

Incorporating OAuth Protocol into Existing Information
Systems

Utharn Buranasaksee*

Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya, Thailand.

* Corresponding author. Email: utharn.b@rmutsb.ac.th
Manuscript submitted January 7, 2016; accepted April 1, 2016.
doi:10.17706/jsw.11.6.615-622

Abstract: Traditionally, when the user wants to share his resource on one application to another

application, the user needs to give his credential to another application that causes the privacy issues. Then

OAuth protocol was introduced to solve the problem without providing the user’s credential. The protocol

was also designed to support mobile, desktop, and web applications. This makes OAuth protocol an

essential functionality for a newly developed project. Therefore, the need of migrating the current data

repositories to support authorization as an OAuth server gains more attention. However, there have been

many software libraries publicly available to download; all of them focus on processing and constructing

the messages that comply with the OAuth standard. None of them provides the channel that a new OAuth

server could integrate the existing resources with their business logics to the service. This paper pointed

the issues and proposed the object-oriented class design that can solve the problems. Then the prototype

was implemented and shown that it supports reusability of the existing business logics.

Key words: Incorporate, oauth, design, business logic, existing information system.

1. Introduction

With the evolution of Web 2.0, many web applications on the Internet start allowing the user to grant his

information to another web application in a different domain to access information on behalf of the user.

For example, a student needs to submit TOEFL score from ETS to the university. However, it is not possible

for the student to submit the score himself due to lacking for authenticity proof. Instead, the university

rather wants to obtain the score at the ETS itself. To achieve that, a student could buy an electronic access of

his score from ETS and share this access to the university. Using traditional methods, the student could give

his account credential to the university so that the university staff can access to his account. However, this

creates the privacy issues since the university could gain full access control of the student account. Then

there OAuth protocol was introduced to address this problem by allowing a student to grant his access to

the university without giving his credential.

OAuth protocol [1], [2] is an open authorization protocol that enables the user to authorize one

application to access the user’s resource on behalf of the user. The main application of OAuth-based

protocol is sharing the protected resource on behalf of the user. This also includes the user identity

information, which will be used for authentication functionality. OpenID Connect [3] provides the user

identify information on top of the OAuth 2.0 protocol. The protocol is designed to be compatible with OAuth

2.0 protocol and to support claims-based authentication. A claims-based authentication is a novel approach

to acquiring the user identity information they need on the internet. A claim is a statement that one subject

makes about itself such as name, email address, etc. The concept of issuer provides the way to certify that

the claims are authentic. In another word, instead of having the OAuth client fetching information from the

615 Volume 11, Number 6, June 2016

Journal of Software

OAuth server, the OAuth server could also provide authentic information as the information directly comes

from the OAuth server.

Since the first version of the OAuth protocol [1] was originally designed for the web applications, the

current version of OAuth protocol [2] itself works on HTTPS protocol, one of the most popular protocol on

the Internet. Therefore, the protocol is designed to support the web, mobile, and desktop applications. This

is very useful when, in an organization, many projects are developing over time and these applications

performs account information synchronization and enforcement through some custom proprietary

mechanisms on traditional database like direct access to the database, LDAP, etc. Since these protocols are

not designed for mobile and Internet applications, implementation between the applications over Internet

would be difficult as it requires additional firewall rules for accessing or synchronizing passwords.

Therefore, OAuth gains more popularity over time and many newly developed application are designed to

support OAuth and OpenID connect as the client. Therefore, of converting traditional authentication

repositories to supports OAuth protocol for OAuth server gains more attention.

Migrating to OAuth based protocols is a simple process. In authorization process, both OAuth server and

OAuth client just need to be able to produce the message that complies with the standard and process the

message sent from another party. However, in the resource accessing process, a different organization

would have different information requirements and the account information including the user data which

will be authorized throughout the process could be various from organization to organization. Publishing

this information requires custom implementation, as there is no detail in the protocol specification. As the

result, the message structure can be vary depending on the returned data type. In some application context,

the existing business logics can be complex, rewriting data access layer or business logics are not possible.

Though there have been many public libraries for OAuth protocol that have been implemented in various

programming languages such as Java, PHP, .NET framework, Ruby, etc.. These software libraries and their

examples are focusing on how to produce and process the messages sent to the OAuth client, the OAuth

server, and the user. None of them focuses on integrating the OAuth server to the existing resource server.

Therefore, this paper makes the following contribution. First, it defines the problem of the implementation

where rewriting authorization of the existing resource could be a complicated task. Second, it uses the

design pattern techniques to solve the problems. Finally, the advantages of the proposed design are

discussed.

The remainder of the paper is structured as follows. In Section 2, the problem statement and

environment are defined. Then the existing software libraries and research works related to OAuth design

are presented and analyzed in Section 3. Section 4 demonstrates the design of the proposed system in

different design pattern categories. Then the advantages and the implementation are discussed in Section 5.

Finally, the conclusions are drawn in Section 6.

2. Problem Statement

This work focuses on an OAuth 2.0 based system that needs to implement an OAuth server role as a newly

developed project while providing existing resource access through endpoints. Each resource type is

accessed via different provided endpoints. The OAuth server contains the existing database structure with

its data. Accessing or modifying the resources requires complex business logic that interacts with another

module. The server wants to reuse the existing components from the existing project. Therefore, the server

requires no change and no rewrite the data access layer or business layer of the resource.

Therefore, this paper proposed the class design by using design pattern techniques to support the

following functionalities. First is to promote reusability of the existing business objects to support the

OAuth process. Second is to support the separation of concern design of the process in message procession

616 Volume 11, Number 6, June 2016

Journal of Software

and message production to provide a base infrastructure of the library. Finally, the design that supports

accessing different authorized resources datatype is proposed.

3. Literature Reviews

In this section, the concept of design pattern is explained in the first topic. Then the processes of the

OAuth based protocol are elaborated, and the existing works are discussed in the next topic.

3.1. Design Pattern

Though the concept of design pattern was originated by Gamma et al. [4], there have been many design

patterns proposed afterward to solve new problems such as domain-driven [5], patterns in enterprise

architecture [6]. In software engineering, the design pattern is a concept of making a reusable solution to

the common problem within a given context. A reusability is one of the software properties of which the

code can be used in the different application with minimal change. Therefore, that new application partially

inherits the code attributes and functionality when the code is reused in a new application. The patterns are

usually formalized the best solution that the programmer can solve the problem when designing the system.

In one software solution, there could be many problems which design pattern can be used to apply

differently. The combination of the best design patterns typically results in the best practices in a software

solution.

In object-oriented design pattern, classes and objects are viewed as they interact each other. There are

three types of design patterns. First, creational design patterns are the design patterns that deal with how

the objects are created in a suitable situation. Second, structural design patterns are the design patterns

that define ways to compose or obtain new abilities or functionalities. Third, behavioral design patterns are

the design patterns that concern with communication between objects. In this paper, the discussed

problems are solved using three design pattern areas altogether.

3.2. OAuth Based Protocol

In OAuth, there are three parties, which are OAuth Server, OAuth Client, and the user. When the user

authorizes the OAuth Client, the user clicks on the link constructed by the OAuth Client. Then the user is

redirected to the OAuth Server with the requested authorization information from the OAuth Client. At the

OAuth server, the user is asked to identify himself and authorize the request. After authorization is done,

the OAuth server redirects the user back to the OAuth Client with an access token. Then OAuth Client can

use this access token to access the resource on the behalf afterward.

When implementing an OAuth server, five data types need to be stored in the database. First, OAuth client

is the applications that have registered and contains connection information such as secret key, authorized

endpoints, type of application, etc. Second, OAuth scope refers to a set of strings that represent the

permissions that OAuth client would like to access. The permissions are usually associated with a set of

fields or attributes that the OAuth client can access from the OAuth server. Since the connection typically

made over the Internet, multiple scopes are allowed in the same request in order to reduce roundtrip time.

Third, OAuth token is the information that will be used to represent authorization between OAuth client and

OAuth server. There are two types of token. First, an access token is used by the OAuth client to access the

authorized resources. Since an access token will frequently be used over the Internet, it is designed to be

short-lived. If an access token is expired, a new token needs to be requested. The other type of token is a

refresh token. A refresh token is a token that will be used to request to a new access token without

authorization again. Since a refresh token is not frequently used, it is designed to be long-lived. Fourth,

unlike typical user database that contains username and password, OAuth user is the user database that has

linked to authorized OAuth clients to access their resource. Typically, OAuth user should be the same as the

617 Volume 11, Number 6, June 2016

Journal of Software

existing user database, but it contains authorization attributes in addition to the attributes as in the existing

database. Finally, the authorized resource is typically an existing resource in the database that will be

requested by the OAuth client through a given endpoint.

Once the OAuth client is authorized by the user, the OAuth server issues an access token so that the OAuth

client can use to access the authorized information. Therefore, each OAuth client contains multiple access

tokens for its user and each authorization is associated with multiple scopes. As the result, the returned

structure is determined at runtime. For example, when requesting user information from an userinfo

endpoint using openid scope, the OAuth server would return the serialized object with the default fields as

id, name, firstname, and lastname. However, if an additional scope called email were requested, the OAuth

server would return email field in addition to the default field.

Since OAuth is the most popular authorization protocol on the Internet, there have been many software

libraries publicly available to download and implement [7]-[12]. However, some of the software libraries

[8]-[11] use a bridge design pattern in order to support many database management system providers but

they support only a new database of which the structures are created according to the libraries. Some [12]

uses a repository design pattern in order to support different types of data mapping layer such as entity

framework and asp.net identity. In [12], the existing data can be used in the OAuth server, but these are

usable only when the existing applications use asp.net identity framework. In the research area, [13]

focuses on improving flexibility and extensibility by which if the content and structure of the messages are

changed, these changes are still making the final output of the message compatible with the previous

version of the protocol. [14] focuses on extending OAuth-protocol based message to support more features.

[15]-[17] proposed the reusable design which can be applied in the OAuth context but the work focuses on

the OAuth client party. None of them focuses on integrating the OAuth server to the existing resource server

as the OAuth client, scope, token, and OAuth user are highly coupled, making changes to one of them would

require updating for the rest of the system.

Therefore, the purposes of the proposed design are as follows. First, it reduces coupling of the system.

Then a novel design of processing and producing the OAuth message for each request is proposed to

separate the work on message request and response. With the proposed creational design, the

implementation of the OAuth server could be extended to support specific resource type. Finally, the

structural design is proposed to support reusability of the existing business logics.

4. Proposed Design

As the OAuth database designs in all the existing works were designed to support OAuth only features

with a newly created database, the proposed design would be separated into three steps according to

popular design pattern categories. Then the advantages of each step will be discussed.

4.1. Behavioral Design

According to the process of the OAuth authorization, each step involves in checking process of client,

scope, and token. This information is processed together in order to process the request and produce the

OAuth response back to the OAuth client. As the classes are highly coupled, changing the code in one of

these classes would result in changing the logic in another class. Therefore, the Mediator design pattern is

proposed to separate the classes and reduce the number of parameter passing among the classes. The

Mediator is the concept of the pattern that encapsulates how the objects interact by keeping the objects

from direct calling. Therefore, reducing the number of lines of code changes in another class if one of them

changes.

In OAuth protocol context, the endpoint running on the web server would accept the request from the

618 Volume 11, Number 6, June 2016

Journal of Software

OAuth client and produce the OAuth response back to the OAuth client. Therefore, the proposed design

introduces the superclass called OAuthFormatter to handle OAuth request and OAuth response from HTTP

request and HTTP response. Then the OAuthParser and OAuthResponder inherit OAuthFormatter in order to

implement discrete functionality in request and response process accordingly.

OAuthFormatter

OAuthParser OAuthResponder

UserOAuthParser UserOAuthResponderData1OAuthParser Data1OAuthResponder

ITokenIScope

Fig. 1. UML diagram of OauthFormatter class.

For each added endpoint, more discrete functionalities could be implemented by inheriting both

OAuthParser and OAuthResponder. For example, as shown in Fig. 1, a class UserOAuthParser and

UserOAuthResponder inherits OAuthParser and OAuthResponder respectively in order to handle OAuth

request and OAuth response for the user class. In addition, the OAuthFormatter processes the scope and the

token by referencing IScope and IToken interfaces.

4.2. Creational Design

In the OAuth protocol process, once the user granted the authorization request at the authorization

endpoint, the OAuth client would use the access token to request the resource at different endpoint

afterward. Since the process after the authorization would follow the same pattern except that the resource

type returned to the OAuth client, Abstract factory and Factory method are used together in the proposed

design in order to provide an infrastructure of the resource procession. In Abstract factory, there are two

types of class. One is a factory class that defines how the objects are created. A Factory class produces the

other class called product class. Each factory would produce its own product only. The discrete factory

could be implemented by inherited factory superclass and the discrete product created from the discrete

factory would need to inherit the same hierarchy of the product superclass. In addition, in order to provide

a more standardized way to create the product class. The factory class also uses factory method pattern.

The factory method pattern makes all the subclasses of the same factory class implements the same method

of product creation.

OAuthFormatter

OAuthParser OAuthResponder

UserOAuthParser UserOAuthResponder

OAuthMessage

OAuthRequest OAuthResponse

UserOAuthRequest UserOAuthResponse

<<instantiate>>

<<instantiate>>

Fig. 2. UML diagram of OAuthFormatter and OAuthMessage.

619 Volume 11, Number 6, June 2016

Journal of Software

In OAuth protocol context, the OAuthFormatter produces OAuthMessage. In OAuthMessage, there are two

subclasses, which are OAuthRequest and OAuthResponse. The OAuthParser handles OAuthRequest and the

OAuthResponder produces OAuthResponse accordingly.

For each added endpoint, the more discrete data structure could be implemented by inheriting both

OAuthRequest and OAuthresponse. For example, as shown in Fig. 2, a class UserOAuthRequest and

UserOAuthResponse are the product of the UserOAuthParser and UserOAuthResponder respectively.

Furthermore, the methods used in subclasses of OAuthParser and OAuthResponder would implement the

same such as readRequest(), createResponse(), etc.

4.3. Structural Design

As from the requirements in this paper, the proposed structural design of the existing resource that will

be published as an authorized resource through an endpoint. To achieve this requirement, an adapter

pattern is used in this scenario. Adapter design pattern is typically used when a new system wants to reuse

the existing business objects without modifying their business logics or data access layer as they are

already implemented, or their creation process could be complicated.

Note that, in the design of scope and token, a bridge design pattern is used to separate the structure of

them from the implementation using IScopeStore and ITokenStore, we leave the discussions of scope and

token out of the paper due to the space limitation. In addition, some of the existing works also use this

pattern to manage them.

In OAuth protocol context, the IDataAdapter interface has proposed to fulfill the above requirement.

IDataAdapter interface provides a basic create, retrieve, update, and delete operations (CRUD operations)

from the existing business logics. Therefore, to reuse the existing business objects, a new class that

implements IDataAdapter and accepts the existing business object as a constructor can be defined. The code

implemented in IDataAdapter class will call the function in its adaptee class. To attach IDataAdapter into the

proposed design, the object is contained in the OAuthMessage, which means that the OAuth client can put

the object to update the data on the OAuth server using OAuthRequest and the OAuth client can retrieve the

object from the OAuth server via OAuthResponse.

For each added endpoint, more discrete data adapter could be implemented by implementing

IDataAdapter and uses the discrete data adapter as an object in OAuthMessage. For example, as shown in Fig.

3, a class UserDataAdapter that implements IDataAdapter that calls existing business logics in

UserDataAdaptee. The UserDataAdapter accepts the existing business object User is contained in

UserOAuthRequest and UserOAuthResponse. The OAuth client can embed the User object in the request and

update the data in the OAuth server using UserOAuthRequest. In addition, the OAuth server can serialize the

User object through UserDataAdapter and embed in UserOAuthResponse.

OAuthMessage

OAuthRequest OAuthResponse

UserOAuthRequest UserOAuthResponse

<<Interface>>

IDataAdapter

UserDataAdapter User

UserDataAdaptee

Fig. 3. UML diagram of between IDataAdapter and OauthMessage.

620 Volume 11, Number 6, June 2016

Journal of Software

5. Advantages and Implementation

The proposed design takes the benefits of the design patterns to improve the reusability of the existing

business logics in the organization. In this section, the comparison of the proposed design and the design of

the existing studies were compared in Table 1. Since some of the software libraries just focus on the OAuth

message production and parsing, the code we downloaded uses hard coding techniques just to illustrate

how the code works. Therefore, [7]-[11] does not apply the design pattern techniques in some categories.

Except the proposed design, only [9], [12] apply the design pattern techniques in all three categories.

However, the author still does not leave any interfaces or abstract classes to connect to the existing resource.

Finally, [11] introduces data API interface for the existing resource, but modifying the related classes such

as scope is difficult since the library does not use a behavioral design pattern technique.

Our prototype is implemented using Visual Basic.NET. However, our proposed design could also be used

in many popular languages such as Java, PHP, or ruby.

Table 1. Comparison among the Proposed Design and the Existing Libraries
Software Libraries Coupling Behavioral

patterns

Creational

patterns

Structural

patterns

Reusability of

existing business

logics

Proposed design Low Mediator

Abstract

factory &

Factory

method

Adapter &

Bridge
Supported

Apache Oltu [7] High -

Abstract

factory &

Builder

- Not Supported

OAuth2 Server in PHP

[8]
High - - Bridge Not Supported

OAuth for Spring

Security [9]
High

Chain of

responsibili

ty

Factory

method
Bridge Not Supported

PHP OAuth 2.0 Server

[10]
High

Chain of

responsibili

ty

- Bridge Not Supported

DotNetOpenAuth [11] High - -
Adapter &

Bridge
Not Supported

IdentityServer3 [12] Low Mediator
Abstract

factory

Repository

& Bridge
Not Supported

6. Conclusion

We introduced the issues in implementing the OAuth server role where the software libraries available on

the official website have not addressed. Then we proposed the class design that addressed the problem.

The proposed class design was conceived with the object-oriented programming language, the most

popular programming approach. The class design was generic enough to implement in any other

object-oriented languages. Then we elaborate the problem and explain how the proposed class design

addresses the problem. Finally, the proposed class design was evaluated with the existing software libraries.

We showed that our proposed class design was able to solve the issues.

References

[1] Hammer-Lahav, E. (2010). The OAuth 1.0 protocol.

[2] Hardt, D. (2012). The OAuth 2.0 authorization framework.

621 Volume 11, Number 6, June 2016

Journal of Software

[3] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., & Mortimore, C. (2014). OpenID connect core

1.0. The OpenID Foundation, S3.

[4] Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). Design patterns: Elements of reusable

object-oriented software. Reading: Addison-Wesley, 49(120), 11.

[5] Evans, E. (2004). Domain-driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley

Professional.

[6] Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing

Co., Inc.

[7] The Apache Software Foundation. Apache Oltu. Retrieved December 1, 2015, from

http://oltu.apache.org/

[8] Shaffer B. OAuth2 Server in php. Retrieved December 1, 2015, from

https://github.com/bshaffer/oauth2-server-php

[9] Pivotal Software Inc. OAuth for Spring Security. Retrieved December 1, 2015, from

http://projects.spring.io/spring-security-oauth/docs/Home.html

[10] Bilbie A. PHP OAuth 2.0 Server. Retrieved December 1, 2015 from http://oauth2.thephpleague.com/

[11] Aarnott A., Christiansen D. DotNetOpenAuth. Retrieved December 1, 2015, from

http://dotnetopenauth.net/

[12] Dot net foundation. IdentityServer3. Retrieved December 1, 2015, from

https://github.com/IdentityServer/IdentityServer3

[13] Buranasaksee, U., Porkaew, K., & Supasitthimethee, U. (2014). Ticket model: A generalised model for

internet-based three-party authorisation systems. International Journal of Internet Protocol Technology,

8(4), 159-168.

[14] Buranasaksee, U., Porkaew, K., & Supasitthimethee, U. (2014, February). AccAuth: Accounting system

for OAuth protocol. Proceeding of 2014 Fifth International Conference on the Applications of Digital

Information and Web Technologies (ICADIWT), (pp. 8-13). IEEE.

[15] Hashimoto, R., Ueno, N., & Shimomura, M. (2009, November). A design of usable and secure

access-control APIs for mashup applications. Proceedings of the 5th ACM workshop on Digital identity

management (pp. 31-34). ACM.

[16] Aghaee, S., Nowak, M., & Pautasso, C. (2012, June). Reusable decision space for mashup tool design.

Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (pp.

211-220). ACM.

[17] Rodríguez, C., Chowdhury, S. R., Daniel, F., Nezhad, H. R. M., & Casati, F. (2014). Assisted mashup

development: On the discovery and recommendation of mashup composition knowledge. Proceeding of

Web Services Foundations (pp. 683-708). Springer New York.

Utharn Buranasaksee received his PhD in Computer Science from King Mongkut’s

University of Technology Thonburi, thd master in information technology from King

Mongkut’s University of Technology Thonburi, Bangkok and BCA degree from Christ

College, Bangalore University. He is a lecture in computer science field at Rajamangala

University of Technology Suvarnabhumi. His research interests include keyword search,

spatial database, web technology and internet protocols design.

622 Volume 11, Number 6, June 2016

Journal of Software

