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Abstract: Here we present the extended version of a previous short publication about stree, which is a fully 

written program with a semi-automatic method that generates weighted Steiner trees. Our choice of the 

programming language, and the use of well-known theorems from Geometry and Complex Analysis, allowed 

this method to be implemented with only 764 lines of effective source code. This simplifies the 

understanding and the handling of this beta version for future developments. 
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1. Introduction 

One of the main problems at implementing multicast in Wide Area Networks (WAN) is the high cost of 

transmissions between terminals. Cost reduction is attained by adding routers to the network but this 

increases complexity (see [1]–[2]). Steiner trees have long been used in order to optimise routes aiming at 

the lowest cost possible (see [3]–[4]). 

Although the Steiner Minimal Tree (SMT) problem belongs to the NP-hard class (see [5]), it can be exactly 

solved by fast algorithms for terminals in thousands. The best example is the GeoSteiner algorithm. 

Essentially, it checks for terminals that are as close as possible to vertices of equilateral triangles. 

Afterwards, it prunes sub-optimal trees. See 

http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner for details. 

GeoSteiner is amazingly fast for terminals positioned at random. However, it is not the case when they 

follow a pattern. For instance, we use 4GB of RAM, microprocessor Intel Core i5 3.2GHz, and operating 

system Linux Ubuntu 12.04. With this setting GeoSteiner takes 73.02s to generate Figure 1. This time drops 

to only 0.06s when the 31 terminals are at random. Fig. 1 was obtained through the datafile pat.tsp 

contained in  test_codes.zip, which we shall discuss in Section 4. Compare it with Fig. 2, in which the 

SMT does follow a pattern. 

Moreover, the GeoSteiner algorithm cannot be adapted to find weighted SMT (WSMT). This fact, together 

with the slowness in patterned cases, is precisely due to the strategy of looking for equilateral triangles. 

Given a graph G=(V,E,w), a subset S⊂V and a weight function w, we say that a tree T⊂G is a WSMT if it 

spans all vertices of S and also minimises the total weight. This classical definition can be specialised to 

edge- or node-weight when the domain of w is either E or V, respectively. The problem has further 

variations, like for unity disk graphs and restrictions on w, that have been studied recently [6]–[9]. 

These and other works make use of heuristics. They are devoted to automatic methods that are fast at 
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generating weighted Steiner trees with good chances of approaching the minimum weight. But if one really 

seeks a WSMT there are little chances that automatic methods will find it, unless applied to a few number of 

vertices.  

 

Fig. 1. Non-patterned GeoSteiner output.      Fig. 2. Patterned SMT. 

 

Of course, a semi-automatic method that includes some feedback to the user increases the chances of 

finding this tree. Specially if we can rely on the skill and good guesses of a trained user. In the last paragraph 

from §6 of [10] the very authors had already made this kind of comment. Of course, their work was devoted 

to the standard Euclidean case and is previous to GeoSteiner by three decades. However, their comment is 

still modern in the sense that one cannot always predict whether a fast algorithm exists to solve a given 

problem. 

In that same work Gilbert and Pollak conjectured that an SMT must have its length in the interval Lprim ∙ 

[√3/2,1], where Lprim is the length of the minimal spanning tree (MST). This one can be obtained by Prim's 

algorithm [11]. According to [12] this conjecture is right. If so, any Steiner tree obtained from the MST will 

be at most 13.4% shorter. 

It seems little, but if a connection is used extensively this 13.4% represents a great saving in the 

long-term. Moreover, in [13] the authors claim that Gilbert and Pollak's conjecture is not completely 

answered yet. Thus, it might even happen that we get an SMT under this ratio. 

Of course, a semi-automatic program is not suitable for thousands of terminals, except for a long-term 

project distributed to a team of users. But even this exception does not apply to extreme cases, like 

VLSI-design through rectilinear Steiner trees, in which millions of terminals are needed. However, terminals 

in hundreds are still the case in several applications, like sound and video cards. Their frequent access 

makes it desirable to minimise delay as much as possible. Even a 1% improvement would count in this case. 

Indeed, weighted Steiner trees have many practical applications. Among others, they are used in network 

formation games, computational sustainability and electric power networks [14]–[16]. For specific 

applications in industry, please see [17]. The Steiner tree problem can also be studied in 3D and higher 

dimensions [18]. Moreover, some of its variations are applicable to computational biology [19] and social 

networks [20], among others. This is the case of prize-collecting Steiner trees (see [21] for details). 

In [22] we introduced a fully written programmed code to generate weighted Steiner trees. That 

reference is in fact a short version finally detailed in this present paper. Our choice of a programming 

language was made in order to spare the graphical environment, which Matlab already brings in a very well 

built-in way. Since we have not used toolboxes, this code can be easily adapted to a free software like Octave, 

though this one has a simpler graphical user interface. Anyway, either Matlab or Octave produce a much 

shorter code, easier to understand and to handle for future developments. Indeed, the present version of 
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our program has didactic purposes, for it is accessible even to undergraduate students in Computer Science. 

Many original ideas were used to write our code. They are based on theorems normally relegated to Math 

courses only, specially Geometry and Complex Analysis. The chosen programming language allowed these 

theoretical results to be implemented into elegant and efficient codes. The reader can download them 

through the link Softwares of  

https://sites.google.com/site/vramos1970 

As an example, the file estim.m (contained in stree.zip) runs with only 21 lines of effective source 

code. This program draws the weighted MST (WMST) and computes its total weighted length. All together, 

stree.m and its related to programs have only 855 lines, which drop to 764 if we do not count sread.m 

and swrite.m (for graphical input and output of terminal points). 

The aim of this paper is to detail the program stree.m totally written with original ideas we have just 

mentioned in the previous paragraph. The rest is organised as follows: in Section 2 we prove some results 

used in our paper. Section 3 is devoted to explaining some theorems that we have used to write the program. 

Section 4 presents some of the geometrical and analytical ideas that were used to implement stree.m. In 

Section 5 we present a practical application of stree, and we finally draw our conclusions in Section 6. 

2. Preliminaries 

As we mentioned in the Introduction, the MST is frequently used to construct a Steiner tree. Prim's 

algorithm is easily adaptable to find the WMST for terminals that are weighted as follows:  

Definition 2.1. Consider the tree T=(V,E) with a weight function w:V→IR+
 and 0–1 ad-jacency matrix aij. 

Then T is an MST if it minimises the total cost C given by 

 

          

(1) 

 

where ||Vi – Vj || = ½ (wi – wj )|Vi – Vj | is the connection cost between terminals Vi and Vj, and |Vi – Vj | is 

the (Euclidean) distance between Vi and Vj. 

REMARK: The cost || ∙ || coincides with the Euclidean distance when w:V →{1}. To the best of our 

knowledge Definition 2.1 is new in the literature. We apply it to solve a practical problem described in 

Section 5.  

For a given set of terminals V={V1,...,Vn} and a weight function w:V→IR+ we can find the edges E that 

minimise the cost C in (1) and result in an MST T=(V,E). But if we can add extra points S={S1,...,Sm} to V, 

namely V  =V∪ S, we shall find the corresponding    = (V  ,E  ) such that    ≤C. We claim that    <C exactly when 

S≠∅ , providing one chooses a suitable extension    :V  →IR+ of the weight function. 

The following lemma shows how to make this choice when (n,m)=(3,1). See Fig. 3. 

Lemma 2.1. Consider a triangle with vertex weights a, b and c, and suppose it admits a classical (Euclidean) 

Steiner point. If s ≤ min{a,b,c} is the weight of the Steiner point, then its connection with the vertices will cost 

less than any other connection through the vertices only. 

Proof. Let ℓ1, ℓ2, ℓ3 be the distance from the Steiner point to the vertices a, b and c, respectively. We want 

to prove that 

 

        (a+s)ℓ1+(b+s)ℓ2+(c+s)ℓ3<(a+b)L+(b+c)L.        (2) 

 

Case 1: b ≤ a ≤ c. The law of cosines implies ℓ1 + ℓ2/2 < L and ℓ3 + ℓ2/2 < L. Hence aℓ1+bℓ2+cℓ3<aL+cL. 
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Moreover, s ≤ b and ℓ1+ℓ2+ℓ3<L+L. This implies (2). 

 

 
Fig. 3. Adding a Steiner point to three weighted terminals. 

 

Case 2:  a  ≤  b  ≤  c. We have (aℓ1+bℓ2/2)+(bℓ2/2+cℓ3)<bL+cL. Since s ≤ a and aL ≤ bL, then (2) 

follows. 

Case 3: a  ≤  c  ≤  b. Notice that (aℓ1+bℓ2/2)+(bℓ2/2+cℓ3)<b(L+L). Since s ≤ a and aL ≤ cL, then (2) 

holds again. 

q.e.d. 

Definition 2.2. A full Steiner tree is one in which any terminal connects to a Steiner point. 

Lemma 2.2. Consider a full Steiner tree  ith n≥3 terminals A1,...,An and Steiner points S1,...,Sn-2. Add weights 

to their respective terminals as ai, 1≤i≤n, and to the Steiner points as si=min{a1,...,an}, ∪ i.  he resulting 

weighted tree is then a local minimum of C. 

Proof. Based on Lemma 2.1 we see that a sufficiently small displacement of any Si will increase the 

weighted length of the tree. Therefore, it characterises a local minimum of C. 

q.e.d. 

Regarding the Euclidean non-weighted case, in §§3.7 of [10] the authors show that any Steiner tree can 

be decomposed into a union of full Steiner trees. By adding weights as described in Lemma 2.2 we can run 

through all Steiner trees    = (V  ,E  ) determined by V and compute the corresponding C. There is a finite 

number of such trees, hence the least C will determine     as an MST. 

The most important consequence of Lemmas 2.1 and 2.2 is that Steiner points can be added exactly as in 

the Euclidean case for arbitrary n≥3. The resulting MST    = (V  ,E  ) coincides with a Euclidean non-weighted 

Steiner tree, which will not be necessarily the Euclidean SMT. Anyway, many properties proved in [10] still 

hold for    : Convex hull,  Maxwell's Theorem, Lune and Wedge properties. 

3. Some Theorems Used in Our Code 

The following theorems were used to implement rprim.m and mksaw.m, respectively. 

Theorem 3.1. Let S be a finite set of points  ith at least t o elements. In this case, there are P,Q∪ S such 

that the distance between P and Q is maximal. The segment PQ is called the diameter of S. 

Proof. We can write S={V1,...,Vn} and consider the set D={|Vi – Vj| : 1 ≤ i,j ≤ n}, which has at most (n–1)! 

elements. Then max D is surely given by certain indexes î, ĵ that determine P as Vî and Q as Vĵ. Finally we get 

PQ as stated. 

Theorem 3.2. Let Q be a quadrilateral with consecutive vertices Pi, i=1,...,4. Let veci–2 = Pi–P1, i≥2, and Veci–1 

= Pi–P4, i≤3. Then Q is convex precisely when vec1 is between vec0, vec2, and also Vec1 is between Vec0, Vec2. 

Proof. By definition, Q is convex exactly when P2, P4 are at opposite sides of the straight line determined 

by P1P3 and P1, P3 are at opposite sides of the straight line determined by P2P4. This is equivalent to the 
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assertion of the Theorem. 

Theorem 3.3. Let A1,...,An be n≥3 terminals in the complex plane connected by a full Steiner tree S. Let 

V={V1,...,Vs} be the set of Steiner points of S. Suppose that each element in V admits a terminal such that both 

are the extremes of a segment in S. In this case there exists Vi ∪  V that determines all points in V \ {Vi}. 

Proof. By following the arguments from §3.4 of [10], we have s=n–2 and only one segment in S with 

extreme Ak for each k ∪  {1,...,n}. Since s≥1 the arguments from §6 of [10] apply. Namely, if each element of V 

were connected to a single terminal, then we would have s=n, a contradiction. Hence, there exists Vi ∪  V 

that connects two terminals. Up to re-indexing, these are A1, A2 and i=1. 

Now consider the ray given by  

 

 

 

 

If n=3, then it is clear that a unique positive τ gives r(τ)=A3.  

Now take n > 3. For each positive t consider the rays ρt = r(t)+(V1 – A1)∙ IR+ and ρt = r(t)+ (V1–A2)∙ IR+. Let 

A={A1,...,An} and take all positive t such that (ρt ∪ρt)∩A≠∪. They will make a finite set {t1,...,tm} with m≤n–2. 

Since V1 must be connected to another Steiner point, say V2 (after re-indexing), then V2= r(tk) for a certain 

k∪ {1,...,m}. Of course, r(tk) is connected to a terminal in A. Up to re-indexing, it is Ak. 

In order to find k we must repeat the same arguments with V1,Ak,r(tk) respectively in the place of A1,A2,V1, 

and so on. This will give at most s! full trees. One of them is minimal, whence all points V2,...,Vs are 

determined. This concludes the proof of the Theorem. 

Our next section explains a bit of stree.m, rprim.m and mksaw.m, which exemplify the applications of 

the theorems discussed in this present section. 

4. Efficient Codes from Geometry and Complex Analysis 

Figure 4 describes our pseudocode, which works recursively while the connection matrix is not complete. 

There the WMST is called Tree_of_Prim because we have adapted Prim's classical algorithm to the weighted 

case. 

stree Pseudocode 

Input: Set of terminals 

Output: Steiner tree 

1. Pts ← terminals, Connexion_Matrix ← 0 

2. Tree_of_Prim ← Compute_Tree_of_Prim(Pts) 

3. Steiner_hull ← Compute_Steiner_hull(Pts) 

4. While Connexion_Matrix implies Stree non-connected 

i. Subset_Pts ← User's Choice of a Subgroup(Pts) 

 ii. Subtree ← Compute_Connection(Subset\_Pts) 

iii. If Subtree not OK, redo Step i 

iv. Else Connexion_Matrix ← Connection(Subset\_Pts) 

5. return Steiner tree (and its weighted length) 

Fig. 4. The pseudocode of stree.m algorithm. 

Initially, stree.m calls lune.m and cvxhull.m to inscribe the terminal points into the Steiner hull, 

namely a polygon coloured cyan as shown in Figure 2 of the user manual. In general, there will be isolated 

terminals inside the polygon. The ones that build its vertices are marked by stree.m with either 0 or 1, 
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which mean ``greater'' and ``lesser'' than 120°, respectively. The characters 0 and 1 are stored in a string s. 

For instance, if s contains a stretch 010, this hints to three terminals joined by a Steiner point. 

But they are not connected automatically, for this hint might not lead to the shortest tree. We use the 

variable s for purposes like building zigzags out of stretches 01...10. Of course, not all zigzags are good, but 

the program will try them back and forth, and even split them into parts. 

Of course, lune.m and cvxhull.m are based on the Convex Hull and Lune properties described in [10]. 

They do not give a polygon with zigzags, but with stretches like in  Figure 5. Hence, stree.m calls 

mksaw.m in order to get the zigzag. 

 
Fig. 5. A ''01...10'' stretch. 

 

If you want to test these procedures, extract the attached file test_codes.zip in a folder and start 

Matlab inside it. At the Matlab prompt run ''Cvxhull'' for the terminal data test2 and save the output with 

the name test3. A figure will show the original input order of the terminals (dotted lines), and a blue 

polygon involving them (the convex hull). Then run ''Lune'' for test3 and name the output test4.  

Now we are going to explain Rprim.m and Mksaw.m, which will finally generate a zigzag out of 

test2.txt (the initial datafile). According to Theorem 3.1, there is a diameter for the points in 

test2.txt, and lines 2-3 of Rprim.m are precisely the commands to find them, namely Pts(h(k)) and 

Pts(k). However, you must run ''Rprim.m'' for the re-ordered data test4. 

Now we project all points along the diameter and re-order them by increasing distance between their 

projection and the extreme Pts(k). That is what the while-loop does in lines 11 to 19. The re-ordered 

input is restored in line 20, and may be saved in line 21. We did it in test5.txt, which Mksaw.m finally 

re-orders into a zigzag. 

Notice that the terminals from test5.txt are in zigzag order except for one single square wavelet. 

However, Mksaw.m works well even if you have a totally square wave. Enter the terminal points in an order 

that makes such a wave. We have used test6.txt to generate Figure 5. This precaution is not necessary 

when you run stree.m, for it will rearrange the points as explained above.  

By walking along the square wave from the very first point on, two consecutive steps will always lead to a 
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vertex that makes a quadrilateral Q with the following two. That is why the while-loop ends in 

pts=pts(2:end). 

 

 
             Fig. 6. Its rearrangement by ''Mksaw''. 

 

Now look at lines 4 to 9 of Mksaw.m and apply Theorem 3.2 to $Q$. The symbol × will indicate the vector 

product. From Geometry, the convexity criteria given by this theorem is equivalent to vec0×vec1, vec2×vec1 

pointing in opposite directions. The same holds for Vec0×Vec1, Vec2×Vec1. Taking these vectors as complex 

numbers in C×IR, say vec1=a+ib=(a,b,0) and vec0=c+id=(c,d,0), we have vec0×vec1 = (0, 0, bc – ad), namely  

bc – ad = Im{vec1 ∙ conj(vec0)}. Thus, from Complex Analysis the vectors vec0×vec1, vec2×vec1 will point in 

opposite directions precisely when the signs of Im{vec1 ∙ conj(vec0)} and Im{vec1 ∙ conj(vec2)} are opposite. 

Hence, lines 10-11 from Mksaw.m check if Q is convex. In this case, the program makes a sawtooth out of 

$Q$. Then we go two steps forward with the command pts=pts(2:end); and the while-loop repeats the 

process, unless we have already come to the end of the line. 

5. Practical Application 

Suppose a fibre optic company plans to install cables that will provide connection within a group of cities. 

If we consider only the cost to install cables underground, the SMT will minimise it providing the soil is free 

from barriers like groundwater, rocky earth, and so on. Let us suppose we have this favourable soil 

everywhere in the region that includes these cities.   

As an example, let us consider the terminal points of test0.txt as our group of cities. This file is also 

used as an example in the user manual. Figure 6 shows the GeoSteiner output by ignoring weights, whereas 

Figure 7 was generated by stree.  
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Fig. 6. GeoSteiner output of test0. 

 
Fig. 7. The corresponded weighted tree. 

 

However, there are other costs besides the underground installation of optic fibre cables. For example, 

land taxes, local maintenance expenses, etc. Suppose the extra costs for each city were directly related to the 

corresponding weights in Figure 7. Our program  stree prints 715.4669 as the weighted length. However, 

in the user manual we showed a tree of length 598.3593, which is very likely to be the minimum. Anyway, 

that tree is already 16% cheaper than the one given by GeoSteiner, which cannot handle weights. 

6. Conclusions 

Differently from the approach of trying a fully automated method, we propose to take advantage of the 

good choices that a user can make. Many attributes like intuition, guess, practice and a bird's-eye view are 

valuable means that one cannot translate into any programming language. Hence, as long as a task is 

feasible with the help of supervision we suggest taking it into account, besides the fully automated methods. 

This proposal is not new, but we endeavour to obtain a code that is both easy to run and to understand. 
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The program stree is still in the beta version. Further improvements will include more feedback to the 

user. For instance, the tree will be also checked with Maxwell's Theorem and the (Double) Wedge properties 

(see [10] for details). Some tests can be implemented to run while the users are drawing, so that they may 

also undo steps which just seem successful with this present version. 

Moreover, stree still works strongly devoted to real Steiner trees, which in fact should be adapted to 

practical purposes. For instance, outputs consider even Steiner points extremely close to a terminal. By 

implementing such a tree to a multicast network, those Steiner points can be unnecessary and even costly. 

In future, the user will decide on the tolerance regarding the minimum distance that terminals and Steiner 

points will keep apart.  

By the way, it is even preferable to implement multicast networks with a minimum number of Steiner 

points, because of the high cost of the routers. This is also the case of WDM optical networks (see [23]). 

Therefore, it will be useful to have future versions of stree devoted to the construction of such trees. The 

rectilinear Steiner trees are also of interest (see [24] and [25]), and then another option like stree to be 

developed. 
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