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Abstract: Revealing security vulnerabilities is one of great challenges for the Android ecosystem. Static 

analysis is the usual approach of the security analysis for computer software. However, it is undirected and 

time-consuming for the common static analysis methods to analyze the entire Android application system-

atically from the main entry point. In order to adapt to the event-driven feature of Android applications, a 

model guided security analysis approach for Android applications is introduced and implemented into the 

prototype tool MSAS. This approach builds and utilizes the Operation Security Model to guide the targeted 

analysis process, and then concentrate on the identified analysis surface to reduce analysis workload, 

thereby achieving fast analysis speed and on-demand code coverage based on the security rules. The test 

result shows that this approach can improve the efficiency and effect of security analysis for Android appli-

cations, and it has revealed 11 security vulnerabilities by analyzing several popular Android applications. 

 
Key words: Model guided analysis, security analysis, Android application security, static analysis, vulnera-
bility discovery. 

 
 

1. Introduction 

Android [1] is a popular open source operating system for mobile and embedded devices, and millions of 

kinds of Android applications are nowadays running on a variety of smart devices including mobile phones, 

pads, tablets and smart televisions. The Android applications have been influencing people's lives and glob-

al economy so deeply that their computational errors and security vulnerabilities can cause financial ruin, 

privacy leaks as well as heavy loss to information asset. Therefore, security analysis is important for the 

Android developers and security auditors to discover and locate the unknown bugs and vulnerabilities in 

Android applications to prevent the potential calamities. 

The static analysis method [2] is often used in the security analysis for computer software. Great efforts 

have been devoted to the development of static analyzers. The analyzers can perform on the source code as 

well as the byte code, and can implement the solutions for the program states without actually executing pro-

grams. Because the source code of an Android application contains lots of Java code, many static analysis tools 

for Java source code can serve as references [3], such as Checkstyle, PMD, FindBugs, Fortify SCA, Klocwork, 

Coverity [4].  

The Android application will be analyzed by unpacking the target APK package, analyzing the optimized 

Dalvik bytecode [5] and detecting security vulnerabilities. The following features of the Android platform 

need to be considered for better quality of the security analysis. First, the Android applications are devel-

oped by Java language with the extended Android libraries and components for the interactive operations 
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and mobile functions. Next, the Android application model is based on an event-driven architecture [6], 

which supports data sharing and function interoperating across different applications. For adapting to these 

features, a model guided analysis approach is proposed to improve the efficiency and effect of security 

analysis for Android applications.  

The rest of this paper is organized as follows. Section 2 describes in detail the analysis process as well as 

the relevant concepts. Section 3 presents the experimental results on several popular Android applications, 

based on our approach implementation. Section 4 is to make conclusion of the paper. 

2.  Analysis Approach 

The general framework of the model guided security analysis approach is depicted on Fig. 1. In the ap-

proach process, the APK package of the target Android application are firstly unpacked to extract the appli-

cation crucial files such as AndroidManifest.xml and classes.dex. Next, the application interface analysis will 

be performed on AndroidManifest.xml to locate the exposed interfaces and the input data structures of the 

application components. The potentially malicious data can be received by data sharing and function in-

teroperating across different applications. Then, we can retarget and disassemble classes.dex to obtain the 

Dalvik bytecode, and then perform the fundamental structure analysis including control flow analysis [7] for 

the construction of the class hierarchy and the control flow graph. 
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Fig. 1. General framework of the model guided security analysis for Android applications. 

 

After that, the model-guided analysis can begin from application interface points to traverse the control 

structures of the relevant methods. During the traversal, it uses the Operation Security Model to track the 

sequence of the important application operations and guide the targeted analysis in order to achieve 

on-demand security analysis. The security violation of the application operations can be recorded and ana-

lyzed to detect security vulnerabilities or bugs and generate the security analysis report. The following sec-

tions will discuss the key procedures in detail. 

2.1.  Build the Operation Security Model 

In order to reduce the number of the potential security vulnerabilities, the important operations of an 

Android application have to comply with the specific security rules. The security rules can be described in 

the form of the OSM model i.e. Operation Security Model. 
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The OSM model is based on the finite state machine, which is the mathematic model with sound theoret-

ical foundation [[8]]. This model can have discrete inputs and outputs, and use the states to keep record of 

the effect of the past behaviors of the Android application. The formal notation of the OSM model is as fol-

lows: 

                     )                                  (1) 

This notation involves the following seven components.   denotes the finite set of the application states, 

where      denotes the initial state in the application entrance. 

   denotes the finite set of the application operations, including library function calls e.g. an-

droid.content.IntentFilter.addAction.   denotes the finite set of the operation primitives, where an opera-

tion primitive consists of a series of application operations in the predefined sequence.  ：      de-

notes the state transition function which gives the target state transited after performing an operation 

primitive.   denotes the state set of application normal terminations.   denotes the set of application 

vulnerable states, which means that the previous operation sequences drive the application into some po-

tential dangerous state. 

Fig. 2 shows an example of the typical OSM for detecting the exposed and unprotected components. The 

definition of the OSM states and transitions is shown respectively in Table 1 and Table 2. In the Android ap-

plication, the inter-application communication can be received and sent in the form of the intent messages 

for the application cooperation and data sharing. The intent filters can be registered dynamically on de-

mand by the application components, such as activities, services, etc. However, the component which de-

fines the intent filter will made itself public and exposed to other applications that can send the correct in-

tent message. The exposed components may become potential vulnerable if some relative library functions 

are called in the specific sequence. That can be detected by the following OSM. 
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Fig. 2. OSM for detecting the exposed and unprotected components. 

 

In this model, the intent states are tracked and checked. An intent message can be in implicit intent state 

by the method calls to several variants of android.content.Intent.init with no specified reactive component 

or class. Next, the intent state can get secure from implicit to target by calling the method In-

tent.setComponent or Intent.setClass to actively attach the target compontents to the intent message. Then, 

as the intent detailed arguments, the extra data can be attached to the intent message by the method In-

tent.putExtra. 

 However, if the implicit intent message with extra data is sent unprotected by the methods such as an-

droid.content.Context.sendBroadcast passing null as permission, the vulnerable state is reached. It may lead 

to the potential harmfulness, including unintended leakage of sensitive information, unauthorized execu-

tion of component functionality, etc. 

The OSM model can imposes security rules and constraints on the operation sequences executed by the 

target Android application. It can also give the heuristic guidance information by  ：      for the tar-

geted analysis in the relevant control structures.  
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Table 1. State Set of the Example OSM 

State State Description 

   Initial State 

   Implicit Intent State 

   Target Intent State 

   Extra Data Attached State 

   Vulnerable State 

 

Table 2. State Transitions of the Example OSM 

Transition Effect Description 

   Create Implicit Intent Message 

   Specify Target Compontent in Intent Message 

   Create Target Intent Message 

   Attach Extra Data to Intent Message 

   Attach Target Compontent to Intent Message 

   Send Unprotected Intent Message  

 

2.2. Locate the Analysis Surface  

The code analysis based on the OSM model will begin traversing the control structures of the relevant 

methods from application interface points, which can be called the analysis surface. 

The common static analyzers are usually designed to begin the whole analysis process from the program 

main method such as int main(int argc, char *argv[]) in the C/C++ programs. However, the Android applica-

tion model is based on an event-driven architecture [6], thus has more than one single entry point. There 

are several call interfaces, which can be considered as input event handlers. When some specific input event 

occurs, many, the Android application will call the responding method on demand for the event handlers. 

The target Android application is firstly unpacked from the APK package to extract the application crucial 

files such as AndroidManifest.xml and classes.dex. These call interfaces can be located by analyzing the 

formal description of application components and the relative method reflection mechanism [5], according 

to the manifest file AndroidManifest.xml. This manifest file can register several types of the application 

components in the XML form: (1) activities, which render the visual user interfaces and interact with the 

user operations; (2) services, which have no interaction and perform the longtime background operations; 

(3) broadcast receivers, which receive and handle the broadcast messages and (4) content providers, which 

provide the controlled data sharing from the inner data sources including databases and files.  

The call interface example of the exposed application components is depicted in the following manifest 

snippets extracted from the OWASP project “Fourgoats”. 

<activity android:name=".activities.ViewCheckin" android:exported="true" /> 

<receiver android:label="Send SMS"  

android:name=".broadcastreceivers.SendSMSNowReceiver"> 

    <intent-filter> 

        <action  

android:name=".fourgoats.SOCIAL_SMS" /> 

    </intent-filter> 

</receiver> 

<service     

android:name=".services.LocationService"> 

    <intent-filter> 
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      <action  

android:name=".fourgoats.services.LocationService" /> 

    </intent-filter> 

</service> 

Next, the call interfaces will be linked to the relative methods in the Dalvik bytecode of the executable file 

classes.dex in the Android applications. These Android bytecode can be retargeted from Dalvik to Java 

bytecode by the translator tools including Dex2jar, Undx and Dare [[9]]. Then, using the Java bytecode tools 

such as FindBugs [[10]], the target bytecode can be disassembled and processed to accomplish the funda-

mental structure analysis, including control flow analysis for the construction of the class hierarchy and the 

control flow graph. Our analyzer will find the above call interface by following their class names described 

in AndroidManifest from the class hierarchy. Then, it chooses the responding method by Java reflection, 

based on the type and feature of the application component. These methods will constitute the analysis 

surface as the entry points in the whole process of detecting security vulnerabilities. 

2.3. Perform the Model Guided Analysis 

The model-guided analysis utilizes the pre-constructed Operation Security Model and the analysis surface 

to perform the targeted analysis for the Android application. The advantage of this analysis is that it can 

achieve fast analysis speed and on-demand code coverage based on the upcoming examined security rules. 

 

Algorithm 1  
ALGORITHM FOR THE MODEL GUIDED ANALYSIS APPROACH 

Input: Definition of the OSM and the analysis surface 

Output: Security analysis report of the Android application 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

for each method M in the analysis surface do 

OM  operations performed in M 

for each model D in the OSM do 

  if           then  

continue to next model 

  end if 

SM   M.s0while select transition path p from SM to 

M.V do 

                                 

while select execution trace E  from M.CFG  

with the current most set         do 

       while              do 

        if                  then 

                                           

                                     

           if             then 

                                      

             break to another model D 

           end if 

         end if 

         if                 then 

           break while 

         end if 

       end while 

     end while 

  end while 

end for 

end for 
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Algorithm 1 provides the key points of the model guided analysis approach. The algorithm starts with the 

OSM and the analysis surface as input. First, we extract the relevant methods of the analysis surface located 

in the above step and start traversing the control constructions from one of these call interfaces (lines 1–2). 

Then, The OSM model are selected one by one for security checking (line 3). After the unrelated method is 

beforehand found and skipped (lines 4–6), the targeted analysis start to work (lines 7–28). The transition 

paths leading to security violation are enumerated and utilized to guide the selection of the execution trace. 

It speeds up the security analysis by direct coverage of the suspicious code regions based on the security 

constraints imposed by the OSM (lines 7–11). The OSM tracks the suspicious execution traces of the im-

portant application operations and checks them with the security constraints (lines 12–23). However, not 

all the execution traces that follow the transition paths ending at the application vulnerable states are feasi-

ble. Therefore, the path conditions in the execution traces are collected and converted to the SMT 

(Satisfiability Modulo Theory) problem, then they are solved by calling the constraint solver [[11]] (lines 

13–15). The execution traces with no solution are pruned in order to decrease the false positives. On the 

contrary, the execution traces with path solutions are feasible, meaning that the security violation of the 

application operations will occur. And then the path and state transitions are recorded in the security anal-

ysis report as security vulnerabilities or bugs (lines 16–19). 

In the model-guided analysis, the targeted analysis is designed to adapt the features of Android applica-

tion. The Android system supports the implicit intent messages to call the application components from the 

other external applications. These external applications may be controlled by potentially malicious users 

and intend to inject the attack data directly without user intervention. The attack data can spread out by the 

involvement of assignments and computations, after they enter the application from the call interfaces. If 

we employ the common static analysis method to analyze the entire Android application systematically 

from the main entry point, it will take long time to reach the aforementioned dangerous code regions, even 

to result in missing them. The model-guided analysis differs in direct coverage of the analysis surface by 

exercising these exposed and callable interface code comprehensively. It also differs in the guidance for the 

path exploration because that the model OSM can not only track the dangerous operations and vulnerable 

states, but also involve the purification operations to mitigate or remove the harmful effect of the earlier 

operations. Thus, it can achieve fast analysis speed and on-demand code coverage by target analyzing the 

suspected attack path based on the model guidance. 

3. Implementation and Experiment 

The approach presented above has been implemented into MSAS (the Model-guided Security Analysis 

System). We have designed and developed MSAS using Java language.  

MSAS utilizes the toolkit APKTOOL to unpack the APK package to extract the application crucial files in-

cluding the decoded manifest file AndroidManifest.xml and the Dalvik bytecode package of classes.dex. It 

then calls the toolkit Dex2jar to retarget classes.dex from Dalvik bytecode to Java bytecode [9]. Next, the 

core engine of MSAS can analyze the Java bytecode to accomplish the analysis surface identification and the 

fundamental structure analysis, based on FindBugs [10], an open source static analysis tool for Java. For this 

work, we extend FindBugs by target exploration for the relevant paths under the guidance of the model 

OSM. For the model construction, MSAS uses the XML/SCXML language [[12] ]to describe the states, transi-

tions and operations of the model and provides a friendly workbench to model the operation specification 

graphically into the form of FSM. 

The prototype tool of MSAS has been developed and applied to analyze several popular Android applica-

tions including Huawei Dbank, Baidu Netdisk, Xiaomi Miliao, Snda Youni, Renren Mobile, etc. We have con-
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ducted these experiments on a Thinkpad laptop (Intel Core i7 2.7 GHz quad-core with 4GB RAM), running 

Windows XP SP3.  

 

Table 3. Experiment Results of MSAS 
App Size(MB) #Com #Target #Vul Time(s) 

Huawei 2.32  33 24 2 47.1 

Baidu 7.35  43 22 1 69.5 

Xiaomi 14.1 194 51 3 227.6 

Snda 13.7 34 21 3 94.3 

Renren 16.9  68 34 2 125.8 

(a) #Com – the component number of the Android application. 
(b) #Target – the component number of the targeted analysis. 
(c) # Vul – the number of the detected vulnerabilities. 

Table 3 shows the experiment results of MSAS. The Operation Security Model guides the targeted analysis 

process and concentrate on the analysis surface to reduce the analyzed interface methods by even more 

than 70% (from 194 to 51). Therefore, compared with the common static analysis approaches, MSAS can 

achieve fast analysis speed. For example, it takes no more than 100 seconds to accomplish the security 

analysis for the Android application of about 10MB. During these experiments, MSAS has revealed 11 secu-

rity vulnerabilities, including 8 vulnerabilities of unauthorized access for Xiaomi Miliao, Snda Youni, Renren 

Mobile, 3 vulnerabilities of authentication bypass for Huawei Dbank as well as 1 vulnerability of denial of 

service for Baidu Netdisk. 

4. Conclusion 

In this paper, a model guided security analysis approach for Android applications is introduced and im-

plemented into the prototype tool MSAS. The approach builds and utilizes the Operation Security Model to 

guide the targeted analysis process in order to achieve fast analysis speed and on-demand code coverage. 

The test result shows that it can improve the efficiency and effect of security analysis for Android applica-

tions. 

This work was supported by the National Natural Science Foundation of China (Grant No. 61170189, 

61202239, 61300172).  
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