

Guiding Search by Singleton-Domain Variables for
Constraint Satisfaction Problem

Yi Jun Liu*

Jilin University ,Changchun, Jilin Province, China.

* Corresponding author. Tel.: +8618604366655; email: 308718494@qq.com
Manuscript submitted May 26, 2016; accepted July 1, 2016.
doi: 10.17706/jsw.11.9.903-911

Abstract: Heuristic is an important subject in the field of constraint satisfaction problem(CSP). In the study,

we found a kind of variables named singleton-domain variables have a great influence on the solution

process. Based on this, we propose a heuristic method named dom/wsdeg and the corresponding

calculating method and combine the method with a constraint network compression technology proposed

in this paper. The results have shown that the new heuristics are more efficient than the classical heuristics.

Key words: Constraint satisfaction problem, compression method, singleton-domain variable, variable
ordering heuristic.

1. Introduction

 Constraint satisfaction problem(CSP)[1] is an important branch in the field of artificial intelligence, many

practical problems can be modeled by constraint satisfied problem, such as the n-queens, job scheduling,

figure coloring problem and symbolic reasoning. The existing algorithms mainly include three kinds of

algorithms: backtrack search algorithm, local search method and dynamic programming [2]. Backtrack

search algorithm with constraint propagation technique is applied widely at present. But because of the

larger scale of problems and the need to constantly instantiate the variables and values in the process,"

Combination Explosion" phenomenon [2] often appears which makes the problem difficult to get an

effective solution within the effective time. So how to improve the efficiency of the backtracking is one of the

most important problem in the field of CSP.

 In the process of solving CSP, backtrack search algorithm performs a depth-first traversal of a search tree

and variables and values are selected continuously to instantiate. Experimental results show that the

instantiation order of variables plays a vital role in efficiently solving CSP[2].The purpose of the heuristic

algorithm is to get a better variables instantiation order. The thought of the heuristic also has important

applications in many fields such as machine learning [3]. Many successful variable ordering heuristics have

been proposed but there is no general heuristic method for value ordering.

 When using the Maintaining Arc Consistency(MAC) algorithm to check each node in the tree, we need to

maintaining arc-consistency in the current constraint network and incompatible values are not

arc-consistent and can be safely deleted without losing any solutions. Deletion of inconsistent values is

called filtering of the domains. We find a kind of variables whose domains have been cut down to only one

value in this process. This kind of the variables is called singleton-domain variable. We find that the removal

of these singleton-domain variables does not lose any solution of the problem and will improve the

903 Volume 11, Number 9, September 2016

Journal of Software

efficiency of CSP because of the close relationship between singleton-domain variables and the instantiated

variable in the current constraint network.Based on this,we propose a new weighted-degree heuristic and a

constraint network compression technology.We performed a number of experiments on a series of

benchmark instances.The results show that the new heuristics are more efficient than classical ones

especially for the problem with large data size and complex structure .

2. Background

 Definition 1. Constraint Satisfaction Problem(CSP). A constraint satisfaction problem is a triple

(, ,)P X D C ,where
1 2{ , , , }nX x x x is a finite set of variable;

1 2{ (), (), , ()}nD dom x dom x dom x

is a finite set of domains, where for
ix X , ()idom x D is a finite set of possible values for each of

variable ix ;
1 2{ , , , }kC c c c is a finite set of constraints (relations) over subsets of X . Each constraint c

consists of two parts, an ordered set of variables
1 2() { , , , }i i irscp c x x x and a subset of Cartesian

product
1 2() () ()i i irdom x dom x dom x that specifies the disallowed (or allowed) combinations of

values for the variables 1 2{ , }i i irx x x .The arity of a constraint c is the number of variables involved in

c ,i.e. | () |scp c .A constraint is binary if its arity is 2;non-binary if its arity is strictly greater than2. A

non-binary constraint is usually transformed into a binary constraint in solving process, so we discuss the

CSP of binary constraints in this paper.

 A solution to a CSP is an assignment of a value to each variable,if
ix X can find i ix a ,

()i ia dom x ,tuple
1 2{ , , , }nT a a a .If there is a T satisfies all the constraints,T is a solution of the

CSP and the CSP is satisfiable. If there is no T satisfies all the constraints, the CSP is unsatisfiable.

 Definition 2. Generalized Arc Consistency (GAC) [4].

 A constraint c is generalized arc-inconsistent,or GAC-consistent iff ()x scp c , ()a dom x ,there

exists a support for (,)x a on c .

 A constraint network is P generalized arc-inconsistent iff every constraint of P is generalized

arc-inconsistent.

For binary constraints, this property is classically known as arc consistency(AC).

Maintaining arc consistency(MAC) is certainly the most popular systematic search algorithm for solving

instances of the constraint satisfaction problem. After each branching decision, enforcement of some kind of

local consistency prunes some parts of the search space that contain no solution. Dynamic variable heuristic

is to select the appropriate variable to instantiate and MAC enforces GAC after each decision taken.

3. Integrating Singleton-Domain Variables Information in a Conflict-Based Heuristic

 According to whether the instantiation order of the variables can be changed in the solving process, the

heuristic algorithm is divided into two types. One is that the instantiation order of variables is determined

before the start of search and cannot be changed in the solving process, which is called static heuristic. The

other is that the instantiation order of variables is determined or constantly changing in the process of the

search, which is called dynamic heuristic. At present, dynamic heuristic is the most widely used in the

practical application. Many successful variable ordering heuristics have been proposed, such as dom[5]

heuristic based on variable domain size, dom/ddeg[6] heuristic which combines the number of constraints

related to the variables with dom heuristic, dom/wdeg[6] heuristic which combines weighted degree with

the dom heuristic.

 Dom/wdeg is the most widely used based on the underlying fail-first principle(FFP)[6].According to FFP,

904 Volume 11, Number 9, September 2016

Journal of Software

the variables with smaller current domain sizes and the variables with high weighted degree(wdeg) should

be instantiated first. The dom/wdeg heuristic computers a score for each variable and orders the variables

according to their scores. It associates a weight(c)(initialized to 1) for each constraint c ,when the domain

of a variable becomes empty (so-called domain wipe-out),the weight of constraint that leads to the wipe-out

is incremented. The weighted degree of a variable xi is defined as:

()
ij

i ij j

R C

wdeg(X) weight R X FutVars

 Combining the weighted degree with domain size, the dom/wdeg heuristic computes the ordering score

for each variable ix by the ratio of the current domain size to wdeg(ix),denoted by
| () |

()

i

i

dom x

wsdeg x
,and selects

the variable with the smallest score.

Dom/wdeg heuristic has a certain learning ability that can give higher weights to the constraints difficult

to handle with. So in most cases, dom/wdeg can find hard part of a CSP, and select the variables which have

a higher probability of belonging to this region. When the scale of a CSP is complex and the structure is

complex,dom/wdeg selects variables located in the hard part because of FFP, and variables related to the

variables are usually located in the same region. As a result, conflict-based heuristic only collects

information in this local area. This process may cause too much dead nodes and reduce efficiency.

At each step of backtrack search, MAC enforces GAC to reduce domains inferentially after each decision

taken. In the process, the domains of some variables have been cut down to only one value.This kind of

variables is called singleton-domain variable and defined as follow:

Definition 3. Singleton-Domain Variable. A variable ix is a singleton-domain variable iff

| () | 1i idom x x FutVars .

Definition 4. The number of new singleton-domain variables after GAC.After ix instantiated,MAC

enforces GAC to reduce domain. The number of singleton-domain variable generated in this process is

recorded ivarsin x .

 In the study,we find that singleton-domain variables have an special guiding role to solve CSP. So we

integrate the singleton-domain variable information in dom/wdeg heuristic. The directest strategy is to

combine the ivarsin x with the degree-based heuristic, so we proposed a new degree named weighted

singleton-domain variable degree(wsdeg).The wsdeg of a variable ix is defined as:

() () () () () 1i i i

c C

wsdeg x = varsin x weight c x scp c futScp c

Combining the wsdeg with domain size, the dom/wsdeg heuristic computes the ordering score for each

variable ix by the ratio of the current domain size to ()iwsdeg x ,denoted by
| () |

()

i

i

dom x

wsdeg x
 and selects the

variable with the smallest score. We performed some experiments on a series of benchmark instances to

compare the efficiency of the new heuristics and the classical conflict-based heuristic and the results and

analysis are shown in Sect.5.

4. A Compression Method of the Constraint Network

In the process of solving CSP, backtrack search algorithm performs a depth-first traversal and with the

increase of the number of instantiated variables and the decrease of the domains of uninstantiated

905 Volume 11, Number 9, September 2016

Journal of Software

variables, the constraint network is simplified. Constraint network can improve the efficiency of solving CSP

through simplification, such as filtering of the domain, reduction of the record items [8], etc..With the

deepening of the search tree depth, the number of singleton-domain variables is also increased. Classical

conflict-based heuristics did not consider about the decline of efficiency caused by singleton-domain

variables. This leads to useless computation, useless records, etc., even branching on the singleton-domain

variables due to weighted degree increase and reduces the efficiency of recording and recovery. The

deletion of the singleton-domain variables can not only have no affect on the satisfaction of CSP [8], but also

simplify the constraint network improve the efficiency.

A stable heuristic method named MAC_singleHalf is proposed in the paper [9].In the solving process,when

calculating the dom/wdeg of an uninstantiated variable considers the weights of constraints between new

generated singleton-domain variables an the variable, ignores all previous related singleton-domain

variables and uses weight/2 as wdeg to calculate. Based on the [9], this paper proposes a new compression

method of the constraint network named MAC_Com. Different from MAC_singleHalf, MAC_Com considers

both new generated and previous singleton-domain variables, but the weights of constraints between

previous related singleton-domain variables and uninstantiated variables cannot change any more.

Mac_Com method can reserve the affect of constraints between singleton-domain variables and

uninstantiated variables and prevent that multiple backtracks make some weights of constraints too high

which may cause the constantly strengthened impact of singleton-domain variables.We performed some

experiments on a series of benchmark instances to compare the efficiency of MAC_singleHalf and Mac_Com

method and the results and analysis are shown in Sect.5.

5. Experiments

We performed some experiments on a series of benchmark instances to examine the performances of the

new heuristics. Benchmark is currently the international general standard use cases to test the solving

efficiency of CSP include a variety of academic issues and a variety of typical practical use cases. In this

paper, the XML description documents of the test cases can be downloaded online from [10].Experiments

use MAC3rm[4] as a solution algorithm and MAC3rm is the most efficient solving algorithm in the existing

MAC algorithms. Among the existing heuristics, the dom/wdeg heuristic is the most widely used and works

best. Therefore, we compare the dom/wdeg with the new heuristics. he performances of finding the first

solution or proving unsatisfiable are measured in terms of CPU time marked t in millisecond(ms),the

number of explored search tree nodes marked n and the number of constraint checks marked cc .In order to

improve the efficiency of the experiments, in the pre-processing phase, an arc-consistency check will be

performed in the constraint network first to delete incompatible values and the number of constraint

checks will not be included in the results.

5.1. MAC_Com versus MAC_singleHalf

In Section 4, this paper analyses and illustrates the MAC_singleHalf method and the compression method

of the constraint network named MAC_Com proposed in this paper. In this section, We compared four kinds

of solving strategy, including classic dom/wdeg heuristic, MAC_singleHalf proposed in paper [9], MAC_com

proposed in this paper and a heuristic named S for comparison. S deletes all of singleton-domain variables

in constraint network in order to avoid branching in the singleton-domain variables.While calculating the

weighted degree of a candidate variable, S ignores all of singleton-domain variables in the network.We

selected a variety of benchmark instances to examine the performances of the four solving strategy and

selected representative results shown in Table 1.

906 Volume 11, Number 9, September 2016

Journal of Software

Table 1. Results of Binary Instances

instance dom/wdeg S MAC_singleHalf MAC_Com

BH-4-4

（10）

t 24518 26280 27240 25884

n 6293 5039 5039 5039

cc 3695465 3738483 3923677 3927926

Lard

（10）

t 31041 47776 466418 25836

n 4946 3770 28422 3245

cc 3018439 2979794 23519855 2630105

geom

（100）

t 1845 1046 655 429

n 119 103 103 102

cc 43384 43680 43828 43003

composed-25-10-20

(10)

t 393 353 326 360

n 154 143 142 156

cc 10499 10692 10695 12355

e0ddr1-10-by-5-1-donum49-D

145-v50-r265-c265

t 798620 2408201 2470726 1057008

n 142082 442351 425126 192774

cc 60592317 193231171 186840613 86949726

ehi-85-297-5_ext

t 17467 10453 21932 36189

n 363 87 239 247

cc 210380 215318 557500 725257

composed-75-1-80-1_ext

t 2276 2115 2626 1349

n 283 240 240 256

cc 53064 52578 52578 2678

composed-75-1-80-9_ext

t 1418 1872 2520 1310

n 241 238 238 206

cc 44808 55060 55060 47156

driverlogw-01c-sat_ext

t 68 82 118 56

n 73 73 73 71

cc 338 393 393 416

driverlogw-05c-sat_ext

t 34378 10840 10504 7281

n 991 422 422 370

cc 79697 79908 79586 33101

driverlogw-09-sat_ext

t 1152067 656557 587656 515943

n 10783 2099 2024 2127

cc 1681885 2025222 1907892 1736249

frb50-23-1_ext

t 1030 1061 1081 1105

n 179 130 130 129

cc 59531 60584 60278 58884

 The first four test results shown in Table 1 are average values of a number of test instances from four

kinds of benchmark problem and after eight are the representative test results selected from other

benchmark problem for analysis.

 Through the experimental results shown in Table 1, we can see that S, MAC_Com and MAC_singleHalf are

more efficient than the dom/wdeg heuristic in most cases. In the BH-4-4 problem, although the number of

search tree nodes is maximum, the dom/wdeg heuristic still costs least time to solve the problem because of

the minimum number of constraint checks. In the driverlogw-09-sat_ext problem, although the number of

constraint checks of MAC_Com is bigger than the number of dom/wdeg heuristic, the efficiency of solving

problem by MAC_Com method is still the highest because the number of search tree nodes is reduced by 5

times. Through the analysis of the above two examples and combining with the data in Table 1, we can come

to the conclusion preliminarily that increase in the efficiency of the CPU is co-determined by reducing the

number of search tree nodes and the number of constraint checks and any single factor can be a decisive

factor. At the same time, we can also find that when the number is same, the effect of reducing of tree nodes

to the improve efficiency is far greater than the effect of reducing the number of constraint checks.In

Ehi-85-297-5_ext,efficiency of S heuristic is the highest.Through the analysis of the structure of the instance

907 Volume 11, Number 9, September 2016

Journal of Software

and variables instantiation order, we found that the singleton-domain variables are most in the complex

region, and simply avoid branching in the singleton-domain variables and delete related constraints can

greatly reduce the complexity of the complex region.Through the analysis of the four heuristic methods and

the results shown in Table 1, we can confirm that the MAC_Com method is more efficient and the stabler in

most of the problems.

5.2. New Heuristics versus Classical Conflict-Based Heuristic

 Dom/wsdeg heuristic uses
| () |

()

i

i

dom x

wsdeg x
as the score of variable ix , and selects the variable with the

minimum score to give priority to instantiate. Dom/wsdeg2 heuristic combines the dom/wsdeg heuristic

and the constraint network compression technique-MAC_Com proposed in this paper . We selected a variety

of benchmark instances to examine the performances of the new heuristics and selected representative

results shown in Table 2.

Table 2. Results of Binary Instances

instance dom/wdeg dom/wsdeg dom/wsdeg2

geom

（100）

t 1845 131 93

n 119 53 53

cc 43384 9248 9326

BH-4-4

（10）

t 24325 23066 19844

n 6293 6116 5045

cc 3695465 4102430 4115515

driver

（10）

t 48811 33011 25425

n 1569 991 432

cc 102488 79697 92441

rand-2-23

（10）

t 3426406 458818 316642

n 497584 75095 61812

cc 257815659 38389742 37544872

graph

（5）

t 2219 1687 1547

n 300 300 300

cc 85955 86628 85032

frb50

（10）

t 5469 5628 4734

n 789 791 521

cc 268243 270038 175404

frb59

（10）

t 82631 146085 45439

n 9624 13445 5455

cc 4377886 7576879 4225938

frb35

t 31221 28374 28073

n 4946 4106 3722

cc 3018439 2528983 2910084

e0ddr1-10-by-5-1-donum49-D

145-v50-r265-c265

t 717331 445115 257891

n 142082 85055 63255

cc 60592317 37559823 28628358

geo50.20.d4.75.1-donum1-D20

-v50-r472-c472

t 2208102 1779445 1665938

n 214052 169411 139117

cc 249244749 198445851 198321376

geo50-20-

d4-75-1_ext

t 2289077 1728936 1436276

n 214052 169411 139117

cc 249244729 198445851 198321376

 The first six test results shown in Table 1 are average values of a number of test instances from six kinds

of benchmark problem and after four are the representative test results selected from other benchmark

problem for analysis.

908 Volume 11, Number 9, September 2016

Journal of Software

As can be seen from Table 2, for most of the instances, the efficiency of dom/wsdeg and dom/wsdeg2

heuristic is both higher than the efficiency of dom/wdeg heuristic. Combining Table 1 and Table 2 to

analysis, results indicate that in most of the problems the efficiency of the single use of dom/wsdeg or

method is lower than the efficiency of dom/wsdeg2 heuristic which combines the advantages of the above

two. Furthermore, both of these heuristics have improved the efficiency of the classical heuristic in varying

degrees. In rand-2-23 problem ,the solving efficiency of the new heuristics has improved ten times. The

results imply that there are a large amount of singleton-domain variables generated in the solving process.

In the graph problem, three heuristic methods generate the same number of nodes and the number of

constraint checks is almost the same. Through the analysis of the structure of the instances and variables

instantiation order, we find that the number of singleton-domain variables generated is small and this kind

of variables is located in the marginal region , so they did not play a guiding role in this problem.

In some instances, the number of constraint checks of dom/wdeg and dom/wsdeg is less than

dom/wsdeg2.For example, in the driver problem,dom/wsdeg heuristic performed minimum constraint

checks and the generated twice as many nodes as dom/wsdeg2 did.Because backtracking whenever a

dead-end occurs and the CPU time cost by a backtracking is more than that of a constraint check. So in this

problem dom/wsdeg2 heuristic is still more efficient than dom/wsdeg heuristic.

As for instances of large data size and complex structure, the efficiency of new heuristics is obviously

improved compared with the classic one, such as rand-2-23,time efficiency enhanced in multiples,search

tree nodes exponentially reduced.

Through analysis on the retrieval process and the experimental results, we can find that due to the

complexity of the structure, dom/wdeg always chooses variables located in the hard part to instantiate

because of FFP, and variables related to the variables are usually located in the same region. As a result,

conflict-based heuristic only collects information in the local area and cannot correctly jump away from

sub-network. This process may cause too much dead nodes generated and reduce efficiency. New heuristics

based on the singleton-domain variables can increase the weights of the boundary variables in the process

of backtracking and constraint propagation can reach multiple regions, avoid constraint propagation

confined to a part of the problem, accumulate the heuristic information in a broader space.

 Overall, in solving process. if there is no or only a very small amount of singleton-domain variables, the

efficiency of new heuristics and the classical heuristic is about the same; when the scale of the data is big or

a large number of singleton-domain variables generated, the efficiency of new heuristics will be greatly

enhanced compared with the classical one.

5.3. An Special Guiding Role on Composed Problem

 In the experimental process, we also found that the new heuristic has an special guiding role to solve the

Composed problem and the results are shown in Table 3.

Table 3. Result of Composed Problem

instance dom/wdeg dom/wsdeg dom/wsdeg2

composed-75-1-80

（10 all unsat）

t 1122 1186 1110

n 283 179 168

cc 53064 46787 48401

composed-25-1-80

（10 all unsat）

t 528 473 393

n 165 149 96

cc 38006 33642 28157

composed-75-1-40

（10 all unsat）

t 1255 969 807

n 369 297 222

cc 56853 42901 41387

composed-75-1-40-6 t 779 30 30

909 Volume 11, Number 9, September 2016

Journal of Software

(unsat) n 260 4 4

cc 29401 829 829

 In this paper, three kinds of composed problem are tested, each of them contain 10 instances, the test

results are shown in Table 3. The results in Table 3 are the average values of the instances eliminate

interfering values from special instances such as the result of composed-75-1-40-6. Test results from Table 3

indicate that the new heuristics are more efficient than dom/wdeg. At the same time, we also found that in

about 20% of the instances appear the same results as Composed-75-1-40-6. In Composed-75-1-40-6,the

number of nodes is greatly reduced and the solving efficiency is greatly improved. We found that all of the

instances are unsatisfied,a lot of singleton-domain variables appear in the solving process and new

heuristics give priority to instantiate the nodes which is decisive and the new heuristics greatly reduce the

death node.

6. Conclusion

In this paper, we propose two new variable ordering heuristics and a compression method of the

constraint network based on singleton-domain variables.The experimental results show that the new

heuristics improve the classical one on some series of benchmarks where the conflict-based heuristics are

efficient. It also proves the conjecture that the singleton-domain variable plays an important guiding role in

the process of solving CSP. And as dynamic heuristic methods, the new heuristics also have certain

universality.

References

[1] Freuder, E. C., & Mackworth, A. K. (2006). Constraint satisfaction: An emerging paradigm. Handbook of

Constraint Programming.

[2] Van, B. P. (2006). Backtracking search algorithms. Handbook of Constraint Programming.

[3] Silver, D., Huang, A., Maddison, C. J., Guez. A., Sifre, L., et al. (2016). Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587),484-489.

[4] Lecoutre, C., & Hemery, F. (2007). A study of residual supports in arc consistency..

[5] Golomb, S.W., & Baumert, L. D. (1965). Backtrack programming. Journal of the ACM, 12(4), 516-524.

[6] Bessiere, C., & Regin, J. C. (1996). MAC and combined heuristics: Two reasons to forsake FC (and CBJ?)

on hard problems. Proceedings of the 2nd Int. Conf. on Principles and Practices of Constraint

Programming, 61-75.

[7] Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence, 14(3), 263-313.

[8] Lecoutre, C., Sais, L., Tabary, S., & Vidal, V. (2007). Transposition tables for constraint satisfaction.

[9] Zhang, L. (2014). Heuristics for solving constraint satisfaction problems. Master's degree thesis of Jilin

University, Changchun.

[10] Lecoutre. Retrieved from: http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

[11] Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by weighting

constraints.

[12] Mackworth, A. K . (1977). Consistency in networks of relation. Artificial Intelligence, 8(1), 99-118.

[13] Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction.

[14] Lppez, A., & Bacchus, F. (2003). Generalizing graphplan by forumlating planning as a CSP. Proceedings of

the International Joint Conference on Artificial Intelligence.

910 Volume 11, Number 9, September 2016

Journal of Software

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

Yi Jun Liu was born in Baicheng, Jilin, China. She received her bachelor degree in software

from Northeast Normal University, China in 2014. Now she is studying for a master degree

in the Institute of Computer Science and Technology in Jilin University. Her research

interests are heuristics for solving constraint satisfaction problems and consistency

algorithms for non-binary constraint.

Author’s formal
photo

911 Volume 11, Number 9, September 2016

Journal of Software

