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Abstract: In most surveys, the target variables (items of interest) commonly resemble right-skewed 

distributions where the Stratified Random Sampling technique is used as a method of sampling and 

estimation. The methodology of constructing strata is called stratification. Over a particular characteristic 

chosen as the stratification variable (such as gender, geographical region, ethnicity, or any natural criteria), 

the survey may fail to form homogeneous strata - this would impact the precision in the estimates of the 

target variables. Stratification can lead to substantial improvements in the precision of sample estimators, 

which not only depends on the sample size, but also on the heterogeneity among the units of the population. 

The principal reason for stratification in the design of sample surveys is to reduce the variance of sample 

estimates. Surveys normally have more than one target variable with several variables both available and 

desirable for stratification. Stratification in such multivariate situations has not been explored to a great 

deal like the univariate case and requires algorithms to determine efficient stratum boundaries. This paper 

takes into consideration multiple survey variables and attempts to present a computational procedure to 

construct optimal stratum boundaries (OSB) using Dynamic Programming (DP) technique. A numerical 

example to determine the OSB for two main variables under study is also presented. 

 

Key words: Multivariate sample surveys, optimum stratum boundaries (OSB), mathematical programming 

problem (MPP), dynamic programming technique (DP). 

 
 

1. Introduction 

Stratified Sampling is an important sampling technique used in surveys in almost all fields, be it business, 

economic, social sciences or health. Sociology and other sciences arrange individuals into social strata using 

demographic and socio-economic factors to explore inequalities between groups. Geology classifies layers 

of soil into strata for analysis, and biology can consider strata in the context of layers of tissue. In stratified 

sampling, the sampling-frame is divided into non-overlapping groups or strata in such a way that the strata 

constructed are internally homogeneous with respect to the survey variable (y) under study that maximizes 

the precision of its estimate. Stratification by convenience manner (such as choosing strata using 

demographic, socio-economic fact   ors, or any natural characteristic) is not always a reasonable criterion 

as the strata so obtained may not be internally homogeneous with respect to the variable of interest. Thus, 

one has to create homogenous sub-populations by determining optimum strata boundaries (OSB) so that 

the variances within groups are minimised and hence the precision of overall population parameters are 

improved. The concept of optimal stratification extends the usual concepts of providing algorithms for 

estimating the number of strata, the determination of stratum boundaries, and the allocation of sample 
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units among the strata, in order to minimize the variance of estimates. This paper will look at the concept of 

determining OSB. 

Determining OSB for a survey variable by using its frequency distribution f(y) is well documented in 

sampling literature. In order to achieve maximum precision in the OSB, the stratum variances σ
2
h should 

be as small as possible for a given type of sample allocation. If distribution of the variable under study is 

known, the OSB is determined by cutting the range of this distribution at suitable points. This problem of 

determining OSB was first discussed by [1] who presents a set of minimal equations that are difficult to 

solve. Subsequently, attempts for determining approximate OSB have been made by several authors 

[2]–[7]. 

Several other numerical and computational methods [5], [7]–[29] have been developed for determining 

OSB when a single main variable is under study.  

2. Related Works 

Notably, all the methods mentioned above are univariate procedures that primarily deal with a single 

survey variable. The multivariate situation is more common practically, with several variables both 

available and desirable for stratification. Most real-world surveys are multipurpose - they have several 

variables, and many statistics compete for attention as the principal objectives of survey efforts. It is usually 

better to utilize several variables rather than just one - this often would be true even if the best one were 

known. The advantages of multivariate stratification can be appreciated with the fact that with increasing 

number of survey variables, there are reductions in the variance within strata and gains in precision of the 

estimates. However, construction of strata for the multivariate case is usually not as natural as it is in the 

univariate case.  

Efforts made to take into consideration two or more variables have involved the generalization of 

univariate procedures to determine the boundaries. An analytic method for multivariate stratification was 

proposed by [30]. They used principal component analysis on the stratification variables and then formed 

the strata using only the first two components as stratification variables. Pla [31] extended this by applying 

approximate univariate methods, using the first principal component as the stratification variate. The 

method reduced the generalized and total variances, and outperforms the univariate or bivariate 

procedures for total and linear mean-vector variances and it found out that the relative gain is independent 

of the total sample size. This multivariate method of constructing OSB provides a step forward in solving 

multi-dimensional stratification problems. It has been established that the cumulative f rule proposed in 

[8] performs so well that for all practical purposes, it gives OSB in the bivariate case [32]. In the 

multi-dimensional case, applying the cumulative f rule to the first principal component also gives the 

maximum reduction in the variance within the strata. 

Ghosh [33] extended the theory in [1] to a bivariate population (x,y) whereby he proposed the problem of 

optimum stratification with two characters under proportional allocation, assuming stratification variable 

to be identical to the estimation variable for a fixed number of strata. The generalized variance of the 

sample means was taken as a measure of precision for the bivariate characters. He proposed that a 

two-way rectilinear stratification would be optimum if the generalized variance of the sample means or the 

unbiased linear estimate is minimized. Sadasivan and Aggarwal [34] considered bivariate stratification 

under the Neyman-optimum allocation. They also extended the univariate method in [1] to the bivariate 

case by taking study variables as the basis for stratification, minimizing the generalized variance of the 

equations to get the OSB for multiple strata.  

Samanta [35] considered optimum stratification for multiple variables under proportional allocation by 
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minimizing the generalized variance of estimators under the assumption that stratification variables are 

identical to survey variables. Procedures for more than two stratification variables were also suggested by 

[36] but could not be used when there were several stratification variables and relatively few units.  

In an analytic approach to multivariate stratification, the cluster analysis method was used where the 

total within sum of squares of the stratification variables was minimized. This approach was introduced by 

[37] and was also treated by [38]. Thomsen [39] presented an approximation to the variance of the study 

variable under the assumption of a linear regression on two stratification variables where he demonstrated 

that under some conditions, one can expect a considerable reduction of the variance using two variables. 

Iachan [40] used a stratification method based on prior information - his method produced better results 

than simple random sampling.  

Stratification was also investigated using cluster analysis in [37], [41], and [42]. Following their concepts, 

[43] proposed the concept of stratification as an optimization problem under the clustering approach 

which achieved more efficient stratification than other authors in this area. The optimization function to be 

minimized was formulated as the sum of the multivariate within-strata variances. The results in this were 

not considered as optimum since the constraints were not fulfilled. The problem of optimum stratification 

of two variates under the proportional and optimum allocation in the case of bivariate normal distribution 

was considered by [44] where two stratification attributes were taken into account - correlation coefficient 

between the characters and a sampling fraction. The theory of optimum bivariate stratification under the 

proportional allocation was developed by [45]. The problem of optimum bivariate stratification for two 

characters under the compromise allocation [46] was considered and a cumulative cube root rule for 

stratification was proposed.  

Another approach to defining strata is via so-called L−rot−180 stratification geometry [47], [17]. Under 

this peculiar stratification geometry, in the bivariate case, strata, the elements of which are points on a 

plane, have a form of the capital L rotated through 180 degrees and can be generalized to more than two 

dimensions. Later, the L−rot−180 geometry was applied by [19], who presented stratification under the 

compromise allocation in a problem of stratifying a multivariate population orientated towards minimizing 

the maximum coefficient of variation of estimators studied. 

In the multi-way stratification approach [48], the values of each stratifying variable are first categorized 

to define univariate strata and then the multi-way strata are simply obtained as the intersections of these 

univariate strata across all variables. They used cumulative f on one variate to generate a set of strata 

and then repeated the procedure on the other variables. Final strata were defined by the cross-combination 

of different numbers of cut-points on the two variates. The multi-way stratification shows large gains when 

the numbers of cut-points of the variates are similar, and when the correlations with the survey variables 

are high but a practical problem is that this number can be very large. A multi-way stratification approach 

was also proposed by [49] and [50] using the simple idea of linear programming. Large problems did 

become feasible, however, the main problem was that it was too huge computationally as the number of 

cells in the multi-way stratification increases, to the extent that it cannot be used in most realistic 

situations.  

In this paper, a computational technique of determining OSB using a dynamic programming technique is 

proposed for multivariate survey variables. The proposed technique is illustrated with a numerical example 

that requires the construction of OSB for two study variables and can be extended to many survey variables. 

Sample sizes are also determined together with a comparative on the performance of the proposed method 

against other methods.  

3. Preliminaries 
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In this section, the basic concepts on Stratified Random Sampling are presented together with a review of 

some of the foundation principles with regards to the construction of OSB. 

Let the target population with p variables under study be stratified into L strata where the estimation 

of the means of these study variables 
1 2, , , py y y are of interest. If a simple random sample of size 

jhn is 

to be drawn from 
thh stratum with sample mean ;( 1,2, , ; 1,2, , )jhy j p h L  , then the stratified 

sample mean, jsty , is given by 

                       
1

L

j s t j h j h

h

y W y


                                          (1) 

where jhW  is the proportion of the population of the 
thj variable contained in the 

thh stratum. When the 

finite population correction factors are ignored, under the [51] allocation: 

1

jh jh

jh L

jh jh

h

W
n n

W









                                       (2) 

the variance of jsty  is given by 

                                  

2

1
( )

L

jh jh

h

jst

W

Var y
n




 
 
 


                               (3) 

where 
2

jh is the stratum variance for the
thj main variable in the 

thh stratum; 1,2, ,h L  respectively 

and n  is the preassigned total sample size. 

4. The Proposed Scheme 

In this section, a method of constructing OSB for each stratum is developed for multiple survey (or study) 

variables, which leads to substantial gains in the precision of the estimates. The determination of OSB based 

on the survey variable is not feasible in practice since the variable of interest is unavailable prior to 

conducting the survey, however, this method assumes that with prior surveys, the nature of distributions 

and initial values are known for the survey variables. The problem of finding the OSB is formulated as 

Mathematical Programming Problem (MPP) that seeks minimization of the variance of the estimated 

population parameter under Neyman allocation. The MPP is then solved for OSB by developing a solution 

procedure of dynamic programming technique. A numerical example with simulated data sets of skewed 

populations that follow a 3-parameter (3P) Weibull and Gamma distributions. 

Let 1 2( ), ( ), , ( );p j j jf y f y f y a y b   be the frequency functions of p main study variable, 

1 2, , , my y y  on which compromise strata boundaries are to be constructed. If the population means of 

these study variables are estimated under Neyman allocation given in (2), then the problem of determining 

compromise strata boundaries is to cut up the range, d b a  , at ( 1)L  at intermediate points 

0 1 2 1, , L La y y y y y b        such that (3) is minimum. The upper bound b  is the maximum 

value of all upper bounds of the individual study variables ( 1 2( , , , )pb max b b b ) and the lower bound 
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a  is the minimum value of lower bounds of all the study variables (
1 2( , , , )pa min a a a ). 

For a fixed sample size n , minimizing the expression of the right hand side of (3) is equivalent to 

minimizing 

 1 1 2 2

1 1 1

p L L

jh jh h h h h ph ph

j h h

W W W W   
  

                       (4) 

If ( )jf y  for the 
thj  study variables are known or made known after various statistical techniques 

and if these functions are integrable, 
jhW , 

2

jh  and 
jh  can be obtained as a function of the boundary 

points hy  and 1hy   by using the following expressions: 

 

1

( ) ;
h

h

y

jh j j
y

W f y dy


                                   (5) 

1

2 2 21
( )

h

h

y

jh j j j jh
y

jh

y f y dy
W

 


                              (6)
 

where 

 

1

1
( )

h

h

y

jh j j j
y

jh

y f y dy
W




                                  (7)
 

 

and 1( , )h hy y

 

are the boundaries

 

of 
thh

 

stratum.

 

 

Thus, the objective function in (4) could be expressed as a function of boundary points hy  and 1hy   

only. 

Further defining 1; 1,2, ,h h hl y y h L    where 0hl   denotes the range or width of the 
thh  

stratum and the range of the distribution, d b a  , is expressed as a function of stratum width as: 

 

1 0

1 1

( )
L L

h h h L

h h

l y y b a y y d

 

                              (8) 

 

The 
thh  stratification point ; 1,2, ,hy h L  is then expressed as 1h h hy y l   and from (8), the 

problem can be treated as an equivalent problem of determining optimum strata widths (OSW), 1 2, ,., Ll l l . 

Due to the special nature of functions, the problem may be treated as a function of hl  alone and can be 

expressed as: 

                                 (9) 

5. The Solution Procedure 

820 Volume 11, Number 8, August 2016

Journal of Software



  

The MPP (9) is a multistage decision problem in which the objective function and the constraint are 

separable functions of hl , which allows us to use a dynamic programming technique [27]. Dynamic 

programming determines the optimum solution of a multi-variable problem by decomposing it into stages, 

each stage compromising a single variable sub-problem. A dynamic programming model is basically a 

recursive equation based on Bellman's principle of optimality [52]. This recursive equation links the 

different stages of the problem in a manner which guarantees that each stage's optimal feasible solution is 

also optimal and feasible for the entire problem (see [53]; Chapter 10). 

Consider the following sub-problem of (9) for first ( )k L  strata: 

1

1

Minimize ( ),

subject to ,

and 0; 1,2, ,

k

h h

h

k

h k

h

h

l

l d

l h k








 



                             (10) 

 

where kd d  is the total width available for division into k strata or the state value at stage .k Note that 

kd d  for k L . 

The transformation functions are given by 

 

1 2

1 1 2 1

2 1 2 2 1 1

2 1 2 3 3

1 1 2 2

,

,

,

,

.

k k

k k k k

k k k k

d l l l

d l l l d l

d l l l d l

d l l d l

d l d l

 

   

   

     

     

   

  

                         (11) 

 

Let ( )k kd  denote the minimum value of the objective function of (10) that is, for

1,2, , and1h k k L   , 

1 1

( ) min ( ) ,and 0|
k k

k k h h h k h

h h

d l l d l
 

 
    

 
   

With the above definition of ( )k kd , the MPP (10) is equivalent to finding ( )L d  recursively by 

finding ( )k kd  for 1,2, ,k L  and 0 kd d  . Hence, for 0; 1,2, ,hl h k  , 

 
1 1

1 1

( ) min ( ) ( ) |
k k

k k k k h h h k k

h h

d l l l d l 
 

 

 
     

 
   

 

For a fixed value of kl ; 0 k kl d  , and 0; 1,2,( 1) and1hl h k k L     . 
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1 1

1 1

( ) ( ) min ( ) |
k k

k k k k h h h k k

h h

d l l l d l 
 

 

 
     

 
 

 

 

Using the

 

Bellman's principle of optimality, a forward recursive equation of the dynamic programming 

technique for 2k 
 

and minimizing on 0 k kl d 

 

could be written as:

 

 

 1( ) mi (
 

n ) ( )k k k k k k kd l d l                              (11)
 

 

For the first

 

stage ( 1k  ),

 

 

*

1 1 1 1 1 1( ) ( )d d l d                                 (12)

 

 

where

 

*

1 1l d

 

is the optimum width of the first stratum. The relations (11) and (12) are solved 

recursively for each 1,2, ,k L

 

and 0 kd d  , and ( )L d

 

is obtained. From ( )L d

 

the optimum 

width of thL

 

stratum, *

Ll , is obtained. From *

1( )L Ld l 

 

the optimum width of ( 1)thL stratum, *

1Ll 
, is 

obtained and so on until *

1l

 

is obtained.

 

6.

 

A Numerical Example

 

In this section, an example is presented using a bivariate data set where construction of OSB is being 

sought for the two variables

 

( var1and var 2 ), both of size, 725N  . The two survey variables, having 

different distances, are first standardized to bring about consistency in the ‘compromise’ distance over 

which the OSB would be constructed. Their distributions are estimated using EasyFit

 

software whereby the 

first survey variable follows approximately Weibull distribution while the second survey variable follows 

approximately Gamma distribution, both of which are 3P distributions (shape( r ), scale(  ), and 

location( )). Since data have been standardized, they follow these skewed distributions which are families 

of the Normal Gaussian distribution

 

( 0, 1   ). The density functions of 3P Weibull and Gamma 

distributions are:

 

 

1

( ; , , )

r
r x

r x
f x r e




 

 

  
 
 

 
  

 
                             (13)

 

1( )
( ; , , )

( )

 

xr

r

x
f x r e

r




 



   
 





                                (14)

 

 

where 0r  is a shape parameter, 0 

 

is the scale parameter and 

 

is the location parameter.

 

Using

 

(4), (5), (6) and (7) the MPP is formulated as:
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 2 2 2 2

1 1 2 2

1

1

Minimize ,

subject to

and 0; 1,2, , .

L

h

h

h

h h

L

h

h

h

W

l d

l h

W

L

 






 



                            (15) 

 

where 1hW  and 2hW  are the 
thh  stratum weights and 2

1h  and 2

2h  are the 
thh  stratum variances of 

the of the two study variables. In simplified forms, 2 2

1 1h hW  , which deals with 3P Weibull distribution, can 

be written as 

1 1
1 1 1 1

1 12

1

1

1 1 1 1

1 1 1 1

1 1
1

1 1 1 1

2
1

2 2
1, 1,

1 1 1
1 1,
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h h h
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e e
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 
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 
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 

         
          

           

      
          
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1 1

1

1,

r

h hx l 




    
   

    

         (16) 

 

and 2 2

2 2h hW  , which deals with 3P Gamma distribution, can be written as 

 

2 1 2 1 2
2 2 2 2 2

2 2

1 2 1 2
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2 2
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 
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 

 

 
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     
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       

    
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        

      

                (17) 

 

The three parameters, minimum and maximum values for the two variables that follow Weibull and 

Gamma distributions respectively are given below. 

 

 Weibull Gamma 

Shape ( r ) 6.1778 5.1196 

Scale ( ) 5.7282 0.4509 

Location ( ) -5.3264 -2.3086 

Minimum -3.6734 -1.7763 

Maximum 2.7939 3.7360 

 

Substituting Equations (16) and (17) into MPP (15) and solving (via a computer program) it by using the 

DP technique over compromise distance d = max(var1, var2) - min(var1, var2) = 3.7360 - -3.6734 = 7.4094 
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with the initial value of 0 0x   gives the standardized OSB. To get the OSB for individual variables, it is 

first shifted appropriately (adding the minimum of that variable) since the initial value is 0. The OSB are 

then further transformed into real OSB by un-standardizing, which is, multiplying with the standard 

deviation and adding the mean. For the first survey variable, the OSB and the Objective function values 

(Variances) for up to 7 strata ( 1,2, ,7L  ) are given in Table 1 below while the results for the second 

survey variable are given in Table 2. 

 

Table 1. OSB and Variance for Variable 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. OSB and Variance for Variable 2 

L  
OSB 

* * *

1h h hy y l   

Variance 

1

( )
L

h h

h

l


  

2 
*

1y = 6.9342 7.0004e-02 

 
*

1y = 5.0693 
 

6.7069e-02 

L  OSB 
* * *

1h h hy y l   

Variance 

1

( )
L

h h

h

l


  

2 *

1y  = 7.6068 2.2880e-05 

 *

1y  = 7.0897  

3 *

2y  = 8.3118 1.6682e-05 

 *

1y  = 6.8463  

4 *

2y  = 7.6795 1.3067e-05 

 *

3y  = 8.7985  

 *

1y = 6.7027  

 *

2y  = 7.3500  

5 *

3y = 8.1079 1.0749e-05 

 *

4y = 9.1985  

 *

1y  = 6.6073  

 *

2y  = 7.1415  

6 *

3y  = 7.7337 9.1441e-06 

 *

4y  = 8.4544  

 *

5y  = 9.5627  

 *

1y  = 6.5380  

 *

2y = 6.9936  

7 *

3y = 7.4845 7.9503e-06 

 *

4y = 8.0425  

 *

5y = 8.7479  

 *

6y  = 9.9049  
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3 
*

2y = 9.4770  

 
*

1y = 4.1913  

4 
*

2y  = 7.1963 6.1923e-02 

 
*

3y  = 11.2323  

 
*

1y  = 3.6733  

 
*

2y = 6.0079  

5 
*

3y  = 8.7413 5.6615e-02 

 
*

4y  = 12.6748  

 
*

1y  = 3.3294  

 
*

2y  = 5.2559  

6 
*

3y = 7.3919 5.1927e-02 

 
*

4y = 9.9913  

 
*

5y  = 13.9884  

 
*

1y = 3.0793  

 
*

2y  = 4.7227  

7 
*

3y  = 6.4931 4.7853e-02 

 
*

4y  = 8.5057  

 
*

5y  = 11.0499  

 
*

6y  = 15.2225  

 

In summary, the proposed method and its application to simulated data appear to work fine and the 

method is able to determine OSB that are quite efficient. Compromise stratum boundaries are first 

determined which are then used to determine the OSB for the individual study variables. With all the 

assumptions met, this method would work with as many main study variables that one wants to stratify in 

a survey. 

7. Optimum Sample Sizes 

The optimum sample sizes for individual strata can easily be computed once the OSB 1( , )h hy y   have 

been determined via the proposed method. These sample sizes ( ; 1,2, ,hn h L ) are obtained for a fixed 

total sample of size n  under Neyman allocation given in Equation (2) where jhW  and jh  are the 

stratum weight and variance for the p  main study variables and they are derived using Equations (5) - 

(7).  

It is worth noting that the OSB, 1( , )h hy y  , are so obtained from the MPP (15) that hn  must satisfy the 

restriction of 1 h hn N  , where h hN NW . The restriction 1 hn  is added to the formulation so that 

the 
thh  stratum must form with at least a unit and the restriction h hn N  is added to avoid over 

sampling. 

The computed OSB, presented in Tables 1 and 2 are used to calculate the stratum sample sizes ( hn ) for 
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1,2,.,h L  with the total sample size arbitrarily fixed at n=200. For the two main variables under study, 

these are presented in Table 3. 

 

Table 3. Sample Sizes for Both Variables 

L Variable 1 Variable 2 

2 n1 = 115 n1 = 71 

 n2 = 85 n2 = 129 

 n1 = 75 n1 = 49 

3 n2 = 82 n2 = 44 

 n3 = 43 n3 = 107 

 n1 = 55 n1 = 38 

4 n2 = 61 n2 = 34 

 n3 = 61 n3 = 35 

 n4 = 23 n4 = 93 

 n1 = 44 n1 = 31 

 n2 = 48 n2 = 28 

5 n3 = 50 n3 = 27 

 n4 = 47 n4 = 32 

 n5 = 11 n5 = 82 

 n1 = 37 n1 = 27 

 n2 = 40 n2 = 25 

6 n3 = 41 n3 = 23 

 n4 = 42 n4 = 23 

 n5 = 35 n5 = 30 

 n6 = 5 n6 = 72 

 n1 = 31 n1 = 24 

 n2 = 34 n2 = 22 

 n3 = 35 n3 = 20 

7 n4 = 36 n4 = 20 

 n5 = 35 n5 = 22 

 n6 = 27 n6 = 30 

 n7 = 2 n7 = 62 

 

8. Comparison with Other Methods 

This section presents the comparison of the OSB and performance (variances) of the proposed method 

with other established methods. The following three univariate methods have been consistently used in 

literature and have been considered for comparison purposes: 

1) Cum f method of Dalenius and Hodges [8]. 

2) Geometric method of Gunning and Horgan [18]. 

3) Lavallee and Hidiroglou [14] method with Kozak's [19] algorithm. 

The ‘stratification’ package developed by [54] in the R statistical software is utilized to determine the 

OSB for the main study variables for the three methods above. The OSBs are then used to compute the 

variances of the estimated mean so that a comparative analysis could be carried out between the three 

established methods and the proposed method. Firstly, the OSBs are presented for the three methods in 
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Tables 4 and 5 and then secondly, the comparison of variances are given in Tables 6 and 7 for the two 

variables respectively.  

Table 4. OSB for Variable 1 Using Other Methods   Table 5. OSB for Variable 2 Using Other Methods 

                    

Table 6. Comparison of Variances for Variable 1 

L Proposed DP Geometric Cum f L-H Kozak 

2 2.2879e-05 3.2725e-05 3.3216e-05 3.3223e-05 

3 1.6681e-05 2.9255e-05 3.3144e-05 3.3176e-05 

4 1.3066e-05 2.4816e-05 3.2985e-05 3.3153e-05 

5 1.0748e-05 2.1086e-05 3.2755e-05 3.1490e-05 

6 9.1432e-06 1.8164e-05 3.2351e-05 3.1703e-05 

7 7.9495e-06 1.5909e-05 3.2056e-05 3.1251e-05 

   

Table 7. Comparison of Variances for Variable 2 

L Proposed DP Geometric Cum f L-H Kozak 

2 0.070004 0.070096 0.070286 0.070285 

3 0.067069 0.062613 0.070280 0.070200 

4 0.061923 0.052260 0.070239 0.068694 

5 0.056614 0.044952 0.069950 0.068236 

6 0.051926 0.039040 0.069455 0.059479 

7 0.047852 0.034224 0.068319 0.059450 

 

The comparison of the relative efficiencies of the proposed method over the other methods are given in 

Tables 8 and 9 for the two variables respectively. The relative efficiency for 
thi study variable is given by 

Equation (18) below where ‘Other Method’ indicates one of the other three methods being compared 

against. 

 

ProposedMethod

OtherMethod

100%
i

i

i

V
RE

V
                                (18) 

 

9. Discussion 

It is seen that the OSB can be constructed in the multivariate situation in a very efficient manner whereby 

the proposed method can be applied to as many survey variables as possible. Stratified random sampling 
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technique is used in this research to estimate the population parameter since it is an efficient and widely 

used sampling technique. Often, the two major difficulties surveyors encounter prior to drawing the sample 

while using stratified sampling are: (i) constructing the optimum stratum boundaries (OSB) within which 

the units are as homogeneous as much as possible and (ii) determination of the optimum size of the sample 

to be drawn from each stratum. Both the problems have been addressed by this paper for the multivariate 

situation. The OSB obtained by the proposed method could be used to compute the optimum sample sizes 

for each stratum so that the precision of the estimates of parameters of the study variables are maximized. 

 

Table 8. Efficiencies for Variable 1           Table 9. Efficiencies for Variable 2 

         
 

Table 10: Average Relative Efficiencies 

 L Geometric Cum f Kozak 

 2 121.59 122.79 122.81 

 3 134.37 151.75 151.78 

 4 137.17 182.94 182.33 

 5 137.80 214.16 206.76 

 6 136.92 243.79 230.64 

 7 135.83 273.01 258.68 

 

Using the proposed method, Tables 1 and 2 present the OSB and the objective function values (variances) 

for the two variables while Table 3 presents their respective sample sizes for 1,2, ,7L  . The results 

reveal that with increasing number of strata ( L ), the variances decrease in an exponential manner. 

Comparing the OSB from the proposed method with the other three methods in Tables 4 and 5, it is seen 

that they are quite different from each other. A comparison of variances is carried out and presented in 

Tables 6 and 7 for both the variables. The variances of the estimate given by the proposed method for 

variable 1 are lower than the variances for all other established methods. The same could be said for 

variable 2 except that the variances under the proposed method are slightly greater than the Geometric 

method.  

The relative efficiencies of the proposed method over other methods are presented in Tables 8 and 9 

where one can see the substantial gains by the proposed method over all other methods in both variables 

except over Geometric method in variable 2. This is expected under the proposed method which basically 

works on the idea of compromise stratum boundaries whereby there could be gains in one variable and 

loss in another. However, when the two variables are combined, there would be an overall gain achieved by 

the proposed method in comparison with all other methods. Table 10 presents the average relative 

efficiencies (A.R.E.) of the proposed method over other methods, calculated by Equation (19) where 1. .R E

is the relative efficiency for variable 1 while 2. .R E  is the relative efficiency for variable 2. 
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1 2. . . .
. . .

2

R E R E
A R E


                                   (19) 

 

From Table 10, it is noticeable that there are substantial gains in average relative efficiencies for the two 

study variables. For 2,3, ,7L  , the gains over Geometric method on average range from about 122%  

to 138% , the gains over Cum f  method range from about 123%  to 273%  while the gains over 

L-H Kozak's method range from about 123%  to 259% . 
 

10.  Conclusion 

In this paper, a scheme is proposed to construct the OSB for multiple survey or study variables. A numerical 

example using a simulated data set is presented to illustrate the computational details of the application of the 

proposed technique for two variables. Using the estimated frequency distributions of the standardized variables, 

the problem of creating optimum stratum boundaries is formulated into an MPP which results in a multi-stage 

decision problem to be solved on a compromise distance. The brute-force algorithm of the Dynamic 

Programming technique is implemented into a computer program to solve the MPP, which aims to minimize the 

total variance of all the study variables.  

It is found out that the construction of strata for multiple survey variables, when the frequency distributions 

are known, is possible and it leads to substantial gains in average relative efficiencies, and hence, gains in the 

precision of the estimates. The advantage of the proposed method is that it does not require any initial 

approximate solution and it can be applied to any skewed population with whatever range. The proposed 

method is able to determine OSB simultaneously for multiple study variables with substantially improved 

average relative efficiency. 

The optimum stratification based on the survey variables is not feasible in practice since they are unknown 

prior to conducting the survey. Thus, the proposed technique is useful in the sense that it does not require the 

data but requires the estimated parameters of the distributions for the multiple survey variables, which can be 

estimated from prior surveys. The proposed method obtains global optimum stratum boundaries and is slow in 

terms of computing efficiency but with improved computer processing power, it will surely be a thing of the past. 
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