

Table 5. Number of Failures at different Time Intervals before and after Optimization Using MCS, MABC,

and GA Algorithms

Time (s)

No of failures

Before

Optimizatio

n

After

optimization

(MCS)

After optimization

(MABC)

After

optimization

(GA)

1 19 13 15 17

5 23 16 21 22

10 41 29 34 38

20 30 19 28 29

25 35 23 32 33

The Fig. 8 given below shows the representation of the number of failures obtained before and after

optimizations in graphical form. The proposed approach has delivered better results when compared to

existing techniques.

14 Volume 12, Number 1, January 2017

Journal of Software

Fig. 8. Comparison of no of failures before and after optimizations at various time intervals.

The reliability values obtained for the software is shown in Table 6 below. From the values obtained, we

can infer that once optimization is done, the reliability of the software gets improved, and our proposed

algorithms display better reliability values than other algorithms.

Table 6 Reliability at Different Time Intervals before and after Optimization Using MCS, MABC, and GA

Algorithms

Time (s)

Reliability

Before

Optimization

After optimization

(MCS)

After optimization

(MABC)

After optimization

(GA)

1 0.3216 1.2352 0.9821 0.6524
5 0.2923 1.9231 1.2352 0.8962
10 0.3621 1.5231 1.0124 0.7542
20 0.4962 1.6214 1.3214 0.9623
25 0.2536 1.1132 1.0035 0.8213

The graphical representation of the comparison of reliability value using proposed MCS algorithm, MABC

and GA are shown in Fig. 9 below. The graph shows that our proposed method delivers better reliability

when compared to that of the existing MABC, GA process.

 Fig. 9. Reliability comparison before and after optimizations at different time intervals using different

optimization techniques.

The decreased failure rate for software reliability growth model with different optimization technique is

shown in Table 7 below,

15 Volume 12, Number 1, January 2017

Journal of Software

Table 7. Decreased Failure Rate for Software Reliability Growth Models Using different Optimization

Techniques

Methods

The Number of failures Decreased

Two-Dimensional

S-shaped Model

Yamada

Rayleigh Model

Huang Logistic

Model

MCS 19 18 18

MABC 16.2314 15.2314 14.2135

GA 12.9621 12.1214 11.2389

The graphical representation of reduced failure rate for software reliability growth models using

different optimization techniques is shown in Fig. 10 below.

Fig. 10. Comparison of various software reliability growth models using MCS, MABC and GA optimization

techniques.

Based on the failure rate for different models the efficiency is estimated which is tabulated in the below

Table 8.

Table 8. Efficiency for Different Software Reliability Growth Models

S.No Models Efficiency (%)

Two-Dimensional
S-Shaped Model

79.23

2 Yamada Rayleigh Model 69.11

3 Huang Logistic Model 58.21

Fig. 11. Graphical representation of efficiency for different SRGM like two-dimensional S-shaped, Yamada

Rayleigh model, and Huang logistic model.

The graphical analysis of the performance of the various SRGMs in terms of efficiency is displayed in Fig.

11 above.

16 Volume 12, Number 1, January 2017

Journal of Software

5. Conclusion

In this work, we have designed an innovative technique to select the software reliability growth model

(SRGM). Here we have employed MCS and MABC optimization algorithms for the selection of SRGM. The

selection of better model can assist in obtaining reliability of software. The major consideration for

selecting the model in our proposed technique is the failure rate. The utilization of MCS and MABC have

improved the selection rate as the optimization techniques are best suited for reducing the failure rate. The

advantage of the proposed method is clear from the obtained results. In the proposed approach the major

factor in selecting the reliability growth model is its efficiency, and the results prove that our proposed

system has delivered better efficiency in selecting SRGM when compared with other algorithms.

References

[1] Kapur, P. K., Anshu, G., & Jha, P. C. (2007). Reliability growth modeling and optimal release policy under

fuzzy environment of an n-version programming system incorporating the effect of fault removal efficiency.

International Journal of Automation and Computing, 4(4), 369-379.

[2] Singh, V. B., Kapur, P. K., & Mashaallah, B. (2012). Open source software reliability growth model by

considering change – point. International Journal of Information Technology, 4(1).

[3] Alaa, S. (2006). Reliability growth modeling for software fault detection using particle swarm

optimization. Proceedings of the IEEE International Conference on Evolutionary Computation (pp. 3071-

3078).

[4] Latha, S., & Lilly, F. (2013). Enhancement and comparison of ant colony optimization for software

reliability models. Journal of Computer Science, 9(9), 1232-1240.

[5] Carina, A. (2007). A replicated empirical study of a selection method for software reliability growth

models. Journal of Empirical Software Engineering, 12(2), 161–182.

[6] Sultan, A. (2011). Development of software reliability growth models for industrial applications using

fuzzy logic. Journal of Computer Science, 7(10), 1574-1580.

[7] Garima, B., & Kulvinder, S. (2015). Comparative study of cuckoo search and simulated annealing

technique on SRGM exponential models. International Journal of Advanced Research in Computer

Science and Software Engineering, 5(3).

[8] Shaik, M. R., & Shaheda, A. (2010). Software reliability growth model with gompertz TEF and optimal

release time determination by improving the test efficiency. International Journal of Computer

Applications, 7(11), 0975–8887.

[9] Neha, G., & Tarun, A. (2014). A review on particle swarm optimization for software reliability.

International Journal of Emerging Trends and Technology in Computer Science, 3(3).

[10] Latha, S., & Lilly (2012). A comparison of parameter best estimation method for software reliability

models. International Journal of Software Engineering and Applications, 3(5).

[11] Rita, G. A. G., & Nada, N. S. (2013). Software reliability prediction using artificial techniques. IJCSI

International Journal of Computer Science Issues, 10(4).

[12] Karambir, B., & Adima, A. (2014). A review on parameter estimation techniques of software reliability

growth models. International Journal of Computer Applications Technology and Research, 3(4), 267-272.

[13] Gaurav, A., & Gupta, V. K. (2014). Software reliability growth model. International Journal of Advanced

Research in Computer Science and Software Engineering, 4(1).

[14] Mohammed, A., Walid, A., & Hamza, A. (2015). Evolution of software reliability growth models: A

comparison of auto-regression and genetic programming models. International Journal of Computer

Applications, 125(3), 0975–8887.

[15] Rao, K. M., & Anuradha, K. (2014). An efficient method for parameter estimation of software reliability

17 Volume 12, Number 1, January 2017

Journal of Software

growth model using artificial bee colony optimization. Proceedings of the International Publishing

Switzerland, 765-776.

[16] Mallikharjuna, R. K., & Anuradha, K. (2015). An efficient method for software reliability growth model

selection using modified particle swam optimization technique. International Review on Computers and

Software, 1169-1178.

[17] Dervis, K., & Celal, O. (2010). Fuzzy clustering with artificial bee colony algorithm. Journal of Scientific

Research and Essays, 5(14), 1899-1902.

[18] Dervis, K., & Bahriye, A. (2009). A comparative study of artificial bee colony algorithm. Journal of

Applied Mathematics and Computation. 108–132.

Mallikharjuna Rao K. obtained his bachelor’s degree in information science and

technology engineering from University of Acharya Nagarjuna University, Guntur, Andhra

Pradesh, India in 2004. Then he obtained his master’s degree in computer science from

Jawaharlal Nehru Technological University of Hyderabad, India in 2010, and pursuing Ph.D.

in computer science and engineering majoring in software engineering-software reliability

engineering at Jawaharlal Nehru Technological University Hyderabad, Andhra Pradesh,

India. He has more than 10+ years of teaching experience in Engineering Institutions. Currently, he is

working as assistant professor in the Department of Information Technology, GITAM University,

Visakhapatnam, Andhra Pradesh, India. His specializations include software reliability, and software testing.

His current research interests are studying about software reliability growth models. He is a member of

MIAENG, AMIE, India.

Kodali Anuradha received the master’s degree M.Sc. in mathematics from Nagarjuna

University, Guntur, Andhra Pradesh, India, and a master’s degree M.Tech in computer

science from BITs, Ranchi, India, and a Ph.D in mathematics from JNTU Hyderabad,

Andhra Pradesh, India, and a Ph.D in computer science and engineering from JNTU

Anantapur, Andhra Pradesh, India in 1987, 2001, 2006, and 2011 respectively. Currently,

she is working as a professor at the School of Computing at GRIET, Hyderabad, India. She

has more than 25 years of Teaching and 6+ years of Research experience. She is currently guiding 6+

research scholars. Her research interests are software engineering, data mining, image processing,

computer networks, and network security.

18 Volume 12, Number 1, January 2017

Journal of Software

