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Abstract: Entropy is a measurement of the system’s degree of chaos, it has important applications in the field of 

control theory, probability theory, number theory, astrophysics and life sciences. In the process for 

multi-objective evolutionary algorithm to solve optimization problem, the distribution of individuals in the 

population goes from disorder to order. The paper introduces the entropy theory to multi-objective evolutionary 

and proposes an entropy calculation method to describe the population distribution, besides, it offers a method 

to judge the critical point, which can be used as a model beginning standard. 
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1. Introduction 

In the study of hybrid multi-objective evolutionary algorithm [1]-[3], in addition to the traditional 

crossover and mutation operator, a probabilistic model that describes the distribution of solution set by the 

means of statistical learning from the macro-perspective was introduced to reproduce new individuals. As 

the proposal of such method is not long, its theoretical system is not so mature. Therefore, the further 

research on it has very important theoretical significance and innovative value. In addition, at the initial 

phase of algorithms, as global information is insufficient, the search with the method of probability 

modeling usually will make it far away from objective method. How to get the traditional multi-objective 

algorithm combined with the method of probabilistic model better and learn from mutual advantages 

deserves a deep research. 

In the process of optimization problem for multi-objective evolutionary algorithm, the individual 

distribution in population exists with phenomenon from disorder to orderliness [4]-[9]. By introducing the 

entropy theory into multi-objective evolution, this paper proposes a kind of computing method about 

entropy to describe the distribution of population, and does experiment on ZDT test set with NSGA-II 

algorithm, and then introduces it into the research of multi-objective evolution as a kind of new modeling 

beginning standard. 

2. Entropy and Critical Point in Multi-objective Evolution 

2.1. Entropy in Multi-objective Evolution 

Definition 1. Entropy of population is a kind of measurement of all individual distribution in solution 

space. If the Pop scale in evolution population is N and the dimensionality of decision variable is n , then 

each dimensionality in decision space is divided into K sections, then the grid number of whole decision 
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space is
nK , the entropy of defined population is: 
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where, pi = counter[i] / N , counter[i] is the number of individual in No. i grid. 

2.2. Critical Point in Multi-objective Evolution 

Definition 2. Critical point in multi-objective evolution. In the entropy graph of population in the evolutionary 

process, the point c  is called as the critical point of multi-objective evolution ,which satisfies:  
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where, cE is the entropy of No. c evolutionary population, and c kE   is the entropy of No. (c+k) population, and 

  is a constant. 

3. Theoretical Entropy and Numerical Experiment of Test Set 

3.1. Theoretical Entropy of ZDT Test Set 

ZDT test set was proposed by E.Zitzler, K. Deb and L.Thiele in 2000 [10], and it presents many characters 

which described in Deb’s Toolkit, including different front shape (such as the front of ZDT1 is convex, while 

the front of ZDT2 is not), discrete problem ZDT3, multiple front problem ZDT4 and preference problem 

ZDT6. All problems are provided with two objectives, consisting of function f1, g and h. The form is 

expressed as follows: 
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truePF  of ZDT1-ZDT4 and ZDT6 are all corresponding ( ) 1g x  , whereas: 
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Therefore, to achieve optimal solution, the decision space includes: 

1 [0,1]  0 ( 2, , )ix x i m  
 

According to the computing method of entropy listed in Formula (1), the entropy when population 

convergence to PF only is related to the value of decision variable in the first dimensionality. At this time, all 

individuals gather in the top K grids, and are equably distributed in these grids. The theoretical entropy of 

population is: 
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3.2. Experimental Result and Analysis of Population’s Entropy 

In order to verify the computing method for entropy provided in formula (1) and the analysis of (3) on 

the theoretical entropy of different test sets, NSGA-II [11] algorithm is applied to conduct experiment 

respectively on the ZDT test set. The population size N in NSGA-II is set to be 1000, and the evolutionary 

generation is set to be 250. Simulated binary crossover is utilized and the crossover probability is 0.9. The 

variation chooses polynomial variation and the variation probability is 1/n. The dimensions of decision 

variables, and the interval numbers in each dimension, as well as the times setting of independent 

operation of experiment are shown in Table 1. 

 

Table 1. Related Parameter Setting for Experiment 
Test Suit Variable Num Grid Num Run Times 

ZDT 5,8,10 3,5 10 

 

For the purpose of describing the entropy changes in population evolution process more explicitly, we 

operates the algorithm for ten times in each certain condition and then provides the entropy graphs for 

those with better population convergence. 

 

 
Fig. 1. Entropy graph of test set ZDT (Variable Num=5, Grid Num=3). 
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Fig. 2. Entropy graph of test set ZDT (Variable Num= 8, Grid Num=3). 

 

 
Fig. 3. Entropy graph of test set ZDT (Variable Num=10, Grid Num=3). 

 

  It can be concluded from formula (3) that when dividing three sections in each dimension of the 

decision space, the theoretical entropy of ZDT at the time of population convergence should be as follows: 

log log3 1.0986E K    

Combined with the obtained entropy Fig.1 - 3, we can draw following conclusions:  

1) The entropy of population is larger at early evolution, and then gradually decreases as the evolution 

goes on. When the evolution processes to a certain stage, the value tends to be stable.  

2) As to the four test problems ZDT1-ZDT4, when the population converges or tends to be stable, the 
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entropy is close to the theoretical value 1.0986. Except for ZDT6, the entropy is close to 0 when the 

graph tends to be stable.  

3) The change of dimensions of decision spaces has no impact on the entropy when the population 

tends to be stable.  

 

 
Fig. 4. Population distribution of ZDT6 in decision space. 

 

As to the particular value of ZDT6, we conducts analysis when the number of dimensions of decision 

variables is 5. Based on formula (3), the entropy at population convergence is decided by the value of 

individuals in the first dimension of decision space. Theoretically, individuals should be in uniform 

distribution among [0,1]. Therefore, the PS of population presents one-dimensional linear manifold as 

shown in Fig. 4(a). However, the PS distribution of population worked out by the algorithm is shown in Fig. 

4(b) where [0,1] is divided into three sections. According to the statistics, the individuals in the first section 

account for 98.6% and that in second section accounts for 1.4%. Accordingly, the entropy of population is 

as follows:  

(0.986 log0.986 0.014log0.014) 0.0737E       

 
Fig. 5. Entropy graph of test set ZDT (Variable Num=5, Grid Num=5). 
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Fig. 6. Entropy graph of test set ZDT (Variable Num=8, Grid Num=5). 

 

 
Fig. 7. Entropy graph of test set ZDT (Variable Num=10, Grid Num=5). 

 

As to the four test problems ZDT1-ZDT4, when the population converges or tends to be stable, the 

entropy is close to the theoretical value 1.6094. As to ZDT6, the solution worded out by the algorithm is 

nonuniform, making the entropy close to 0.5 when the graph tends to be stable. 
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Comparing Fig.1-3 with Fig.5-7, the number of sections divided in each dimension of decision variables is 

the factor that directly impacts the entropy of population. When the number of sections divided in each 

dimension of decision spaces is different, the entropy at convergence turns out different, verifying the 

computing method for entropy defined in formula (1).  

3.3. Experimental Result and Analysis of Critical Phenomena 

When k = 5, e= 0.1, and based on the entropy data of test set ZDT when the number of decision variables 

is 5 and that of sections in each dimension is 3, formula (2) can be used to compute the critical point of 

multiple-object algorithm. Thus, the average rate of change of population’s entropy is as shown in Fig. 8-9. 

 

 
Fig. 8. Entropy difference graph of ZDT1,ZDT2. 

 

 
Fig. 9. Entropy difference graph of ZDT3,ZDT4,ZDT6. 

 

1) As far as ZDT1 is concerned, the critical point that meets the conditions is 7 (c = 7), namely the five 

generations ranging from 7 to 11 are the critical points where the distribution transits from disorder 

to order. Combined with the distribution of ZDT1’s solution sets in objective space as shown in Fig.10, 

before generation 7, the distribution of population is provided with randomness. The population 

gradually converges to the shape of truePF and is approaching to truePF after the evolution from 

generation 7 to 11.  

2) As far as ZDT2 is concerned, the critical point that meets the conditions is 10 (c = 10). Combined with 

Fig.11, before generation 10, the distribution of population is provided with randomness. The 

population gradually converges to the shape of truePF and is approaching to truePF after the 

evolution from generation 10 to 14.  

3) As to ZDT3, ZDT4 and ZDT6, the critical points that meet the conditions are as shown in Table 2: 
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Fig. 10. Distribution of solution sets of ZDT1 in objective space. 

 

 
Fig. 11. Distribution of solution sets of ZDT2 in objective space. 
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Table 2. The Critical Points of ZDT3, ZDT4 and ZDT6 

Problem ZDT3 ZDT4 ZDT6 

Critical point c 8 16 11 

 

Combined with Fig. 8-11, before the critical point, the distribution of population is random and 

disordered. After the evolution for k generations since critical point, the distribution of population begins 

to present certain regularity and approach reality. The generation c k  in the evolution is the transit 

from disorder to order, which is a sort of critical point. The selection of k and should based on different 

problems.   

4. Conclusions 

The thesis introduces entropy theory into the research on multi-objective evolution and defines a 

computing method for entropy. Based on given computing method, the theoretical entropy of test set ZDT is 

analyzed when the population converges. Furthermore, NSGA-II algorithm is applied for experiment. The 

comparison and analysis of the entropy worked out and the theoretical value testify the correctness of the 

defined computing method for entropy. In addition, on the basis of entropy graph of test problem ZDT, this 

thesis defines the critical point in multi-objective evolutionary algorithm and conducts analysis on the 

critical point combined with the distribution of solution set in objective space, as well as regards the critical 

point as a modeling beginning standard that traditional multi-objective algorithm can be used before the 

critical point while the distribution estimation algorithm based on rule models should be applied after 

crossing the critical point, which is the work required for next stage.  
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