
ANN Predicted Apps-Usage Aware Linux Scheduler for
Asymmetrical Multi Cluster SoC

Hou Zhao Qi Rex1, 2*, Jong Ching Chuen1, Andreas Herkersdorf2

1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.
2 Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.

* Corresponding author. Tel.: +65 91362032; email: houz0001@e.ntu.edu.sg
Manuscript submitted January 11, 2016; accepted April 1, 2016.
doi: 10.17706/jsw.11.7.623-630

Abstract: This research introduces an improved Linux scheduler that models and manages several power

dissipation problems based on user application usage pattern identified in mobile computing platform. The

scheduler is developed and simulated in Android 5.0 with the Linux kernel 3.10 and 3.14. The scheduler

monitors multiple system performance metrics at runtime, predicts power dissipation and future workload

with an ANN computation block. To exploit DVFS capabilities in ARM asymmetrical SoC designs a three

clustered CPU setup had been introduced in this study and the scheduler interacts with the Linux Load

Balancing mechanism to passively achieve optimized operating frequency for each application thread.

Key words: Linux, Android, power management, scheduling, thread interference power, ANN, GTS, IKS.

1. Introduction

Computing industry has been through many great revolutions since the beginning. Hardware size reduces

with each generation of newer fabrication process and lead to the mobile computing landscape of today. But

the term of being mobile has put so much demand in portable battery power like never before. Neither

hardware based power saving mechanisms such as Power Gating and DVFS [1] nor the software based

scheduling techniques such as smart thread migration [2] alone is enough to keep the technology going on

its track. Hence we had aimed to develop an approach to remedy the problem with both software and

hardware measures. Like many software based power management technique [3], different usage patterns

of users are identified and specific usage pattern based scheduling schemes are applied to reduce power

dissipation. The theory behind [3] is the observation that in the same group of Apps, the sum of power

consumption of Apps executed individually is less than the power dissipated by the Apps executed

concurrently. The excessive amount of the power dissipated amongst concurrently running Apps is named

as the Thread Interference Power (TIP). The amount of TIP is unique to a group of Apps and the group is

named as the AppSet. The existing load balancing and scheduling mechanism of Linux operating system

does not focus on this power dissipation pattern. In order to further improve the power dissipation

reduction, we aimed to achieve hardware incorporation with the previous software based power

management approach.

The main contribution of this research includes:

 Designed a model to monitor the multiple TIP power dissipations patterns and update the AppSet

Table with ANN at runtime.

623 Volume 11, Number 7, July 2016

Journal of Software

 Proposed Machine learning based methods to identified TIP dissipation problems.

 Assessed the efficiency of the proposed scheduling scheme in asymmetrical multi clustered SoC.

2. Related Works

The main stream of big.LITTLE SoCs are now equipped with the In-Kernel Switcher (IKS), each little core

is grouped with a big core to form a virtual CPU pair. Only one core will be activated at one time and

application thread metrics are monitored for the scheduler to make thread migration decisions between

two cores in a virtual pair. Given the fact that mobile computing platforms normally execute less

computation intensive applications that require the entire processor to run at its full capacity, the IKS has

demonstrate its ability in managing the power dissipation effectively. However, with only half of the cores

activated at any given instance, it is indeed a wasteful approach to utilize the computing power of a system.

Hence we had researched into the idea of accommodating several small CPU clusters in a SoC so that as

many cores can be affordably powered up together. There are many researches aimed to apply machine

learning in Linux scheduler. In [4] machine learning has been applied to calculate the optimized time slice

length in CFS scheduler and had achieved 5% of overall improvement in the turnaround time. In [5] a

Multilayered Perceptron (MLP) scheduler has been developed with the aid of M5 learning tool, and had

achieved up to 7% of improvement compared to the state-of-the-art schedulers. However, the existing

literatures have not tailored machine learning functions to suit their schedulers and require off-line

learning for initialization. In contrast our scheduler developed dedicated machine learning function blocks

to minimize computation overheads and kept all learning process on-line to maximize its compatibility.

3. DVFS and Asymmetrical Clusters

3.1 DVFS Incorporation

DVFS is used to assign each CPU core different voltage islands to operate at different frequencies for

different workload. It is a common method to reduce the power dissipation of CPU cores at runtime. The

preset voltage and frequency pairs for a CPU core to operate in a recommended condition is named as the

operating points In the practice of conventional design flow under parallel computing environment,

software are optimized to achieve maximum throughput at all cost with little consideration of scaling

workload under different operating frequencies. While in fact different the optimized operating point of

different application or even different threads of the same application can vary due to many factors (I/O

constraint, Triggering Event, code bottle neck). Such design practice costs DVFS inefficiencies in energy

reduction as threads from every application are likely to game for CPU resources for maximized computing

throughput [6]. The ideal way to solve this problem is through the identification of optimum operating

frequency factor individually for each thread. This approach may impact the system heavily in two aspects:

1. intensive computation due to the monitoring and tracing of each instruction dispatched is required to be

logged for accurate identification; 2. excessive overheads created in the process to scale operating points

and passive thread migration between CPU cores. To minimize the overhead, native Linux scheduler

adopted the Coarse DVFS with governors adjusting the CPU operating points with limited preset values. In

contrast to the Fine-grained DVFS methods had been developed [7] to save computation energy by

allocating each CPU core a different operating point with finer frequency step size and time slice. However

the resulted overhead impacting the system can be as high as 13% with an average of 10% energy

reduction. In order to increase the DVFS efficiencies of the system without increasing the overhead

drastically, we had worked towards implementing a passive DVFS approach with thread awareness. Our

previously proposed power management schemes were implemented solely based on optimizing thread

sequence in Linux run queue. To further reduce power dissipation we had implemented a passive DVFS

624 Volume 11, Number 7, July 2016

Journal of Software

incorporation by modifying the Linux Load Balancing to have thread awareness. In native Linux Load

Balancing in CFS, threads are allocated to the run queue in a round robin manner without analyzing TIP

dissipated in the switching of different threads. Which resulted in thread migration due to unwanted

bottleneck and cache coherence problems. The proposed re_scheduler monitors the operating point of each

CPU core and calculate its Core Capacity (CC). Computation Budget (CB) of each thread is computed based

on their historical values recorded in the AppSet table. Threads are then allocated by matching the CC of

each core and the CB of each thread. Asymmetrical CPU architectures has proven to be effective in reducing

the DVFS overheads [8] by fixing different frequencies to each cluster and allocating threads to different

clusters to satisfy the operating point requirements. The big.LITTLE architecture has shown the

competence of asymmetrical over symmetrical CPU in terms of computation throughput at lower power

consumption. And in the mobile platforms such as the Android, there are only a handful of parallel threads

per application due to its UI thread and AsyncTask mechanism. Hence, we explored the possibility to extend

the capacity of asymmetrical designs by having more than two different core types and grouped into

smaller cluster that consists only two core as shown in Fig. 1. Such a design is aimed to grant the system

with more choices of operating points at runtime, which is equivalent to have a higher degree of freedom in

choosing the suitable cluster and without generating overheads from adjusting operating points. The

computation intensive threads can be allocated to the faster cores and less demanding threads are allocated

on low frequency clusters to achieve better power saving. As shown in Fig. 1. the proposed scheduler is

tested in the GEM5 [9] simulated environment where an asymmetrical CPU with Cortex A35, A53 and A57

core clusters with two core each was constructed, the operating system is ICS 5.0 Android built with Linux

kernel 3.10 and 3.14.

Fig. 1. Big. Med.Little core cluster setup. Fig. 2. Control blocks of re_scheduler.

3.2. Scheduler Function Blocks and Power Performance Curve

As shown in Fig. 2, the re_scheduler is constructed with three blocks, re_monitor(), re_balance() and

re_schedule(). The re_monitor() is for monitoring thread information gathered from user space such as the

number of child thread of an application, the process id of the parent thread and the required completion

time of a thread. perf_stat() function is called to pull system metrics such as cache miss rate and branch

miss rate are retrieved with perf stat, and used to compute the AppSet table values before the instructions

of each thread are balanced into the respective run queue. The updated the AppSet table is used to

625 Volume 11, Number 7, July 2016

Journal of Software

formulate power dissipation models for each individual thread and calculate the Computation Budget (CB)

of each thread. Green blocks in Fig. 2 require call the function block ann_compute() for Artificial Neural

Network computation. Details about the ANN computation block is discussed in the Section IV of this paper.

A scheduling scheme will be picked in the re_monitor() and propagated to re_balance() and re_schedule(). In

re_balance() cupinfo from each core in every cluster are assessed to compute Core Capacity (CC) of each

core, optimized workload balancing decisions and output the optimized CPU core and application thread

pair to carry out Load Balancing. In re_schedule() the Linux run queque content are analyzed to compute

the optimized schedulingsequence and the time slice length based on the predicted TIP dissipation. The

optimized scheduling sequence will guide the run queque to dispatch the thread accordingly with the

optimized time slice length. For re_scheduler an accurate CPU core modeling is important to compute CC

and CB to make operating point adjustments for each core. Initially the original Linux Load Balancing rule

applies as the CB values are incomplete for each thread, a fixed set of operating points and CC to CB

mappings are made based on fairness. As the AppSet table builds up CB values can be calculated accurately,

it is then possible to map a thread with its CB to a core with its predicted CC. the process of modeling each

core and thread can be redundant, hence the ANN block is employed to ensure the mapping accuracy and

efficiency.

Fig. 3. Power dissipation and frequency of different clusters at different temperature.

Fig. 4. Operating point balancing at different temperature.

As shown in Fig. 3 the power dissipation pattern of different ARM Cortex Core varies with the working

frequency and the temperature of the CPU plays a vital role while modeling the CPU Core Capacity.

According to the power performance curve, at different temperature level the smaller cores do not always

consume less power comparing to the larger cores. For example, the A57 cores dissipates more power than

A53 cores if the operating temperature is the same, but A57 cores can beat A53 cores power to

performance rating at low temperature, this enables the possibility to explore the unique power

626 Volume 11, Number 7, July 2016

Journal of Software

performance response of different cores at different temperature to maximize the computing capability and

minimize the power dissipation at the same time. In Fig. 4. the diagram on the left shows that at the same

temperature, the incoming thread is balanced to the Big core by considering the CC of the cores, CB of the

threads and the cost of increasing the operating point of a core with lower power performance rating. The

diagram on the right demonstrates the same scenario but each core operates at a different temperature, the

thread thread is allocated to the Med core with insufficient CC instead of the Big core with enough CC and

resulted in ramping up the operating point of the Med core. It is because of the cost of increasing the

operating point is lower than running it on the Big core with high temperature.

4. Machine Learning and Prediction

4.1. ANN Based Prediction

It is very important to ensure the accuracy of the result obtained from the predicted performance metrics

and it is also crucial to make sure that the prediction will take little effort to derive the result. Our previous

scheduler predicts based on computing each related elements in the AppSet table statistically and requires

to walk through the entire AppSet table to compute each optimization. Each entry of AppSet table contains

information (TIP, thread size, time slice size, estimated completion etc.) about an AppSet which can be a

single app or a combination of threads from different Apps. In the current design the AppSet table logs App

combinations up to three Apps, hence it could be very inefficient if the entire table is required to be

accessed every scheduling cycle. The current re_scheduler improved the computation with machine

learning method to increase the efficiency by reducing the feature space. Upon initialization the

computation overhead of the ANN is relatively expensive compared to the statistical generated power

dissipation pattern and management scheme matching mechanism. The ANN computation block named

ann_compute() is shown in Fig. 5. The functions in re_scheduler control blocks will call ann_compute() to

compute for dedicatedly. It establishes a three layered MLP (Multilayer Perceptron) upon taking receiving

parameters from the caller function such as the step size and neuron number. The input signals are

processed through each layer with feed-forward operation and sigmoid activation function. And sum

squared errors are computed and back-propagated to neural network to update the weights in each layer.

Functions in the control block that calls ann_compute() are having their computation matrices isolated from

each other, and the step size can be adjusted at runtime to control the learning rate for optimized neural

net convergence rate.

4.2. ANN Block Application

Fig. 6. shows two of numerous re_scheduler functions that utilizes the ann_compute() block, the

prediction of next incoming thread at run queue and the computation of AppSet table. To compute the next

incoming thread (Tnext), a matrix contents the historical run queue thread sequences is set as the input of

the ann_compute(), the number of the input layer are set to be equivalent to the number of thread entries in

the AppSet table. The matrix logs the thread composition with a three thread window, all threads listed in

the table are logged as the neurons of the first layer, and the second thread coming into the run queue

constructs the neurons in the second or the hidden layer. The hidden layer is a reduced set of neurons

where only previous recorded thread combinations contribute to it. And the output layer carries as many

neurons as the input layer. The initial weights are set as the normalized occurrence of each thread

combination in run queue. The number of neurons of the MLP are updated and recomputed each time there

is a new entry longed in the AppSet table. The weightage of each neuron are then used to predict Tnext(). The

update_appset_table() calls ann_compute() to establish the AppSet table, where each entry of the table has

an independent neural network. The input layer has a number of neurons equivalent to the system metrics

627 Volume 11, Number 7, July 2016

Journal of Software

monitored by the thread_monitor() and the same amount of neurons in the output layer, the number of

neurons in the hidden layer equals to the number of threads in the entry to simulate the interference effects

between each thread of the entry. The input layer feeds the accumulated performance metrics of all threads

in the entry and compare the output with perf_stat() reading upon completed execution of the threads in

the entry. The weights are updated according to the sum squared error computed. The weight of the

neuron network is outputted as the TIP model for the AppSet table. The AppSet table entries and the Tnext

are used to compute trigger parameters for each scheduling schemes proposed in re_scheduler. In Hold

scheme the AppSet table TIP values are used to determine the optimized scheduling sequence to avoid

excessive TIP in the run queue and the Tnext is used to compute the minimum scheduling period of the

scheme to avoid excessive overhead to impact the performance. In the Bind scheme the AppSet table TIP

values are used to interleave thread with high TIP into different CPU cores to avoid excessive power

dissipation, and to calculate the possible CB of each thread. The thread and core pair will be then

determined based on the CB and CC calculated based on the cpuinfo gathered from the CPU cores. Similarly

the Tnext is used to compute the minimum and maximum scheduling period of the scheme. The Super

scheme reads the average thread execution time and Tnext to determine how much time slice length can the

other threads in run queue spare for the target thread to upsize its time slice.

Fig. 5. Artificial neural network computation block.

Fig. 6. ANN computation utilization in re_scheduler.

5. Experiment and Result

The experiment is conducted in a simulated environment with GEM5 simulator and McPat [10] to

provide accurate power dissipation of CPU cores under different thermal configuration. The environment

consists of three 28 nm clusters with two cores each: Cortex A57 (out-of-order) at 2 GHz, A53 (in-order) at

1.6 GHz and A35 (in-order) at 1.4 GHz. 32 KB of L1 cache for each core and 32 KB of L2 cache for each

cluster. We created simulation test scenarios with Moby Bench [11] to assess the re_scheduler against the

GTS under Linux Kernel 3.10 and the IKS under Linux Kernel 3.14.

628 Volume 11, Number 7, July 2016

Journal of Software

Each scenario consists of three set of test cases: 1. Individual App; 2. Apps executing in pairs; 3. three

Apps executing simultaneously. There are 10 Apps in the benchmark, hence there are 10 setups in test case

1; 5 setups in test case 2; and 4 setups in test case 3. Each test setup consists of ten runs and the workload

of each Apps are assigned randomly. Table 1. shows the average result of the re_scheduler over the GTS and

IKS scheduler. The proposed scheduler is able to gain better power reduction compared to the native

scheduler in all three scenarios.

Fig. 7. Simulated result of re scheduler in Big.Med.Little CPU core cluster setup.

Fig. 8. Comparing between GTS and re_scheduler CPU utilization trend over time.

Table 1. Average Power Reduction of Proposed Scheduler
Cases GTS (W) Re (W) Power Reduced IKS (W) Re (W) Power Reduced

1 App 1.72 1.489 13.43% 1.57 1.43 8.92%

2 Apps 2.2 1.816 17.45% 1.87 1.78 4.81%

3 Apps 3.92 3.045 22.32% 3.37 3.1 8.01%

As shown in Fig. 7, the re_scheduler assigns the thread to little core more often than the GTS and KIS

where a fair load balancing scheme is in charge of assigning tasks to run queues. Our scheduler has

achieved in less thread migration, more CPU idle cycles and reduced power dissipation. Fig. 8. shows that

CPU utilization of re_scheduler is more smoothly distributed over time compared to the GTS scheme which

is a result of the accurate prediction of workload at runtime. The re_scheduler minimized thread migration

counts in Kernel 3.14 by allocating most of the threads into Small cores and avoiding the Big cores, this

approach has also generated TIP in maintaining cache coherency. Hence the power reduction result from

3.14 is not as good as what has been achieved in 3.10 despite of the better overall CPU utilization.

6. Conclusion

The re_scheduler has demonstrated the ability in better managing a multi clustered asymmetric SoC

compared to the two native Android schedulers. It has also demonstrated the capability of extending the

user app usage driven scheduler with machine learning function blocks and the passive DVFS incorporation.

In the future we will focus on better the learning process with object optimization measures.

629 Volume 11, Number 7, July 2016

Journal of Software

References

[1] Liang, X., Zhu, Y., Yang, J., Ye, J., & Gu, Z. (2010). Implementing a thermal-aware scheduler in linux kernel

on a multi-core processor. The Computer Journal, 53(7).

[2] David, T., Azimi, R., & Michael, S. (2007). Thread clustering: Sharing-aware scheduling on SMP-CMP-

SMT multiprocessors. ACM SIGOPS Operating Systems Review, 41(3), 47-58.

[3] Hou, Z. Q. R., Jong, C. C., & Andreas, H. (2014). Apps-usage driven energy management for multicore

mobile computing systems. Proceedings of 2014 14th International Symposium on Integrated Circuits

(ISIC) (pp. 472-475). Singapore: IEEE.

[4] Atul, N., & Kishore, K. P. (2005). Applying machine learning techniques to improve linux process

scheduling. Proceedings of TENCON 2005 2005 IEEE Region 10 (pp. 1-6). Melbourne: IEEE.

[5] George, A., Tshilidzi, M., & Fulufhelo, V. N. (2013). Multicore scheduling based on learning from

optimization models. Int. J. Innovative Comput. Inform. Control, 9(4), 1511-1522.

[6] Andrew, K., Seokhyeong, K., Ravindra, K., & John, S. (2013). Enhancing the efficiency of energy-

constrained DVFS designs. IEEE Transactions on VLSI Systems, 21(10), 1769-1782.

[7] Stijn, E., & Lieven, E. (2011). Fine-grained dvfs using on-chip regulators. ACM Transactions on

Architecture and Code Optimization (TACO), 8(1), 1.

[8] Andrew, L., Shruti, P., Reetuparna, D., et al. (2014). Heterogeneous microarchitectures trump voltage

scaling for low-power cores. Proceedings of ACM the 23rd PACT (pp. 237-250).

[9] Nathan, B., Bradford, B., Gabriel, B., Steven, K. R., Ali, S., Arkaprava, B., et al. (2011). The gem5 simulator.

In ACM SIGARCH Computer Architecture News, 39(2), 1-7.

[10] Sheng, L., Jung, H. A., Richard, D. S., et al. (2009). McPAT: An integrated power, area, and timing

modeling framework for multicore and manycore architectures. Proceedings of the 42nd Annual

IEEE/ACM MICRO, (pp. 469-480).

[11] Yongbing, H., Zhongbin, Z., Mingyu, C., & Lixin, Z. (March 2014). Moby: A mobile benchmark suite for

architectural simulators. IEEE ISPASS.

Hou Zhao Qi Rex obtained his B.Eng in electronic and electrical engineering (EEE) from

Nanayang Technological University (NTU). He is now doing his PhD in EEE in NTU under

supervision of Professor Jong and Professor Herkersdorf. Mr Hou’s research area is focused on

the power management of the mobile computing platform.

Jong Ching Chuen obtained his BSc(Eng) and PhD in electronic engineering from Queen Mary

College, University of London, U.K. He is now an associate professor in the School of Electrical

& Electronic Engineering. Assoc Prof. Dr. Jong is a chartered engineer (CEng), a member of the

Institution of Electrical Engineers (IEE) and a member of the British Computer Society (BCS).

Andreas Herkersdorf did his doctorate in 1991 at the Swiss Federal Institute of Technology

Zurich. He then joined the research team at IBM Research – Zurich in the Communication

Systems Department. Since 2003, Prof. Herkersdorf has held the chair of Integrated Systems

at TUM.

630 Volume 11, Number 7, July 2016

Journal of Software

