

Risk Framework for Open Source Applications Using
Agent Oriented Modelling

Jo Lyn Teh1, Moshiur Bhuiyan2, P. W. C. Prasad1, and Aneesh Krishna3
1School of Computing and Mathematics, Charles Sturt University, Sydney, NSW 2010, Australia.
2 Service Consulting, Enterprise Cloud Systems Pty Limited, Sydney, NSW 2560, Australia.
3 Department of Computing, Curtin University, Perth, WA 6102, Australia.

Manuscript submitted May 3, 2016; accepted August 12, 2016.
* Corresponding author. Email: a.krishna@curtin.edu.au
doi: 10.17706/jsw.11.9.833-847

Abstract: This paper aims to propose a novel risk framework utilizing agent oriented modelling in order to

provide guidelines for the adoption of Open Source Software (OSS) solutions to an organization. Multiple

studies have focused on user requirements and technical aspects when implementing OSS solutions.

However, there is a lack of literature focusing on the social aspects of ‘why’ and ’how’ risks of OSS adoption

can impact the overall organizational goals and the OSS ecosystem. Therefore, another focus area of this

work is to bridge the gap between actors (goals, softgoals, task, and resources) and risk factors when

adopting OSS in the organization by proposing new risk measurement and risk prioritization methods. This

study is based on literature survey and a case study on OSS adoption in an organization. The research

results show that the proposed risk measurement validates the current methods while providing deeper

insights into the criticality and strong relationship between actors which in turn assists in proposing

appropriate risk response strategies such as delegation of risk among these actors. The result implies that

taking ecosystems into consideration is important for risk mitigation.

Key words: Open source software (OSS), i*, IT risk management, risk framework, organizational modelling.

1. Introduction

Given the constant advances in Information Technology (IT), many organizations download and install IT

software applications as solution for IT infrastructure support and as means of achieving business goals,

leading to an emerging trend of adopting Open Source Software (OSS) within organizations; this is

particularly important in terms of data mining purpose to help organization make informed decisions on

business strategies and strategic intent. OSS is defined as “software that must be distributed with source

code included or be easily available” for free of cost usually via online download [1]. Despite the advantages,

organizations are still hesitant to adopt OSS because the risks and challenges it poses. Some examples of

risk factors that can be seen when adopting OSS solutions are OSS policies and governance, architecture

incompatibility, lack of human resource capabilities and inactive OSS ecosystem support services [2]-[6].

Many studies have examined ‘what’ OSS solutions can bring to an organization. However, there is a lack

of literature on the social aspects of ‘why’ and ’how’ risks of OSS adoption can impact the actors in an

organization and their goals [7]. To begin with, there are currently many risk frameworks that act as

guidelines for effective risk management including ISO31000:2009, NIST800-39 and COBIT. NIST800-39

and COBIT are best suited for project management with a focus on governance whereas ISO31000:2009

833 Volume 11, Number 9, September 2016

Journal of Software

suits mainly risk assessment [1], [8], [9]. Hence, this study will adopt ISO31000:2009 as a skeleton for our

proposed novel framework. Given that ISO31000:2009 only answers the ‘what’ question, our study

proposes to integrate i* organization modelling for the purpose of addressing the ‘why’ and ‘how’ questions

into consideration.

Shabnam et al. have utilized i* modelling to assess risk in an organization and argue that there is a certain

degree of vulnerability and critical risk within an ecosystem as a result of their association [10], [11]. The

aforementioned authors also studied only the 1st tier of dependencies without considering 2nd tier actors

that may also negatively affect the risk measurement. Therefore, the proposed method is set out to validate

and enhance the authors’ assessment through two new risk measurement parameters; these are frequency

of association and time factors during the decision making/feedback process.

The paper is structured as follows. Section 2 reviews literature and will briefly describe the present risk

frameworks, risk measurements and provide an introduction to the case study; Section 3 is the proposed

framework; followed by Section 4 which provides results of the adoption of the new risk framework, and

Section 5 includes discussions and section 6 concludes the paper.

2. Background

2.1. Risk Framework as Risk Management Guidelines

ISO 31000 is an international standard risk management guideline. It comprises of three elements:

principles of risk management, the risk management framework and process. The focus is mainly on the

risk management process which covers areas of risk identification, risk analysis and risk evaluation [12].

Therefore, this paper will adopt ISO31000 as a baseline to assess the risk of OSS adoption because the

framework addresses risk management processes. There are five phases in ISO31000 framework which are

establish context, risk identification, risk analysis, risk evaluation and risk treatment.

2.2. Risk in Adoption of OSS

Some examples of risk that organizations face when adopting OSS solutions are cost of adoption,

compatibility and trialability and risk involving availability of support from a third party vendor [13]. Other

risk impact factors also include project size, organizational impact, and complexity of project dependencies

within an organization and technological compatibilities and architectures [2], [14]. Underestimating

technical risk on integration is a major challenge when adopting OSS [21]. Culture can also be a risk factor

in OSS adoption because if internal personnel are not open to the implementation of OSS, it will increase the

time spent training users to adopt the system and consequently affecting the cost of implementation [15].

Tullio & Staples found that different types of communities and decision making styles play an important

role in the effectiveness of the OSS project [16]. Fig. 1 below is a compilation risks and criteria facilitating

the adoption of OSS.

2.3. Risk Measurement

In [10] the authors argued that associated actors have a degree of vulnerability and criticality as a result

of their association with different actors. It is therefore, posited that the higher degree of vulnerabilities

means that organizations must take stronger initiatives to mitigate the vulnerabilities. The authors also

implied that the more critical actors are to the network, the more they will impact other actors [10].

However, authors did not consider time factors and frequency of dependencies among actors that could

potentially impact the overall risk measurement. Vulnerabilities and Criticality in the current method are

presented as [10]:

Vulnerability

VMorg = No of Outgoing Dependencies / No of Dependee Actors

834 Volume 11, Number 9, September 2016

Journal of Software

Criticality

CMorg = No of Incoming Dependencies * No of Depender Actors

Fig. 1. OSS risk and OSS evaluation criteria.

2.4. OSS Evaluation Criteria

There are nine main open source evaluation criteria which are the community, release activity, longevity,

license, support, documentation, security, functionality and integration (see Figure 1) [17]. Security and

management of licenses seems to be one of the important factors during evaluation [18]. Additionally, a

study suggests that high responsiveness in user community corresponds to effective enhancement [19].

Therefore, responsiveness can be part of the OSS evaluation criteria as it gives user a perception of project

quality, activity and value.

Based on the aforementioned discussion, it is posited that organizations considering OSS solutions can

utilize the Release Readiness Rating (R3) evaluation model to decide which Open Source Software is best

suited for the organization [20].

OSS Ecosystem, Every OSS has its own ecosystem that is comprised of developers, the OSS community

and adopters with a set of goals, task, resources and softgoals to achieve. The OSS community plays a vital

role in ensuring continuity of projects in an organization [21]. Adding to that, the level of interest in the

project suggests better quality and compliance [22]. There are two types of ecosystems related to OSS [21]:

 OSS community Ecosystem: This is mainly the community that maintains relationships among

stakeholders.

 Adopter Ecosystem: This refers to the organization that intent to adopt OSS solutions along with

other actor. This group should be aware of the range of operational risks that may impact the

organization.

2.5. Modelling OSS Ecosystem with i* Organizational Framework

835 Volume 11, Number 9, September 2016

Journal of Software

Currently, there is substantial research on agent-oriented methodologies for requirements engineering

including i* framework, Tropos, formal Tropos, AOR, Prometheus and Gaia [23] [24]. These methodologies

have similar concepts including visual modelling language and the use of agents’ interaction [25] [26]. The

i* framework introduced by Eric Yu [7], models social elements of a system and can be used in the early

requirements analysis stages. The Strategic Dependency (SD) model and the Strategic Rationale (SR)

model are the two types of diagrams which are employed in modelling.

2.5.1. Strategic dependency (SD) model

The Strategic Dependency diagram represents actors’ relationships. In an SD model the nodes represent

the actors and the links represent the interdependency between the actors. Goal, softgoal, task and

resources are the intentional elements. A dependency can be any one of the intentional elements. An SD

model is a higher level of abstraction representing the actors’ dependency upon each other. An SD model

targets external relationships and does not disclose details of internal structure.

Fig. 2 shows SD model for this case study of an organization interested to adopt a new open source

statistical software solution for data mining to track the success of marketing campaigns in order to make

informed business decisions.

Fig. 2. Strategic dependency (SD) model.

In the strategic dependency model, there are three strategic dependency types which are depender,

dependum and dependee. A depender depends on a dependee to achieve a goal, task or resource. A

dependum includes goal, task, resource or softgoals.

2.5.2. Strategic rationale (SR) model

On the other hand, the Strategic Rationale diagram represents the internal and intentional relationship of

each actor. The Strategic Rationale (SR) model is another component of i* modelling framework that helps

to identify stakeholders’ interests such as goals, softgoals, task and resources that can be solved with

various system configurations and environments [7]. The SR model in Figure 3 below is an extended

subset version of IT Staff and OSS community association with several nodes and links that represent the

836 Volume 11, Number 9, September 2016

Journal of Software

structure and rationale behind the process. The additional extension is the plotting of softgoals within the

actors’ environment. For example, ‘OSS Community Support Staff’, there is an extended softgoal namely

‘Technical quality’ whereby the task of running unit test helps achieve good technical quality of project.

Fig. 3. Strategic rational model.

Fig. 4. Proposed risk framework.

2.5.3. Benefits and limitations of the i* modelling framework

837 Volume 11, Number 9, September 2016

Journal of Software

The benefit of i* is that the model allows analysts to identify the vulnerability and opportunity. The

model is used to help understand existing configurations and the proposed configurations based on

stakeholders’ interest. The i* model also provides an abstract view linking risk in adoption of OSS and

business goals [17] while simplifying the analysis of semantic relations [27]. Among other benefits of i*

model is to serve as a link between technical and non-technical stakeholders to understand domain

knowledge [28].

The limitation of i* model lies in delegation of work that may complicate matters. The disadvantages of i*

model are the difficulty of visualizing the level of abstraction in the ecosystem [28]; specifically mapping

softgoals and delegating responsibilities. The SR Model may be too detailed, which makes it hard to

understand, so the model has to be simplified to focus on only top priority goals.

3. The Proposed Risk Framework based on i* Modelling (RFiM)

The proposed hybrid framework adopts the ISO31000:2009 risk framework while integrating i*

modelling to map the ecosystem to better assess risk of the OSS adoption in an organization. There are 5

main sequential phases in the proposed risk framework which are establish context, identify risk, analyse

risk, evaluate risk, and apply risk mitigation technique as presented in Fig. 4.

3.1. Phase 1: Establish Context

This is the first phase of risk assessment. The purpose of establishing context is to understand the

organizational business processes and goals. It also provides a broad overview of the internal and external

environment which comprises of stakeholders, strategic goals and technical requirements that affects the

implementation of OSS solutions. There are 5 steps within this phase,

Step 1: Identify actors – identify role of actors and their responsibilities in the ecosystem

Step 2: Identify Strategic Dependency – identify actors’ goal, task, resource dependencies.

Step 3: Identify Strategic Rationale - identify actors’ goal, task, resource and softgoal dependencies within

the actors’ ecosystem

Step 4: Identify business goals – overall business goals and strategic intent

Step 5: Analyse and Review As-Is Business Process – In this step, association among actors are identified

to establish the background of organizational structure, business policies, guidelines and contractual

relationship are established.

3.2. Phase 2: Identify Risk

The second phase is identifying risk. Risk identification is a process of researching, recognizing and

providing a detail description of risk. There are several ways to identify risk such as primary and secondary

research. Primary research includes obtaining data through questionnaire or focus group interview

whereas secondary research can be derived from online information, technical manuals, journal publication

or books. There are 3 steps in this phase

1) Step 1: Identify OSS risk

2) Step 2: List impact of risk

3) Step 3: Set risk measurement based on identified risk

3.3. Phase 3: Analyse Risk

Risk analysis is the process that involves careful consideration of the cause and effect of risk while taking

likelihood of occurrence and risk estimation into account. This process includes risk quantification to act as

baseline for risk evaluation and risk management. When analysing risk, the following are definition and

steps to analyse the set of risk measurement among actors in the ecosystem:

838 Volume 11, Number 9, September 2016

Journal of Software

4) Step 1: Calculate vulnerability [10]

5) Step 2: Calculate criticality [10]

6) Step 3: Calculate frequency of dependency

Table 1 below illustrates definition of frequency and time risk measurements.

Table 1. Definition of Frequency and Time Risk Measurement
Name Definition

No. of incoming dependencies Sum of inflow of arrows of goals, task and resources for each actors
No. of outgoing dependencies Sum of outflow arrows of goals, task and resources for each actors
No. of depender Sum of dependers depending on the dependee
No. of dependee Sum of of dependee depending on the depender
Frequency Number of request/ 365 days (or 1 year period)
Time Average time taken to feedback/response to report request (days)

The calculation of frequency of dependencies is an extension of methodology illustrated in [10] where

criticality and vulnerability calculation provides a validation method to the current risk measurement.

Based on step 1 and 2 calculation, the dependees are further segmented by roles in order to calculate the

frequency of request more precisely. The purpose of calculating this is to assist companies in deciding the

cost/budget allocation, hiring or leveraging human resources with the right skills as form of risk mitigation.

The formula provided calculates the number of report requested in 365 days because the case study

involves an organisation that operates each day of the year.

Frequency as risk measurement

FreqIn= No of Incoming Dependencies x No of Depender Actors * Frequency (1)

FreqOut= No. of outgoing Dependencies x No. of Dependee Actors * Frequency (2)

Please Note: Frequency = Number of request/365 days
Hypothesis 1:

Based on the aforementioned discussion, it is hypothesised that the higher the frequency, the more

critical the weightage towards achieving organizational goals.

Step 4: Calculate time taken to complete or provide feedback [integration of critical path analysis (CPM)]

Time as risk measurement

TimeIn= Time x FreqIn (3)

TimeOut= Time x FreqOut (4)
Please Note: Time = days

Hypothesis 2:

The more time taken to respond, the more critical the weight towards achieving organizational goals.

Step 5: OSS criteria evaluation

Other risk factors can include providing scores to the type of OSS that the organization intends to adopt.

In this context, the R3 evaluation model is chosen to evaluate OSS products because the model has a

combination and wide coverage of overall risk factors in the OSS adoption.

3.4. Phase 4: Evaluate Risk

Risk evaluation is deciding on treatment or control plans to mitigate risk based on outcomes of risk

analysis phase. Based on the evaluated results, risk can be prioritized and risk response strategies are

839 Volume 11, Number 9, September 2016

Journal of Software

decided in this phase.

Step 1: Evaluate results of calculated risk

Step 2: Prioritise risk and decide mitigation strategies based on the results.

3.5. Phase 5: Apply Risk Mitigation Technique

In phase 5, once the response strategy is agreed upon, organizations can choose to avoid risk by dropping

the whole implementation project, mitigate risk by changing the likelihood or sequence within the business

process, sharing or transferring risk (i.e. by delegating or sharing common goals to reduce dependency) or

accepting the risk [8].

3.6. Output: i* Organizational Modelling Framework

The output of this framework is a i* organizational modelling framework which consists of all the factors

listed in the first four phases of the proposed framework.

Step 1: Plot identified actors (roles, resources and task)

Step 2: Link actors based on business processes.

Step 3: Plot identified risk

Step 4: Link risk impact towards actors.

Step 5: Plot new roles as per mitigation strategies (if any)

4. Results

4.1. Risk Measurement Based on As-Is View of the Organization Structure

Criticality and Vulnerability

Graph 1. Criticality and vulnerabilities by roles.

The bar graph (Graph 1) shows the criticality and vulnerabilities of each role in the OSS ecosystem.

Analytics department Staff appears to be the most critical department in terms of incoming dependencies

with a risk score of 60 whereas Finance Staff is most vulnerable with score of 7.

Frequency and Time

Table 2 illustrates the summary of FreqIn and TimeIn by roles and FreqOut and TimeOut by roles (Refer

to Table 2.1 for snippet sample of FreqIn detail calculation). Based on the Incoming dependencies, the

frequency of report requests coming in for Analytics Staff from other departments is very high. This further

validates the criticality risk measurement which highlighted analytics Staff as the most critical dependency

in the ecosystem. The Table 2 also shows that Finance Staff seems to be most dependent on analytics Staff

with a FreqIn measurement of 1.15 and TimeIn 3.45 which suggests that Finance Staff response time is

fairly slow compared to other roles in the ecosystem.

On the other hand, outgoing dependencies in terms of FreqOut and TimeOut of marketing Staff to

analytics Staff are the highest compared to all other actors. This is due to the high frequency of reports

840 Volume 11, Number 9, September 2016

Journal of Software

requested by Marketing Staff from Analytics Staff that has also led to an increase in TimeOut measurements.

Table 2. Summary of Incoming and Outgoing Frequency and Time Measurement by Roles

Table 2.1. FrequencyIn Detail Calculation

4.2. OSS Evaluation Criteria

An example of suggested compilation of statistical open source software evaluation criteria utilizing R3

model is provided in Table 3.

Table 3. Open Source Statistical Software Description and Features

Based on the Table 4, the top 2 open source software that meet the organizational needs are software C

and software A with 0.59 and 0.58 each compared to other open source software solution. Software C

appears to be on top of the list mainly because of the architecture and quality attributes category score of

0.3 and 0.21 respectively and the extensive activeness of user community 0.33.

841 Volume 11, Number 9, September 2016

Journal of Software

Based on the OSS evaluation criteria results, the top 2 software with highest rating will be chosen and re-

evaluated against the overall internal ecosystem. Fig. 7 below illustrates the different risk impact effecting

different actors in the ecosystem; Further highlighting the roles and responsibility of each actors towards

the risk factors.

Table 4. OSS Evaluation Criteria for OSS Statistical Software

 *Note: software evaluation is subjective and based on suitability to organization and does not in any way

reflect the overall functionality of the software

4.3. Application of Risk Mitigation Strategies on Strategic Dependency Model (To-Be
View)

Based on the risk evaluation, the following section proposes risk mitigation strategies that will lower the

criticality of analytics Staff by delegating dependencies to new roles based on shared common goals, task,

resources and softgoals and removing duplicated resources as depicted Figure 5 with ‘x’ symbol next to

task, resource and goals.

Fig. 5. Strategic dependency model with risk impact and proposed roles.

842 Volume 11, Number 9, September 2016

Journal of Software

The two new proposed roles are HR Staff and Data Center Staff. HR Staff is in charge of handling

arrangement of training; this helps to reduce dependency on Analytics Staff. Data Center Staff is in charge of

data governance.

Duplicated resources are assigned according to the roles relevance; Analytics Staff no longer needs to

depend on OSS community to obtain technical documentation since they do not need to look at

architectural aspect of the OSS compared to IT Staff. Currently, IT Staff depend on Analytics Staff to

customize source code, update user manual and documentation for back up purposes. This will no longer

be needed if the tasks of backing up these documents are handed over to the Analytics Staff.

4.4. Risk Measurement based on To-Be View of Organizational Structure

Criticality and Vulnerability

Graph 2. Graph illustrating criticality and vulnerability by roles.

The criticality measure has now decreased from 60 to 40. Vulnerabilities measures are now spread out

across all actors as opposed to the as-is model whereby finance Staff are most vulnerable.

Frequency and Time

Table 5. Summary Table of Mitigated Risk FreqIn, TimeIn, FreqOut and TimeOut Measurement

Based on Table 5, initial FreqIn of Marketing Staff to analytics Staff was 3.68. This has now decreased to

1.03 because 50% of the request has been channelled to data center Staff to reduce criticality. Also, TimeIn

843 Volume 11, Number 9, September 2016

Journal of Software

has reduced from 11.05 to 3.09. However, a new criticality has emerged from this proposal whereby Data

Center Staff are now in a critical role supplying data to Analytics Staff.

5. Discussion

Based on the findings in the previous sections, Analytics Staff appears to have the most critical role in

terms of the consequence of impact whereas Finance Staff is most vulnerable; this suggests a stronger

implementation of risk mitigation for an alternative effective organizational structure.

The findings are further validated by the calculation of frequency and responsiveness among actors

whereby Analytics Department Staff criticality has a strong relationship with marketing Staff based on the

number of reports requested by the Marketing Staff. These findings are particularly useful when

considering resources allocation and design implementation to manage services and support, given that

new systems will often impact the operational process in the organization.

An interesting observation, it takes the Analytics Staff fairly long time to provide feedback to Marketing

Staff (risk TimeOut=11.05, refer to Table 2) in part due to the frequency of requests made by marketing

Staff. This implies that analytics department may want to consider delegating and training staff from other

departments to better utilize the software to reduce request time and frequency of requests.

Next, based on Table 5 the OSS evaluation criteria (R3) model, the top two OSS software most relevant to

the chosen organizational goals are software C and A. The main difference between software C and

software A is the latter has a partnership score associated with it. Since the organization is not entirely

prepared to operate in a transparent manner due to the nature of its business, partnership will not be a

priority. Since the organization has existing resources and prior experience in utilizing software C and

possesses C++ skills, the organization has decided to adopt software C into the organization.

The next step of this framework is to prioritise risk impact. Naturally, ‘Software’ dimension (refer to

Table 4) will be the first priority because if the software cannot be installed and the architecture does not

support the current system, the IT department will have to decide whether to upgrade its platform to meet

the software requirements or to abandon the project. ‘Releasing authority’ dimension is second on the

priority list since its adoption needs to be supported by the relevant stakeholders and top management.

Third priority is ‘Community’ dimension because as mentioned, partnership will not be taken into

consideration in this context because the organization is not willing to form partnership and therefore third

dimension is irrelevant. Finally, the ‘Legalities’ dimension score is similar across all software and software

licenses evaluated in this case study are similarly compliant to open source software licenses therefore this

is rated as the lowest priority.

Finally, once the listed measurements are analysed and evaluated, an application of risk mitigation

techniques are proposed in Fig. 5. The two new proposed roles are HR and Data Center Staff. HR Staff is in

charge of scheduling training for the new software; this helps to reduce dependency on Analytics Staff on

training coordination. Data Center Staff is in charge of data governance. The findings show that the

Introduction of these additional methods has proven that criticality and vulnerability has been mitigated.

6. Conclusion

In conclusion, the aim of this paper is to propose a risk framework for OSS adoption. The benefits of the

proposed measurement of frequency and time are to enhance and validate the current methods [10]. It also

considers 2nd tier actor dependencies to improve the accuracy of measurement and provide a broader

perspective of the organization’s network dependencies. This approach can be used to mitigate risk by

proposing that other departments absorb some goals or task from the critical actor and merge duplicated

tasks to reduce dependencies. The proposed framework also integrates impact of risk towards different

844 Volume 11, Number 9, September 2016

Journal of Software

actors so organizations are aware of their roles in mitigating these risks. This paper also provided

suggestions on risk approaches and mitigation strategies. Future plans include proposing a framework in

greater details and possibly drilling into business process management (BPM) to address organizations in

various domains. Further studies on alternative risk mitigation strategies are required, combining shared

goals and possibly exploring business process management. Subsequently, implementing the framework in

an organization and comparing effectiveness of this methodology.

References

[1] Agrawal, M., Campoe, A., & Pierce, E. (2014) Information Security and IT Risks Management. Wiley. p.1.

[2] Jordan, E., & Silcock, L. (2005). Beating IT Risks. West Sussex, England: J. Wiley.

[3] Van Loon, A., & Toshkov, D. (2015). Adopting open source software in public administration: The

importance of boundary spanners and political commitment. Government Information Quarterly, 32(2),

207-215.

[4] Affleck, A., Krishna, A., & Achuthan N. (2013). Optimal selection of operationalizations for non-

functional requirements. Proceedings of the 9th Asia-Pacific Conference on Conceptual Modelling (pp.

69-78).

[5] Affleck, A., & Krishna, A. (2012). Supporting quantitative reasoning of non-functional requirements: A

process-oriented approach. Proceedings of the 2012 International Conference on Software and Systems

Process (pp. 88-92).

[6] Burgess, C., Krishna, A., & Jiang, L. (2009). Towards optimising non-functional requirements.

Proceedings of the 9th International Conference on Quality Software (pp. 269-277).

[7] Yu, E. (1997). Towards modelling and reasoning support for early-phase requirements engineering.

IEEE, 226 – 235.

[8] Harrast, S., & Weirich, T. (2009). New IT risk framework. J. Corp. Acct. Fin. Journal of Corporate

Accounting & Finance, 49-54.

[9] Bhuiyan, M., & Krishna, A. (2010). Business modeling with the support of multiple notations in

requirements engineering. Proceedings of the 14th Pacific Asia Conference on Information Systems.

[10] Shabnam, L., Haque, F., Bhuiyan, M., & Krishna, A. (2014). Risk measure propagation through

organisational network.

[11] Zahidul Islam, M., Bhuiyan, M., Krishna, A., & Ghose, A. (2009). An integrated approach to managing

business process risk using rich organizational models.

[12] Ernawati, T. & Suhardi, Nugroho, D.R. (2012). IT risk management framework based on ISO

31000:2009. System Engineering and Technology (ICSET), 2012 International Conference on , vol., no.,

pp.1,8, 11-12 Sept. 2012.

[13] Diop, B., Pascot, D., Mbibi, S., & Banag, L. (2013). Risk factors of the partner relationship between open

source ERP editors and IT services companies. IBR, 6(9).

[14] López, L., Costal, D., Ayala, C. P., Franch, X., Annosi, M. C., Glott, R., & Haaland, K. (2015). Adoption of OSS

components: A goal-oriented approach. Data & Knowledge Engineering, 99, 17-38.

[15] Qu, W., Yang, Z., & Wang, Z. (2011). Multi-level framework of open source software adoption. Journal of

Business Research, 997-1003.

[16] Tullio, D., & Staples, S. (2013). The governance and control of open source software projects. Journal of

Management Information Systems, 30(3), 49–80.

[17] Van, D. B. K. (2007). Open source software evaluation. Handbook of Research on Open Source Software

Technological, Economic, and Social Perspectives, 197-209.

[18] Erlich, Z., & Aviv, R. (2007). Open source software: Strength and weaknesses. Handbook of Research on

845 Volume 11, Number 9, September 2016

Journal of Software

Open Source Software Technological, Economic, and Social Perspectives, 184-196.

[19] Ghapanchi, A. H., & Aurum, A. (2011). An evaluation criterion for open source software projects:

enhancement process effectiveness. International Journal of Information Systems and Change

Management, 5(3), 193-208.

[20] Kilamo, T. (2010). Evaluating the readiness of priopriety software for open source development. Open

Source Software, New Horizons. Springer.

[21] Kenett, R., Franch, X., Susi, A., & Galanis, N. (2014). Adoption of free libre open source software (FLOSS):

A risks management perspective. Proceedings of the 2014 IEEE 38th Annual Computer Software and

Applications Conference.

[22] Van, D. B. K. (2007). Open source software evaluation. Handbook of Research on Open Source Software

Technological, Economic, and Social Perspectives, 197-209.

[23] Bhuiyan, M. (2012). Managing process design in a dynamic organisational context. University of

Wollonggong Australia. PhD Thesis.

[24] Fortuito, A., Bhuiyan, M., Haque, F., Shabnam, L., Krishna, A., & Withana., C. (2015). Citizen's charter

driven service area improvement. Proceedings of the 22nd Asia-Pacific Software Engineering Conference

(pp. 401-408).

[25] Miller, T., Pedell, S., Lopez-Lorca, A. A., Mendoza, A., Sterling, L., & Keirnan, A. (2015). Emotion-led

modelling for people-oriented requirements engineering: The case study of emergency systems.

Journal of Systems and Software, 105, 54-71.

[26] Duran‐Faundez, C., Ramos, M., & Rodriguez, P. (2015). Applying Gaia and AUML for the development

of multiagent  Based control software for flexible manufacturing systems: Addressing

methodological and implementation issues. Software: Practice and Experience, 45(12), 1719-1737.

[27] Ruiz, M., Costal, D., España, S., Franch, X., & Pastor, Ó. (2015). GoBIS: An integrated framework to

analyse the goal and businessprocess perspectives in information systems. Information Systems, 53,

330-345.

[28] Norta, A., Mahunnah, M. Tenso, & Taveter, K. (2014). An agent-oriented method for designing large

socio-technical service-ecosystems. Proceedings of the IEEE 10th World Congress on Services.

[29] Costal, D, Gross, D. et al., (2014). Quantifying the impact of OSS adoption Risks with the help of i* model.

GESSI Research Group.

Jo Lyn Teh is a recipient of dean’s list for academic excellence in master of IT from the Department of

Computing at Charles Sturt University, Australia. She also has received a dean’s award for postgraduate

diploma of IT from Macquarie University, Australia and a BA (Hons) international business management

degree from Northumbria University, UK. She has vast experience as an Intelligence Analyst specialising in

data analytics. Her research interests include risk management, data mining and machine learning.

Moshiur Bhuiyan is an experienced IT management consultant, who possesses extensive expertise in

management consulting, business analysis, BPM, change management and enterprise architecture. He has

significant passion in research and teaching. His research areas include but are not limited to business

process discovery & modelling, process rules and policy integration, process execution, process

reengineering and optimization, process lifecycle management, change management, software requirement

engineering, cloud computing, ICT governance & architecture. He has published his works in reputed

international conferences and journals. He has served as program committee member and reviewer in

several conferences and workshops. He is also the founder member of a technology entrepreneurship

846 Volume 11, Number 9, September 2016

Journal of Software

company named Enterprise Cloud Systems (www.ecloudsys.com) which develops innovative cloud

applications.

P. W. C. Prasad is an adjunct associate professor with the School of Computing and Mathematics at Charles

Sturt University, Australia. Prior to this, he was a lecturer at the United Arab Emirates University in UAE,

Multimedia University in Malaysia and also the Informatics Institute of Technology (IIT), Sri Lanka. He

gained his undergraduate and postgraduate degrees from St Petersburg State Electrotechnical University in

the early 90s and completed his PhD studies at the Multimedia University in Malaysia. He is an active

researcher in the areas of computer architecture, digital systems, modelling and simulation. He has

published more than 100 research articles in computing and engineering journals and conferences

proceedings. He has co-authored two books entitled ‘Digital Systems Fundamentals’ and ‘Computer Systems

Organization and Architecture’ published by Prentice Hall. He is a senior member of the IEEE Computer

Society.

Aneesh Krishna is currently senior lecturer of software engineering with the Department of Computing,

Curtin University, Australia. He holds a PhD in computer science from the University of Wollongong,

Australia, an M.Sc (Engg.) in electronics engineering from Aligarh Muslim University, India and a B.E. degree

in electronics engineering from Bangalore University, India. He was a lecturer in software engineering at the

School of Computer Science and Software Engineering, University of Wollongong, Australia (from February

2006 - June 2009). His research interests include software engineering, requirements engineering,

conceptual modelling, agent systems, formal methods and service-oriented computing. His research is (or

has been) funded by the Australian Research Council and various Australian government agencies as well as

companies such as Woodside Energy, Amristar Solutions, Andrew Corporation, NSW State Emergency

Service, Western Australia Dementia Study Centre and Autism West. He serves as assessor (Ozreader) for

the Australian Research Council. He has been on the organising committee, served as invited technical

program committee member of many conferences and workshop in the areas related to his research.

847 Volume 11, Number 9, September 2016

Journal of Software

