

Stree: An Interactive Program for Weighted Steiner Trees

Valério Ramos Batista1*, Marcelo Zanchetta do Nascimento2, Wendhel Raffa Coimbra3

1 UFABC, av Estados 5001, 09210-580 St André, Brazil.
2 UFU-FACOM, av João N Ávila 2121, Bl.B, 38400-902 Uberlândia, Brazil.
3 UFMS, av Pedro Pedrossian 725, 79500-000 Paranaíba, Brazil.

* Corresponding author. Tel.: +55-11-4996-0077; email: valerio.batista@ufbc.edu.br
Manuscript submitted June 19, 2016; accepted July 14, 2016.
doi: 10.17706/jsw.11.10.1062-1072

Abstract: Here we present the extended version of a previous short publication about stree, which is a fully

written program with a semi-automatic method that generates weighted Steiner trees. Our choice of the

programming language, and the use of well-known theorems from Geometry and Complex Analysis, allowed

this method to be implemented with only 764 lines of effective source code. This simplifies the

understanding and the handling of this beta version for future developments.

Key words: Programmed code, weighted Steiner minimal trees.

1. Introduction

One of the main problems at implementing multicast in Wide Area Networks (WAN) is the high cost of

transmissions between terminals. Cost reduction is attained by adding routers to the network but this

increases complexity (see [1]–[2]). Steiner trees have long been used in order to optimise routes aiming at

the lowest cost possible (see [3]–[4]).

Although the Steiner Minimal Tree (SMT) problem belongs to the NP-hard class (see [5]), it can be exactly

solved by fast algorithms for terminals in thousands. The best example is the GeoSteiner algorithm.

Essentially, it checks for terminals that are as close as possible to vertices of equilateral triangles.

Afterwards, it prunes sub-optimal trees. See

http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner for details.

GeoSteiner is amazingly fast for terminals positioned at random. However, it is not the case when they

follow a pattern. For instance, we use 4GB of RAM, microprocessor Intel Core i5 3.2GHz, and operating

system Linux Ubuntu 12.04. With this setting GeoSteiner takes 73.02s to generate Figure 1. This time drops

to only 0.06s when the 31 terminals are at random. Fig. 1 was obtained through the datafile pat.tsp

contained in test_codes.zip, which we shall discuss in Section 4. Compare it with Fig. 2, in which the

SMT does follow a pattern.

Moreover, the GeoSteiner algorithm cannot be adapted to find weighted SMT (WSMT). This fact, together

with the slowness in patterned cases, is precisely due to the strategy of looking for equilateral triangles.

Given a graph G=(V,E,w), a subset S⊂V and a weight function w, we say that a tree T⊂G is a WSMT if it

spans all vertices of S and also minimises the total weight. This classical definition can be specialised to

edge- or node-weight when the domain of w is either E or V, respectively. The problem has further

variations, like for unity disk graphs and restrictions on w, that have been studied recently [6]–[9].

These and other works make use of heuristics. They are devoted to automatic methods that are fast at

1062 Volume 11, Number 10, October 2016

Journal of Software

generating weighted Steiner trees with good chances of approaching the minimum weight. But if one really

seeks a WSMT there are little chances that automatic methods will find it, unless applied to a few number of

vertices.

Fig. 1. Non-patterned GeoSteiner output. Fig. 2. Patterned SMT.

Of course, a semi-automatic method that includes some feedback to the user increases the chances of

finding this tree. Specially if we can rely on the skill and good guesses of a trained user. In the last paragraph

from §6 of [10] the very authors had already made this kind of comment. Of course, their work was devoted

to the standard Euclidean case and is previous to GeoSteiner by three decades. However, their comment is

still modern in the sense that one cannot always predict whether a fast algorithm exists to solve a given

problem.

In that same work Gilbert and Pollak conjectured that an SMT must have its length in the interval Lprim ∙

[√3/2,1], where Lprim is the length of the minimal spanning tree (MST). This one can be obtained by Prim's

algorithm [11]. According to [12] this conjecture is right. If so, any Steiner tree obtained from the MST will

be at most 13.4% shorter.

It seems little, but if a connection is used extensively this 13.4% represents a great saving in the

long-term. Moreover, in [13] the authors claim that Gilbert and Pollak's conjecture is not completely

answered yet. Thus, it might even happen that we get an SMT under this ratio.

Of course, a semi-automatic program is not suitable for thousands of terminals, except for a long-term

project distributed to a team of users. But even this exception does not apply to extreme cases, like

VLSI-design through rectilinear Steiner trees, in which millions of terminals are needed. However, terminals

in hundreds are still the case in several applications, like sound and video cards. Their frequent access

makes it desirable to minimise delay as much as possible. Even a 1% improvement would count in this case.

Indeed, weighted Steiner trees have many practical applications. Among others, they are used in network

formation games, computational sustainability and electric power networks [14]–[16]. For specific

applications in industry, please see [17]. The Steiner tree problem can also be studied in 3D and higher

dimensions [18]. Moreover, some of its variations are applicable to computational biology [19] and social

networks [20], among others. This is the case of prize-collecting Steiner trees (see [21] for details).

In [22] we introduced a fully written programmed code to generate weighted Steiner trees. That

reference is in fact a short version finally detailed in this present paper. Our choice of a programming

language was made in order to spare the graphical environment, which Matlab already brings in a very well

built-in way. Since we have not used toolboxes, this code can be easily adapted to a free software like Octave,

though this one has a simpler graphical user interface. Anyway, either Matlab or Octave produce a much

shorter code, easier to understand and to handle for future developments. Indeed, the present version of

1063 Volume 11, Number 10, October 2016

Journal of Software

our program has didactic purposes, for it is accessible even to undergraduate students in Computer Science.

Many original ideas were used to write our code. They are based on theorems normally relegated to Math

courses only, specially Geometry and Complex Analysis. The chosen programming language allowed these

theoretical results to be implemented into elegant and efficient codes. The reader can download them

through the link Softwares of

https://sites.google.com/site/vramos1970

As an example, the file estim.m (contained in stree.zip) runs with only 21 lines of effective source

code. This program draws the weighted MST (WMST) and computes its total weighted length. All together,

stree.m and its related to programs have only 855 lines, which drop to 764 if we do not count sread.m

and swrite.m (for graphical input and output of terminal points).

The aim of this paper is to detail the program stree.m totally written with original ideas we have just

mentioned in the previous paragraph. The rest is organised as follows: in Section 2 we prove some results

used in our paper. Section 3 is devoted to explaining some theorems that we have used to write the program.

Section 4 presents some of the geometrical and analytical ideas that were used to implement stree.m. In

Section 5 we present a practical application of stree, and we finally draw our conclusions in Section 6.

2. Preliminaries

As we mentioned in the Introduction, the MST is frequently used to construct a Steiner tree. Prim's

algorithm is easily adaptable to find the WMST for terminals that are weighted as follows:

Definition 2.1. Consider the tree T=(V,E) with a weight function w:V→IR+
 and 0–1 ad-jacency matrix aij.

Then T is an MST if it minimises the total cost C given by

(1)

where ||Vi – Vj || = ½ (wi – wj)|Vi – Vj | is the connection cost between terminals Vi and Vj, and |Vi – Vj | is

the (Euclidean) distance between Vi and Vj.

REMARK: The cost || ∙ || coincides with the Euclidean distance when w:V →{1}. To the best of our

knowledge Definition 2.1 is new in the literature. We apply it to solve a practical problem described in

Section 5.

For a given set of terminals V={V1,...,Vn} and a weight function w:V→IR+ we can find the edges E that

minimise the cost C in (1) and result in an MST T=(V,E). But if we can add extra points S={S1,...,Sm} to V,

namely V =V∪ S, we shall find the corresponding = (V ,E) such that ≤C. We claim that <C exactly when

S≠∅ , providing one chooses a suitable extension :V →IR+ of the weight function.

The following lemma shows how to make this choice when (n,m)=(3,1). See Fig. 3.

Lemma 2.1. Consider a triangle with vertex weights a, b and c, and suppose it admits a classical (Euclidean)

Steiner point. If s ≤ min{a,b,c} is the weight of the Steiner point, then its connection with the vertices will cost

less than any other connection through the vertices only.

Proof. Let ℓ1, ℓ2, ℓ3 be the distance from the Steiner point to the vertices a, b and c, respectively. We want

to prove that

 (a+s)ℓ1+(b+s)ℓ2+(c+s)ℓ3<(a+b)L+(b+c)L. (2)

Case 1: b ≤ a ≤ c. The law of cosines implies ℓ1 + ℓ2/2 < L and ℓ3 + ℓ2/2 < L. Hence aℓ1+bℓ2+cℓ3<aL+cL.

1064 Volume 11, Number 10, October 2016

Journal of Software

Moreover, s ≤ b and ℓ1+ℓ2+ℓ3<L+L. This implies (2).

Fig. 3. Adding a Steiner point to three weighted terminals.

Case 2: a ≤ b ≤ c. We have (aℓ1+bℓ2/2)+(bℓ2/2+cℓ3)<bL+cL. Since s ≤ a and aL ≤ bL, then (2)

follows.

Case 3: a ≤ c ≤ b. Notice that (aℓ1+bℓ2/2)+(bℓ2/2+cℓ3)<b(L+L). Since s ≤ a and aL ≤ cL, then (2)

holds again.

q.e.d.

Definition 2.2. A full Steiner tree is one in which any terminal connects to a Steiner point.

Lemma 2.2. Consider a full Steiner tree ith n≥3 terminals A1,...,An and Steiner points S1,...,Sn-2. Add weights

to their respective terminals as ai, 1≤i≤n, and to the Steiner points as si=min{a1,...,an}, ∪ i. he resulting

weighted tree is then a local minimum of C.

Proof. Based on Lemma 2.1 we see that a sufficiently small displacement of any Si will increase the

weighted length of the tree. Therefore, it characterises a local minimum of C.

q.e.d.

Regarding the Euclidean non-weighted case, in §§3.7 of [10] the authors show that any Steiner tree can

be decomposed into a union of full Steiner trees. By adding weights as described in Lemma 2.2 we can run

through all Steiner trees = (V ,E) determined by V and compute the corresponding C. There is a finite

number of such trees, hence the least C will determine as an MST.

The most important consequence of Lemmas 2.1 and 2.2 is that Steiner points can be added exactly as in

the Euclidean case for arbitrary n≥3. The resulting MST = (V ,E) coincides with a Euclidean non-weighted

Steiner tree, which will not be necessarily the Euclidean SMT. Anyway, many properties proved in [10] still

hold for : Convex hull, Maxwell's Theorem, Lune and Wedge properties.

3. Some Theorems Used in Our Code

The following theorems were used to implement rprim.m and mksaw.m, respectively.

Theorem 3.1. Let S be a finite set of points ith at least t o elements. In this case, there are P,Q∪ S such

that the distance between P and Q is maximal. The segment PQ is called the diameter of S.

Proof. We can write S={V1,...,Vn} and consider the set D={|Vi – Vj| : 1 ≤ i,j ≤ n}, which has at most (n–1)!

elements. Then max D is surely given by certain indexes î, ĵ that determine P as Vî and Q as Vĵ. Finally we get

PQ as stated.

Theorem 3.2. Let Q be a quadrilateral with consecutive vertices Pi, i=1,...,4. Let veci–2 = Pi–P1, i≥2, and Veci–1

= Pi–P4, i≤3. Then Q is convex precisely when vec1 is between vec0, vec2, and also Vec1 is between Vec0, Vec2.

Proof. By definition, Q is convex exactly when P2, P4 are at opposite sides of the straight line determined

by P1P3 and P1, P3 are at opposite sides of the straight line determined by P2P4. This is equivalent to the

1065 Volume 11, Number 10, October 2016

Journal of Software

assertion of the Theorem.

Theorem 3.3. Let A1,...,An be n≥3 terminals in the complex plane connected by a full Steiner tree S. Let

V={V1,...,Vs} be the set of Steiner points of S. Suppose that each element in V admits a terminal such that both

are the extremes of a segment in S. In this case there exists Vi ∪ V that determines all points in V \ {Vi}.

Proof. By following the arguments from §3.4 of [10], we have s=n–2 and only one segment in S with

extreme Ak for each k ∪ {1,...,n}. Since s≥1 the arguments from §6 of [10] apply. Namely, if each element of V

were connected to a single terminal, then we would have s=n, a contradiction. Hence, there exists Vi ∪ V

that connects two terminals. Up to re-indexing, these are A1, A2 and i=1.

Now consider the ray given by

If n=3, then it is clear that a unique positive τ gives r(τ)=A3.

Now take n > 3. For each positive t consider the rays ρt = r(t)+(V1 – A1)∙ IR+ and ρt = r(t)+ (V1–A2)∙ IR+. Let

A={A1,...,An} and take all positive t such that (ρt ∪ρt)∩A≠∪. They will make a finite set {t1,...,tm} with m≤n–2.

Since V1 must be connected to another Steiner point, say V2 (after re-indexing), then V2= r(tk) for a certain

k∪ {1,...,m}. Of course, r(tk) is connected to a terminal in A. Up to re-indexing, it is Ak.

In order to find k we must repeat the same arguments with V1,Ak,r(tk) respectively in the place of A1,A2,V1,

and so on. This will give at most s! full trees. One of them is minimal, whence all points V2,...,Vs are

determined. This concludes the proof of the Theorem.

Our next section explains a bit of stree.m, rprim.m and mksaw.m, which exemplify the applications of

the theorems discussed in this present section.

4. Efficient Codes from Geometry and Complex Analysis

Figure 4 describes our pseudocode, which works recursively while the connection matrix is not complete.

There the WMST is called Tree_of_Prim because we have adapted Prim's classical algorithm to the weighted

case.

stree Pseudocode

Input: Set of terminals

Output: Steiner tree

1. Pts ← terminals, Connexion_Matrix ← 0

2. Tree_of_Prim ← Compute_Tree_of_Prim(Pts)

3. Steiner_hull ← Compute_Steiner_hull(Pts)

4. While Connexion_Matrix implies Stree non-connected

i. Subset_Pts ← User's Choice of a Subgroup(Pts)

 ii. Subtree ← Compute_Connection(Subset_Pts)

iii. If Subtree not OK, redo Step i

iv. Else Connexion_Matrix ← Connection(Subset_Pts)

5. return Steiner tree (and its weighted length)

Fig. 4. The pseudocode of stree.m algorithm.

Initially, stree.m calls lune.m and cvxhull.m to inscribe the terminal points into the Steiner hull,

namely a polygon coloured cyan as shown in Figure 2 of the user manual. In general, there will be isolated

terminals inside the polygon. The ones that build its vertices are marked by stree.m with either 0 or 1,

1066 Volume 11, Number 10, October 2016

Journal of Software

which mean ``greater'' and ``lesser'' than 120°, respectively. The characters 0 and 1 are stored in a string s.

For instance, if s contains a stretch 010, this hints to three terminals joined by a Steiner point.

But they are not connected automatically, for this hint might not lead to the shortest tree. We use the

variable s for purposes like building zigzags out of stretches 01...10. Of course, not all zigzags are good, but

the program will try them back and forth, and even split them into parts.

Of course, lune.m and cvxhull.m are based on the Convex Hull and Lune properties described in [10].

They do not give a polygon with zigzags, but with stretches like in Figure 5. Hence, stree.m calls

mksaw.m in order to get the zigzag.

Fig. 5. A ''01...10'' stretch.

If you want to test these procedures, extract the attached file test_codes.zip in a folder and start

Matlab inside it. At the Matlab prompt run ''Cvxhull'' for the terminal data test2 and save the output with

the name test3. A figure will show the original input order of the terminals (dotted lines), and a blue

polygon involving them (the convex hull). Then run ''Lune'' for test3 and name the output test4.

Now we are going to explain Rprim.m and Mksaw.m, which will finally generate a zigzag out of

test2.txt (the initial datafile). According to Theorem 3.1, there is a diameter for the points in

test2.txt, and lines 2-3 of Rprim.m are precisely the commands to find them, namely Pts(h(k)) and

Pts(k). However, you must run ''Rprim.m'' for the re-ordered data test4.

Now we project all points along the diameter and re-order them by increasing distance between their

projection and the extreme Pts(k). That is what the while-loop does in lines 11 to 19. The re-ordered

input is restored in line 20, and may be saved in line 21. We did it in test5.txt, which Mksaw.m finally

re-orders into a zigzag.

Notice that the terminals from test5.txt are in zigzag order except for one single square wavelet.

However, Mksaw.m works well even if you have a totally square wave. Enter the terminal points in an order

that makes such a wave. We have used test6.txt to generate Figure 5. This precaution is not necessary

when you run stree.m, for it will rearrange the points as explained above.

By walking along the square wave from the very first point on, two consecutive steps will always lead to a

1067 Volume 11, Number 10, October 2016

Journal of Software

vertex that makes a quadrilateral Q with the following two. That is why the while-loop ends in

pts=pts(2:end).

 Fig. 6. Its rearrangement by ''Mksaw''.

Now look at lines 4 to 9 of Mksaw.m and apply Theorem 3.2 to Q. The symbol × will indicate the vector

product. From Geometry, the convexity criteria given by this theorem is equivalent to vec0×vec1, vec2×vec1

pointing in opposite directions. The same holds for Vec0×Vec1, Vec2×Vec1. Taking these vectors as complex

numbers in C×IR, say vec1=a+ib=(a,b,0) and vec0=c+id=(c,d,0), we have vec0×vec1 = (0, 0, bc – ad), namely

bc – ad = Im{vec1 ∙ conj(vec0)}. Thus, from Complex Analysis the vectors vec0×vec1, vec2×vec1 will point in

opposite directions precisely when the signs of Im{vec1 ∙ conj(vec0)} and Im{vec1 ∙ conj(vec2)} are opposite.

Hence, lines 10-11 from Mksaw.m check if Q is convex. In this case, the program makes a sawtooth out of

Q. Then we go two steps forward with the command pts=pts(2:end); and the while-loop repeats the

process, unless we have already come to the end of the line.

5. Practical Application

Suppose a fibre optic company plans to install cables that will provide connection within a group of cities.

If we consider only the cost to install cables underground, the SMT will minimise it providing the soil is free

from barriers like groundwater, rocky earth, and so on. Let us suppose we have this favourable soil

everywhere in the region that includes these cities.

As an example, let us consider the terminal points of test0.txt as our group of cities. This file is also

used as an example in the user manual. Figure 6 shows the GeoSteiner output by ignoring weights, whereas

Figure 7 was generated by stree.

1068 Volume 11, Number 10, October 2016

Journal of Software

Fig. 6. GeoSteiner output of test0.

Fig. 7. The corresponded weighted tree.

However, there are other costs besides the underground installation of optic fibre cables. For example,

land taxes, local maintenance expenses, etc. Suppose the extra costs for each city were directly related to the

corresponding weights in Figure 7. Our program stree prints 715.4669 as the weighted length. However,

in the user manual we showed a tree of length 598.3593, which is very likely to be the minimum. Anyway,

that tree is already 16% cheaper than the one given by GeoSteiner, which cannot handle weights.

6. Conclusions

Differently from the approach of trying a fully automated method, we propose to take advantage of the

good choices that a user can make. Many attributes like intuition, guess, practice and a bird's-eye view are

valuable means that one cannot translate into any programming language. Hence, as long as a task is

feasible with the help of supervision we suggest taking it into account, besides the fully automated methods.

This proposal is not new, but we endeavour to obtain a code that is both easy to run and to understand.

1069 Volume 11, Number 10, October 2016

Journal of Software

The program stree is still in the beta version. Further improvements will include more feedback to the

user. For instance, the tree will be also checked with Maxwell's Theorem and the (Double) Wedge properties

(see [10] for details). Some tests can be implemented to run while the users are drawing, so that they may

also undo steps which just seem successful with this present version.

Moreover, stree still works strongly devoted to real Steiner trees, which in fact should be adapted to

practical purposes. For instance, outputs consider even Steiner points extremely close to a terminal. By

implementing such a tree to a multicast network, those Steiner points can be unnecessary and even costly.

In future, the user will decide on the tolerance regarding the minimum distance that terminals and Steiner

points will keep apart.

By the way, it is even preferable to implement multicast networks with a minimum number of Steiner

points, because of the high cost of the routers. This is also the case of WDM optical networks (see [23]).

Therefore, it will be useful to have future versions of stree devoted to the construction of such trees. The

rectilinear Steiner trees are also of interest (see [24] and [25]), and then another option like stree to be

developed.

Acknowledgment

Many improvements in this paper were due to the careful analyses carried out by referees. We thank

them for their valuable help. We are also grateful to Cláudio Nogueira de Meneses, professor at the Federal

University of ABC, for his assistance with weighted graphs.

References

[1] Jia, X.-H., Du, D.-Z., Hu, X.-D., Lee, M.-K., & Gu, J. (2001). Optimization of wavelength as-signment for qos

multicast in wdm networks. IEEE Transactions on Communications, 49(2), 341–350.

[2] Sahasrabuddhe, L. H., & Mukherjee, B. (2000). Multicast routing algorithms and pro-tocols: A tutorial.

Network, 14(1), 90–102.

[3] Ausiello, G. (1999). Complexity and approximation: Combinatorial optimization pro-blems and their

approximability properties. Springer Science and Business Media.

[4] Hu, X.-D., Shuai, T.-P., Jia, X., & Zhang, M.-Z. (2004). Multicast routing and wavelength as-signment in

wdm networks with limited drop-offs. Proceedings of the 23rd Annual Joint Conference of the IEEE

Computer and Communications Societies.

[5] Garey, M. R., Graham, R. L., & Johnson, D. S. (1997). The complexity of computing Stei-ner minimal trees.

SIAM Journal on Applied Mathematics, 32(4), 835–859.

[6] Angelopoulos, S. (2006). The Node-Weighted Steiner Problem in Graphs of Restricted Node Weights,

Algorithm Theory–SWAT.

[7] Demaine, E. D., Hajiaghayi, M., & Klein, P. N. (2009). Node-Weighted Steiner Tree and group Steiner Tree

in Planar Graphs, Automata, Languages and Programming.

[8] Li, X., Xu, X.-H., Zou, F., Du, H., Wan, P., Wang, Y., Wu, W. (2009). A Ptas for Node-Weighted Steiner Tree in

unit Disk Graphs, Combinatorial Optimization and Applications.

[9] Zou, F., Li, X., Gao, S., & Wu, W. (2009). Node-weighted steiner tree approximation in unit disk graphs.

Journal of Combinatorial Optimization, 18(4), 342–349.

[10] Gilbert, E., & Pollak, H. (1968). Steiner minimal trees. SIAM Journal on Applied Mathematics, 16(1),

1–29.

[11] Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Technical

Journal, 36(6), 1389–1401.

[12] Du, D.-Z., & Hwang, F. K. (1992). A proof of the gilbert-pollak conjecture on the Steiner ratio.

1070 Volume 11, Number 10, October 2016

Journal of Software

Algorithmica, 7(1-6), 121–135.

[13] Innami, N., Kim, B., Mashiko, Y., & Shiohama, K. (2010). The Steiner ratio conjecture of Gilbert-Pollak

may still be open. Algorithmica, 57(4), 869–872.

[14] Dilkina, B., & Gomes, C. P. (2010). Solving connected subgraph problems in wildlife conservation,

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems.

[15] Guha, S., Moss, A., Naor, J. S., & Schieber, B. (1999). Efficient recovery from power outage. Proceedings of

the Thirty-First Annual ACM Symposiumon Theory of Computing (pp. 574–582).

[16] Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., & Roughgarden, T. (2008). The price of

stability for network design with fair cost allocation. SIAM Journal on Computing, 38(4), 1602–1623.

[17] Cheng, X., & Du, D.-Z. (2013). Steiner trees in industry. Springer Science and Business Media.

[18] Du, D.-Z., Smith, J., & Rubinstein, J. H. (2013). Advances in Steiner trees. Springer Science and Business

Media.

[19] Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired

algorithm for the Steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 818–831.

[20] Rozenshtein, P., Anagnostopoulos, A., Gionis, A., & Tatti, N. (2014). Event detection in activity

networks. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (pp. 1176–1185).

[21] Hegde, C., Indyk, P., & Schmidt, L. (2014). A fast, adaptive variant of the Goemans-Williamson scheme

for the prize-collecting Steiner tree problem. Workshop of the 11th DIMACS Implementation Challenge.

[22] Nascimento, M. Z., Batista, V. R., & Coimbra, W. R. (2015). An interactive programme for weighted

Steiner trees. Journal of Physics: Conference Series.

[23] Chen, D., Du, D.-Z., Hu, X.-D., Lin, G.-H., Wang, L., & Xue, G. (2000). Approximations for Steiner trees with

minimum number of steiner points. Journal of Global Optimization, 18(1), 17–33.

[24] Fößmeier, U., & Kaufmann, M. (1997). Solving rectilinear Steiner tree problems exactly in theory and

practice. AlgorithmsESA’97, 171–185.

[25] Zachariasen, M. (1999). Rectilinear full steiner tree generation. Networks, 33(2), 125–143.

Valério Ramos Batista graduated in computer engineering at the Technological Institute

of Aeronautics in SJ Campos, Brazil, Dec 1993. He concluded his master's in mathematics

at the University of São Paulo, Brazil, Sep 1996, and his PhD in mathematics at the

University of Bonn, Germany, Jul 2000. Nowadays he works as a full professor in computer

modelling at the Federal University of ABC, St André, Brazil.

 Some recent publications as a co-author include: (1) "LBP operators on curvelet

coefficients as an algorithm to describe texture in breast cancer tissues", Expert Systems

with Applications, 2016; (2) "A software tool based on the Surface Evolver for precise location of tumours as

a preoperative procedure to partial mastectomy", Journal of Physics: Conference Series, 2015; (3)

"Programming plantation lines on driverless tractors", Revista SODEBRAS, 2014. His main research areas

are Image Processing and Computer Modelling applied to Medicine, Agriculture and Human-Computer

Interfaces.

 Prof. Ramos Batista was awarded the Scholarship in research productivity by the Brazi- lian National

Council for Scientific and Technological Development, from Mar 2008 to Feb 2011.

Marcelo Zanchetta do Nascimento was born in São José do Rio Preto Brazil, in 1976. He

received the high-level technologist degree from the University Center of Rio Preto, São

1071 Volume 11, Number 10, October 2016

Journal of Software

Paulo, in 1996. He received his MSc. and Ph.D. in electrical engineering at the University of São Paulo, São

Carlos, Brazil, in 2002 and 2005, respectively. Since 2013, he has been an professor of the Faculty of

Computer Sciences at the Federal University of Uberlândia. His research interests include medical image

processing, computer vision, and pattern recognition.

Wendhel Raffa Coimbra was born in Guararapes Brazil, in 1985. He concluded his

master’s in applied mathematics at the Federal University of ABC, Santo André, Brazil, Dez

2009, and his Ph.D. in electrical engineering at the University of São Paulo, São Carlos,

Brazil, in 2016. Since 2010 he has been a professor of the Federal University of Mato

Grosso do Sul, CPAR-UFMS. His research interests include invariance principle, Fuzzy

systems, differential equations, nonlinear systems and dynamic systems.

1072 Volume 11, Number 10, October 2016

Journal of Software

