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Abstract: This research introduces an improved Linux scheduler that models and manages several power 

dissipation problems based on user application usage pattern identified in mobile computing platform. The 

scheduler is developed and simulated in Android 5.0 with the Linux kernel 3.10 and 3.14. The scheduler 

monitors multiple system performance metrics at runtime, predicts power dissipation and future workload 

with an ANN computation block. To exploit DVFS capabilities in ARM asymmetrical SoC designs a three 

clustered CPU setup had been introduced in this study and the scheduler interacts with the Linux Load 

Balancing mechanism to passively achieve optimized operating frequency for each application thread. 
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1. Introduction 

Computing industry has been through many great revolutions since the beginning. Hardware size reduces 

with each generation of newer fabrication process and lead to the mobile computing landscape of today. But 

the term of being mobile has put so much demand in portable battery power like never before. Neither 

hardware based power saving mechanisms such as Power Gating and DVFS [1] nor the software based 

scheduling techniques such as smart thread migration [2] alone is enough to keep the technology going on 

its track. Hence we had aimed to develop an approach to remedy the problem with both software and 

hardware measures. Like many software based power management technique [3], different usage patterns 

of users are identified and specific usage pattern based scheduling schemes are applied to reduce power 

dissipation. The theory behind [3] is the observation that in the same group of Apps, the sum of power 

consumption of Apps executed individually is less than the power dissipated by the Apps executed 

concurrently. The excessive amount of the power dissipated amongst concurrently running Apps is named 

as the Thread Interference Power (TIP). The amount of TIP is unique to a group of Apps and the group is 

named as the AppSet. The existing load balancing and scheduling mechanism of Linux operating system 

does not focus on this power dissipation pattern. In order to further improve the power dissipation 

reduction, we aimed to achieve hardware incorporation with the previous software based power 

management approach. 

The main contribution of this research includes: 

 Designed a model to monitor the multiple TIP power dissipations patterns and update the AppSet 

Table with ANN at runtime. 
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 Proposed Machine learning based methods to identified TIP dissipation problems. 

 Assessed the efficiency of the proposed scheduling scheme in asymmetrical multi clustered SoC. 

2. Related Works 

The main stream of big.LITTLE SoCs are now equipped with the In-Kernel Switcher (IKS), each little core 

is grouped with a big core to form a virtual CPU pair. Only one core will be activated at one time and 

application thread metrics are monitored for the scheduler to make thread migration decisions between 

two cores in a virtual pair. Given the fact that mobile computing platforms normally execute less 

computation intensive applications that require the entire processor to run at its full capacity, the IKS has 

demonstrate its ability in managing the power dissipation effectively. However, with only half of the cores 

activated at any given instance, it is indeed a wasteful approach to utilize the computing power of a system. 

Hence we had researched into the idea of accommodating several small CPU clusters in a SoC so that as 

many cores can be affordably powered up together. There are many researches aimed to apply machine 

learning in Linux scheduler. In [4] machine learning has been applied to calculate the optimized time slice 

length in CFS scheduler and had achieved 5% of overall improvement in the turnaround time. In [5] a 

Multilayered Perceptron (MLP) scheduler has been developed with the aid of M5 learning tool, and had 

achieved up to 7% of improvement compared to the state-of-the-art schedulers. However, the existing 

literatures have not tailored machine learning functions to suit their schedulers and require off-line 

learning for initialization. In contrast our scheduler developed dedicated machine learning function blocks 

to minimize computation overheads and kept all learning process on-line to maximize its compatibility.  

3. DVFS and Asymmetrical Clusters 

3.1    DVFS Incorporation 

DVFS is used to assign each CPU core different voltage islands to operate at different frequencies for 

different workload. It is a common method to reduce the power dissipation of CPU cores at runtime. The 

preset voltage and frequency pairs for a CPU core to operate in a recommended condition is named as the 

operating points In the practice of conventional design flow under parallel computing environment, 

software are optimized to achieve maximum throughput at all cost with little consideration of scaling 

workload under different operating frequencies. While in fact different the optimized operating point of 

different application or even different threads of the same application can vary due to many factors (I/O 

constraint, Triggering Event, code bottle neck). Such design practice costs DVFS inefficiencies in energy 

reduction as threads from every application are likely to game for CPU resources for maximized computing 

throughput [6]. The ideal way to solve this problem is through the identification of optimum operating 

frequency factor individually for each thread. This approach may impact the system heavily in two aspects: 

1. intensive computation due to the monitoring and tracing of each instruction dispatched is required to be 

logged for accurate identification; 2. excessive overheads created in the process to scale operating points 

and passive thread migration between CPU cores. To minimize the overhead, native Linux scheduler 

adopted the Coarse DVFS with governors adjusting the CPU operating points with limited preset values. In 

contrast to the Fine-grained DVFS methods had been developed [7] to save computation energy by 

allocating each CPU core a different operating point with finer frequency step size and time slice. However 

the resulted overhead impacting the system can be as high as 13% with an average of 10% energy 

reduction. In order to increase the DVFS efficiencies of the system without increasing the overhead 

drastically, we had worked towards implementing a passive DVFS approach with thread awareness. Our 

previously proposed power management schemes were implemented solely based on optimizing thread 

sequence in Linux run queue. To further reduce power dissipation we had implemented a passive DVFS 

624 Volume 11, Number 7, July 2016

Journal of Software



incorporation by modifying the Linux Load Balancing to have thread awareness. In native Linux Load 

Balancing in CFS, threads are allocated to the run queue in a round robin manner without analyzing TIP 

dissipated in the switching of different threads. Which resulted in thread migration due to unwanted 

bottleneck and cache coherence problems. The proposed re_scheduler monitors the operating point of each 

CPU core and calculate its Core Capacity (CC). Computation Budget (CB) of each thread is computed based 

on their historical values recorded in the AppSet table. Threads are then allocated by matching the CC of 

each core and the CB of each thread. Asymmetrical CPU architectures has proven to be effective in reducing 

the DVFS overheads [8] by fixing different frequencies to each cluster and allocating threads to different 

clusters to satisfy the operating point requirements. The big.LITTLE architecture has shown the 

competence of asymmetrical over symmetrical CPU in terms of computation throughput at lower power 

consumption. And in the mobile platforms such as the Android, there are only a handful of parallel threads 

per application due to its UI thread and AsyncTask mechanism. Hence, we explored the possibility to extend 

the capacity of asymmetrical designs by having more than two different core types and grouped into 

smaller cluster that consists only two core as shown in Fig. 1. Such a design is aimed to grant the system 

with more choices of operating points at runtime, which is equivalent to have a higher degree of freedom in 

choosing the suitable cluster and without generating overheads from adjusting operating points. The 

computation intensive threads can be allocated to the faster cores and less demanding threads are allocated 

on low frequency clusters to achieve better power saving. As shown in Fig. 1. the proposed scheduler is 

tested in the GEM5 [9] simulated environment where an asymmetrical CPU with Cortex A35, A53 and A57 

core clusters with two core each was constructed, the operating system is ICS 5.0 Android built with Linux 

kernel 3.10 and 3.14. 

 

 
Fig. 1. Big. Med.Little core cluster setup.                         Fig. 2. Control blocks of re_scheduler. 

 

3.2. Scheduler Function Blocks and Power Performance Curve 

As shown in Fig. 2, the re_scheduler is constructed with three blocks, re_monitor(), re_balance() and 

re_schedule(). The re_monitor() is for monitoring thread information gathered from user space such as the 

number of child thread of an application, the process id of the parent thread and the required completion 

time of a thread. perf_stat() function is called to pull system metrics such as cache miss rate and branch 

miss rate are retrieved with perf stat, and used to compute the AppSet table values before the instructions 

of each thread are balanced into the respective run queue. The updated the AppSet table is used to 
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formulate power dissipation models for each individual thread and calculate the Computation Budget (CB) 

of each thread. Green blocks in Fig. 2 require call the function block ann_compute() for Artificial Neural 

Network computation. Details about the ANN computation block is discussed in the Section IV of this paper. 

A scheduling scheme will be picked in the re_monitor() and propagated to re_balance() and re_schedule(). In 

re_balance() cupinfo from each core in every cluster are assessed to compute Core Capacity (CC) of each 

core, optimized workload balancing decisions and output the optimized CPU core and application thread 

pair to carry out Load Balancing. In re_schedule() the Linux run queque content are analyzed to compute 

the optimized schedulingsequence and the time slice length based on the predicted TIP dissipation. The 

optimized scheduling sequence will guide the run queque to dispatch the thread accordingly with the 

optimized time slice length. For re_scheduler an accurate CPU core modeling is important to compute CC 

and CB to make operating point adjustments for each core. Initially the original Linux Load Balancing rule 

applies as the CB values are incomplete for each thread, a fixed set of operating points and CC to CB 

mappings are made based on fairness. As the AppSet table builds up CB values can be calculated accurately, 

it is then possible to map a thread with its CB to a core with its predicted CC. the process of modeling each 

core and thread can be redundant, hence the ANN block is employed to ensure the mapping accuracy and 

efficiency. 

 

 
Fig. 3. Power dissipation and frequency of different clusters at different temperature. 

 

 
Fig. 4. Operating point balancing at different temperature. 

As shown in Fig. 3 the power dissipation pattern of different ARM Cortex Core varies with the working 

frequency and the temperature of the CPU plays a vital role while modeling the CPU Core Capacity. 

According to the power performance curve, at different temperature level the smaller cores do not always 

consume less power comparing to the larger cores. For example, the A57 cores dissipates more power than 

A53 cores if the operating temperature is the same, but A57 cores can beat A53 cores power to 

performance rating at low temperature, this enables the possibility to explore the unique power 
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performance response of different cores at different temperature to maximize the computing capability and 

minimize the power dissipation at the same time. In Fig. 4. the diagram on the left shows that at the same 

temperature, the incoming thread is balanced to the Big core by considering the CC of the cores, CB of the 

threads and the cost of increasing the operating point of a core with lower power performance rating. The 

diagram on the right demonstrates the same scenario but each core operates at a different temperature, the 

thread thread is allocated to the Med core with insufficient CC instead of the Big core with enough CC and 

resulted in ramping up the operating point of the Med core. It is because of the cost of increasing the 

operating point is lower than running it on the Big core with high temperature. 

4. Machine Learning and Prediction 

4.1.    ANN Based Prediction 

It is very important to ensure the accuracy of the result obtained from the predicted performance metrics 

and it is also crucial to make sure that the prediction will take little effort to derive the result. Our previous 

scheduler predicts based on computing each related elements in the AppSet table statistically and requires 

to walk through the entire AppSet table to compute each optimization. Each entry of AppSet table contains 

information (TIP, thread size, time slice size, estimated completion etc.) about an AppSet which can be a 

single app or a combination of threads from different Apps. In the current design the AppSet table logs App 

combinations up to three Apps, hence it could be very inefficient if the entire table is required to be 

accessed every scheduling cycle. The current re_scheduler improved the computation with machine 

learning method to increase the efficiency by reducing the feature space. Upon initialization the 

computation overhead of the ANN is relatively expensive compared to the statistical generated power 

dissipation pattern and management scheme matching mechanism. The ANN computation block named 

ann_compute() is shown in Fig. 5. The functions in re_scheduler control blocks will call ann_compute() to 

compute for dedicatedly. It establishes a three layered MLP (Multilayer Perceptron) upon taking receiving 

parameters from the caller function such as the step size and neuron number. The input signals are 

processed through each layer with feed-forward operation and sigmoid activation function. And sum 

squared errors are computed and back-propagated to neural network to update the weights in each layer. 

Functions in the control block that calls ann_compute() are having their computation matrices isolated from 

each other, and the step size can be adjusted at runtime to control the learning rate for optimized neural 

net convergence rate. 

4.2.    ANN Block Application 

Fig. 6. shows two of numerous re_scheduler functions that utilizes the ann_compute() block, the 

prediction of next incoming thread at run queue and the computation of AppSet table. To compute the next 

incoming thread (Tnext), a matrix contents the historical run queue thread sequences is set as the input of 

the ann_compute(), the number of the input layer are set to be equivalent to the number of thread entries in 

the AppSet table. The matrix logs the thread composition with a three thread window, all threads listed in 

the table are logged as the neurons of the first layer, and the second thread coming into the run queue 

constructs the neurons in the second or the hidden layer. The hidden layer is a reduced set of neurons 

where only previous recorded thread combinations contribute to it. And the output layer carries as many 

neurons as the input layer. The initial weights are set as the normalized occurrence of each thread 

combination in run queue. The number of neurons of the MLP are updated and recomputed each time there 

is a new entry longed in the AppSet table. The weightage of each neuron are then used to predict Tnext(). The 

update_appset_table() calls ann_compute() to establish the AppSet table, where each entry of the table has 

an independent neural network. The input layer has a number of neurons equivalent to the system metrics 
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monitored by the thread_monitor() and the same amount of neurons in the output layer, the number of 

neurons in the hidden layer equals to the number of threads in the entry to simulate the interference effects 

between each thread of the entry. The input layer feeds the accumulated performance metrics of all threads 

in the entry and compare the output with perf_stat() reading upon completed execution of the threads in 

the entry. The weights are updated according to the sum squared error computed. The weight of the 

neuron network is outputted as the TIP model for the AppSet table. The AppSet table entries and the Tnext 

are used to compute trigger parameters for each scheduling schemes proposed in re_scheduler. In Hold 

scheme the AppSet table TIP values are used to determine the optimized scheduling sequence to avoid 

excessive TIP in the run queue and the Tnext is used to compute the minimum scheduling period of the 

scheme to avoid excessive overhead to impact the performance. In the Bind scheme the AppSet table TIP 

values are used to interleave thread with high TIP into different CPU cores to avoid excessive power 

dissipation, and to calculate the possible CB of each thread. The thread and core pair will be then 

determined based on the CB and CC calculated based on the cpuinfo gathered from the CPU cores. Similarly 

the Tnext is used to compute the minimum and maximum scheduling period of the scheme. The Super 

scheme reads the average thread execution time and Tnext to determine how much time slice length can the 

other threads in run queue spare for the target thread to upsize its time slice.  

 

 
Fig. 5. Artificial neural network computation block. 

 

 
Fig. 6. ANN computation utilization in re_scheduler. 

5. Experiment and Result 

The experiment is conducted in a simulated environment with GEM5 simulator and McPat [10] to 

provide accurate power dissipation of CPU cores under different thermal configuration. The environment 

consists of three 28 nm clusters with two cores each: Cortex A57 (out-of-order) at 2 GHz, A53 (in-order) at 

1.6 GHz and A35 (in-order) at 1.4 GHz. 32 KB of L1 cache for each core and 32 KB of L2 cache for each 

cluster. We created simulation test scenarios with Moby Bench [11] to assess the re_scheduler against the 

GTS under Linux Kernel 3.10 and the IKS under Linux Kernel 3.14. 
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Each scenario consists of three set of test cases: 1. Individual App; 2. Apps executing in pairs; 3. three 

Apps executing simultaneously. There are 10 Apps in the benchmark, hence there are 10 setups in test case 

1; 5 setups in test case 2; and 4 setups in test case 3. Each test setup consists of ten runs and the workload 

of each Apps are assigned randomly. Table 1. shows the average result of the re_scheduler over the GTS and 

IKS scheduler. The proposed scheduler is able to gain better power reduction compared to the native 

scheduler in all three scenarios.  

 

Fig. 7. Simulated result of re scheduler in Big.Med.Little CPU core cluster setup. 

 

Fig. 8. Comparing between GTS and re_scheduler CPU utilization trend over time. 

 

Table 1. Average Power Reduction of Proposed Scheduler 
Cases GTS (W) Re (W) Power Reduced IKS (W) Re (W) Power Reduced 

1 App 1.72 1.489 13.43% 1.57 1.43 8.92% 

2 Apps 2.2 1.816 17.45% 1.87 1.78 4.81% 

3 Apps 3.92 3.045 22.32% 3.37 3.1 8.01% 

 
As shown in Fig. 7, the re_scheduler assigns the thread to little core more often than the GTS and KIS 

where a fair load balancing scheme is in charge of assigning tasks to run queues. Our scheduler has 

achieved in less thread migration, more CPU idle cycles and reduced power dissipation. Fig. 8. shows that 

CPU utilization of re_scheduler is more smoothly distributed over time compared to the GTS scheme which 

is a result of the accurate prediction of workload at runtime. The re_scheduler minimized thread migration 

counts in Kernel 3.14 by allocating most of the threads into Small cores and avoiding the Big cores, this 

approach has also generated TIP in maintaining cache coherency. Hence the power reduction result from 

3.14 is not as good as what has been achieved in 3.10 despite of the better overall CPU utilization. 

6. Conclusion 

The re_scheduler has demonstrated the ability in better managing a multi clustered asymmetric SoC 

compared to the two native Android schedulers. It has also demonstrated the capability of extending the 

user app usage driven scheduler with machine learning function blocks and the passive DVFS incorporation. 

In the future we will focus on better the learning process with object optimization measures. 
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