

Review and Evaluation of Cohesion and Coupling Metrics
at Package and Subsystem Level

Shouki A. Ebad1*, Moataz A. Ahmed2

1 Faculty of Computing and IT, Northern Border University, Saudi Arabia.
2 Info. & Computer Science Department, King Fahd University of Petroleum and Minerals, Saudi Arabia.

* Corresponding author. Tel.: +966 14 6615454; email: shouki.abbad@nbu.edu.sa
Manuscript submitted January 4, 2016; accepted March 21, 2016.
doi:10.17706/jsw.11.6.598-605

Abstract: Cohesion and coupling metrics at package and subsystem level play a crucial role in guiding

software packaging (partitioning) and analyzing the maintainability and reusability of software. There has

been a number of attempts to propose frameworks to assess the cohesion and coupling metrics at class

level. A little work has been done at a higher level. In this paper, we survey the existing cohesion and

coupling metrics at package and subsystem level and present an attribute-based framework to assess these

metrics. The framework is meant to guide researchers interested in proposing new metrics at package level.

The paper discusses a number of metrics against the framework.

Key words: Cohesion, coupling, package, software metrics.

1. Introduction

In object-oriented (OO) development, the classes of system are packaged in the architectural design

phase [1]. The packaging process is classified as a combinatorial optimization problem [1]-[3]. Software

metric at package level could be used as the fitness function of this problem [1]-[3]. Defining a fitness

function that maximizes the cohesion of the individual packages and minimizing the coupling among all of

the packages is a widespread method implemented by software architects [1]-[3]. Cohesion and coupling

metrics are important in guiding software packaging [1], [3]. However, it is a little focus on this area

compared with that at class level [3]-[5]. Based on eight attributes identified as a result of an intensive

survey, this paper evaluates the package cohesion and coupling metrics against the attribute-based

framework. Such a framework contributes to an increased understanding of the state-of the-art as it is a

mechanism for comparing metrics and their potential use as well as integrating existing metrics which

examine the same concepts in different ways. The framework can be used to facilitate more decision

making regarding the definition of new metric and the selection of existing metrics for a specific goal [5]-[7].

We discuss eleven representative metrics against the attribute-based framework. This paper contributes to

this direction.

2. Cohesion and Coupling Frameworks

The previous frameworks would be surveyed here. Eder et al. [8] presented a framework aimed at

providing comprehensive criteria for cohesion (method level and class level) and coupling (interaction,

components, and inheritance coupling) in OO systems. Hitz and Montazeri [9] introduced a framework for a

comprehensive metric for coupling in OO systems on both object level (dynamic interactions) and class

598 Volume 11, Number 6, June 2016

Journal of Software

level (static interactions). About cohesion, they presented a graph theoretic improved version of the LCOM

metric. Briand et al. [6] provided a framework for the comparison, evaluation, and definition of cohesion

measures in OO systems. Briand et al. [7] presented another framework for coupling measures; the

coupling framework is complementary to the cohesion one. The coupling Briand’s framework was used by

Arisholm [10] to describe how coupling can be defined based on dynamic analysis of OO systems. Ebad and

Ahmed [5] described an evaluation framework to cohesion metrics at package level. The work reported in

this paper extends that framework. Particularly, the package/subsystem coupling metrics are included.

According to [11] , coupling as a software design concept is not less important than cohesion if not more.

3. An Evaluation Framework Acquisition

We studied cohesion and coupling metrics at high level available in the literature. Based on our

observations on metrics along with some wish items, we were able to identify a set of attributes to analyze

different metrics. The attributes, in Table 1, are general enough to be applicable to a wide set of artifacts.

Table 1: Description of our Proposed Attributes

Attribute Description
Metric Objective This attribute is expected to determine the external quality attributes such as reusability; or internal

quality attributes such as size and complexity.
Reliability The metric is not reliable in case of ambiguity. An ambiguity exist if the metric gives the same value

for packages that are, intuitively, of different cohesion or coupling.
Domain of measure It refers to the level of granularity; there are three considered levels: method level (i.e., fine grain),

class level (i.e., medium grain), and package or subsystem level (i.e., coarse grain) [6][7].
Normalization &
non-negativity

It determines if the cohesion value is between 0 (i.e., least cohesion) and 1 (i.e., perfect cohesion); and
the coupling value is non-negative. Normalization allows us to make a meaningful comparison of the
cohesion metrics of package which have different sizes [6]. It is worth noting here that the non-
negativity attribute of software metrics (among other properties) is proposed in the literature and
has been widely adopted as a formal property to evaluate software metrics [12]-[15].

Applicability phase Five general development phases: requirements definition, system design, implementation, testing,
and operation and maintenance. The attribute specifies the phase that the metric will be applicable.

Applicability to
UML Diagrams

Because early availability of metrics is very useful, it is expected to use UML diagrams in measuring
cohesion and coupling metrics at package level would be used [16].

Weighting Does the metric treat all connections equally? A metric might consist of two types of connections. For
a reason, experts might suggest the first type should have double the weight of the second.

Validation This attribute determines whether the metric is theoretically or empirically validated.

4. Cohesion and Coupling Metrics

In chronological order, we present a definition of the surveyed metrics based on our attributes. The list of

metrics is not exhaustive, we gave attention to those works we considered significant as regards the subject

under discussion. What it takes into account is that the number of metrics to measure cohesion and

coupling at the higher levels is a few compared to those have defined up to class level [4], [5], [17], [18].

4.1. Marchesi 1998 [19]

Three coupling metrics were defined: (1) PK1, number of dependencies whose clients are classes of a

given package Pk and whose servers are outside Pk, (2) PK2, number of dependencies on server classes

belonging to Pk and is related to the degree of reuse of these classes, and (3) PK3, the average of PK1; it is an

estimate of overall coupling among packages. A “good” system should have packages with low values of PK1

and PK2.

4.2. Doval et al. 1999 [20]

The intra-connectivity metric of a package was measured as the number of intra-edge dependencies

599 Volume 11, Number 6, June 2016

Journal of Software

divided by the maximum number of possible dependencies between the components (i.e., classes). The

inter-connectivity metric between two packages was measured as the ratio of inter-dependencies between

the two packages and the maximum possible number of inter-edge dependencies between them.

4.3. Vernazza et. al. 2000 [21]

An extension of two CK metrics was presented: (1) External CBO: number of external classes coupled to a

package, (2) Component Cohesion (CC), number of internal classes to which a class is coupled normalized

with the number of the possible coupling relationship among the classes.

4.4. Martin 2003 [22]

A package cohesion was defined as the average of internal relationships per class in a package as follows:

where R is the number of class relationships i.e., internal to the package, N is the number of classes in the

package, and the extra 1 prevents the metric value to be zero when N=1.

4.5. Bauer and Trifu 2004 [23]

They defined cohesion and coupling subsystem (package) metric as follows:

where D is a decomposition, Si is the ith subsystem in D, |Si| is the number of classes in subsystem Si,

noInternalEdges (Si) is the number of edges between the classes of Si, noExternalEdges (Si, Sj) is the

number of edges between classes from Si and Sj. and |D|* is the number of not single-class subsystems in D.

4.6. Khan’s MS-Thesis 2004 [12]

Three metrics are proposed: Inter-Package Coupling (IPC): the total coupling among the packages of the

system, Internal Package Coupling (INPC): the total coupling between the classes of the same package, and

External Package Coupling (EPC): the total coupling that a package has with all other packages.

4.7. Seng et al. 2005 [24]

The cohesion is defined by the number of classes inside the subsystem known by some class which

belong to the same subsystem and divide this by the square of the number of classes in the subsystem. The

coupling is calculated by the number of dependency edges between classes inside package and classes

belonging to other packages and divide this by the overall number of dependency edges in the system.

4.8. Hussain's MS-Thesis 2005 [4]

He proposed the package interaction cohesion metric as the number of methods in a particular class that

have an interaction with the methods of other classes within the same package.

600 Volume 11, Number 6, June 2016

Journal of Software

4.9. Abdeen et al. 2009 [25]

Based on the Common Closure Principle by Martin [22], the authors defined the package cohesion quality

(CohesionQ) as proportional to the number of internal dependencies within the package |PInt.D| as follows:

For normalization, they used |PD| which is the number of dependencies of the package with |PD|>0.

4.10. Ali’s MS-Thesis 2010 [26]

Ali aggregated the cohesion metric (which was LCOM) and coupling metric (which was CBO) from class

level to package level. After he adopted the LCOM version of Seller [27], Ali redefined it at package level by

calculating the average of LCOMs. A similar aggregation was done for CBO metric.

4.11. Gupta and Chhabra 2009, 2012 [17], [18]

The cohesion is the ratio of the number of relations between ordered/unique pairs of package elements

and maximum number of relations between ordered and unique pairs of elements. The coupling between

two packages is the total number of directed connections between ordered/unique pairs of their elements.

5. Discussion

Based on previous evaluation criteria for coupling and cohesion metrics, we have created our own

evaluation criteria, we have surveyed in the literature for relevant coupling and cohesion metrics at

package and subsystem level and we have evaluated the quality of those based on our evaluation criteria.

This is shown in Table 2 A discussion about reliability of the metrics is given in detail in the next section.

Table 2. The Existing Metrics Against the Framework Attributes

Study Objective Reliability Domain Normalized Phase UML Weighting

Marchesi To early estimate of
development efforts using
package coupling

Ambiguity
in PK3

Coarse Yes Analysis
&

Design

Class diagram
with no

inheritance

Equally

Doval et
al.

Trade-off between cohesion &
coupling to find
modularization quality

Ambiguity
in

cohesion

Coarse Yes Design No Equally

Vernazza
et. al.

To measure cohesion and
coupling of package

Ambiguity Coarse Yes Coding No Equally

Martin To manage the package
structure via quantifying the
package cohesion

Ambiguity Coarse Yes Design No Equally

Bauer &
Trifu

To find an optimal design
using high cohesion and low
external coupling

Ambiguity Coarse Yes Coding No Not
Equally

Khan’s
Thesis

To detect software flaws and
to early assess software
architecture

Ambiguity Coarse No Design No Equally

Seng et
al.

Compromise between
cohesion & coupling to find
the decompositions quality

Ambiguity Coarse Yes Coding No Not
Equally

Hussain's
Thesis

To propose a new cohesion
metric at package level

Ambiguity Coarse Yes Design No Equally

Abdeen
et al.

To quantify the package
quality within a
modularization

Ambiguity Coarse Yes Design No Not
Equally

Ali’s
Thesis

To find change prediction and
implementation effort
estimation for packages

Ambiguity Coarse Yes Coding No Equally

Gupta &
Chhabra

To predict reusability and
improve package structure

Ambiguity Coarse Yes Coding No Equally

601 Volume 11, Number 6, June 2016

Journal of Software

5.1. Metric Reliability

Table 2 raises doubts as whether the metrics are reliable. A metric would not be considered reliable if it

gives the same value for packages that are, intuitively, of different cohesion/coupling qualities; or vice-

versa. [28]. Likewise, a metric would not be considered reliable if it ranks a class as better than another

where intuitions suggest the other way around. As an example, two packages P1 and P2, with six classes and

six interactions for each; the levels of interactions are different. As in Fig. 1 (a), we observe that P1

interactions are equally distributed on the classes of the package so that each class interacts with two

classes. Intuitively, P1 is expected to be of different cohesion than P2 since most interactions in P2 are done

via one class (called C’). The cohesion among the rest of classes in P2 is weaker than that of C’. Fig. 1 (b)

describes coupling case. There are two subsystems: Subsystem1 and Subsystem2 with three packages and

three interactions for each; the levels of interactions are different. We observe Subsystem1 has three

interactions distributed equally on the packages of the subsystem so that each package interacts with two

packages. Intuitively, Subsystem1 is expected to be of different coupling than Subsystem2 because most

interactions in Subsystem2 (i.e., 2 out of 3) are done via P2 and P3. It means the coupling of P1 and P2 in

Subsystem2 is weaker than that between P2 and P3 in the same subsystem. This is shown in Table III & IV.

(a)

(b)

Fig. 1. (a) Two packages (b) two subsystems. A circle is a class and a directed edge is an interaction.

Table 3. Reliability Test Examples for Cohesion

Table 4. Reliability Test Examples for Coupling

602 Volume 11, Number 6, June 2016

Journal of Software

This reliability issue is expected for us because there is not a consensus yet on the concepts used in

measuring of the metrics in spite of the efforts in this field during the last decade. Some researchers did not

focus on the connections but the classes [21], others excluded some connection types like external and

undirected connections [17], [18], [20], [22], [25], others again focused on the methods in the class [4].

5.2. More Observations

Besides reliability issue, more important observations of this study can be summarized as follows:

 All presented cohesion metrics are normalized and coupling metrics are non-negative.

 Designing cohesive packages means creating packages that offer coarse-grained, yet much focused

behaviors. All metrics are on coarse grain level i.e., the measure domain was higher than class level.

 Most metrics suffer from weighing limitation. They treat interactions in the package equally. For

example, two packages interacted with each other by one type of message passing are equivalent to two

packages interacted with each other by more than one type of message passing.

 UML diagrams at the architectural design phase are not considered in all metrics except in Marchesi’s

study that used class diagram with excluding inheritance dependency. Recently, the authors filled this

gap by proposing a search-based packaging method and metric based on UML sequence diagrams [1].

 Although no metric is perfectly accurate, imperfect measurement is better than none especially that

these metrics are being widely used by different institutions and agencies.

6. Conclusion and Future Work

The main contribution of this work is an evaluation of the relevant works related to metrics for cohesion

and coupling at package and subsystem level. We present an attribute-based framework to allow assessing

package cohesion and coupling metrics. The paper also provides an analysis of a set of metrics in light of the

framework. The results provide practitioners with an overview of prominent work in the literature and

offer help with regard to making decisions as which package metric would be appropriate for their

particular development efforts. This analysis is meant to serve as guide for researchers interested in

developing new package metrics. In spite of active research in developing cohesion and coupling metrics at

package and subsystem level, studying the reliability of such metrics remains an open issue. As we

mentioned earlier, the authors recently presented a new packaging approach based on UML sequence

diagrams. As a follow-up to this work, we are working on evaluation of our approach in terms of its impact

on external attributes such architecture stability which can be used as indicator of maintainability.

References

[1] Ebad, S., & Ahmed, M. (2015). Functionality-based software packaging using sequence diagrams.

Software Quality Journal, 23(3), 453-481.

[2] Clarke, J., Dolado, J., Harman, M., Jones, B., Lumkin, M., Mitchell, B., et al. (2003). Reformulating software

engineering as a search problem. IEEE Proc. on Software, 150 (3), 161–175.

[3] Ebad, S., & Ahmed, M. (2011). Software packaging approaches A comparison framework.

Proceedings of the 5th European Conference. on Software Architecture, (pp. 438-446). Essen, Germany.

[4] Hussain, S. (2005). Package cohesion metric for object-oriented systems. MS Thesis, King Fahd

University of Petroleum and Minerals, Saudi Arabia.

[5] Ebad, S., & Ahmed, M. (2011). An evaluation framework for package-level cohesion metrics.

603 Volume 11, Number 6, June 2016

Journal of Software

 Around half of the metrics work during the design phase like those proposed by Marchesi, Doval et al.,

Martin, Khan’s MS, Hussain's MS, and Abdeen et al. The others work during the implementation phase

like those proposed by Vernazza et. al. , Bauer and Trifu, Seng et al., Ali’s MS, and Gupta and Chhabra.

Proceedings of the 2nd International Conference on Future Information Technology (pp. 326-330).

[6] Briand, L., Daly, J., & Wüst, J. (1997). A unified framework for cohesion measurement in object-oriented

systems. Proceedings of the 4th International Software Metrics Symposium.

[7] Briand, L., Daly, J., & Wüst, J. (1999). A unified framework for coupling measurement in object-oriented

systems. IEEE Transactions on Software Engineering, 25(1), 91-121.

[8] Eder, J., Kappel, G., & Schrefl, M. (1994). Coupling and cohesion in object-oriented systems. University

of Klagenfurt.

[9] Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented systems.

Proceedings of the International Symposium on Applied Corporate Computing, Monterrey, Mexico.

[10] Arisholm, E., Briand, L., & Foyen, A. (2004). Dynamic coupling measurement for object-oriented

software. IEEE Transaction on Software Engineering, 30(8), 491-506.

[11] Vanderfeesten, I., Reijers, H., & Aalst, W. (2008). Evaluating workflow process designs using cohesion

and coupling metrics. Computers in Industry, 59(5), 420-437.

[12] Weyuker, E. J. (1988). Evaluating software complexity measure. IEEE Transaction on Software

Engineering, 14(9), 1357-1365.

[13] Zuse, H. (1991). Software Complexity: Measures and Methods. Walter de Gruyter & Co., USA.

[14] Briand, L., Morasca, S., & Basili, V. (1996). Property-based software engineering measurement. IEEE

Transactions on Software Engineering, 22(1), 68-86.

[15] Hassan, Y. (2007). Measuring software architectural stability using retrospective analysis. MS thesis,

King Fahd University of Petroleum and Minerals, Saudi Arabia.

[16] Khan, S. (2004). Design level coupling metrics for UML models. MS Thesis, King Fahd University of

Petroleum and Minerals, Saudi Arabia.

[17] Gupta, V., & Chhabra. J. K. (2009). Package coupling measurement in object-oriented software. Journal

of Computer Science and Technology, 24(2), 273-283.

[18] Gupta, V., & Chhabra, J. K. (2012). Package level cohesion measurement in object-oriented software.

Journal of Brazilian Computer Society, 18, 251–266.

[19] Marchesi, M. (1998). OOA metrics for the unified modeling language. Proceedings of the 2nd Euromicro

Conference on Software Maintenance and Reengineering (pp. 67-73).

[20] Doval, D., Mancoridis, S., & Mitchell, B. (1999). Automatic clustering of software systems using a genetic

algorithm. Proceedings of Software Technology and Engineering Practice.

[21] Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., & Mintchev, M. (2000). Defining metrics for

software components. Proceedings of the World Multiconference on Systemics, Cybernetics and

Informatics.

[22] Martin, R. (2003). Agile Software Development: Principles, Patterns, and Practices. Prentice-Hall.

[23] Bauer, M. & Trifu, M. (2004). Architecture-aware adaptive clustering of object-oriented systems.

Proceedings of the 8th European Conference on Software Maintenance and Reengineering.

[24] Seng, O., Bauer, M., Biehl, M., & Pache G. (2005). Search-based improvement of subsystem

decompositions. Proceedings of Genetic and Evolutionary Computation Conference. Washington, DC.

[25] Abdeen, H., Ducasse,_S., Sahraouiy, H., & Alloui I. (2009). Automatic package coupling and cycle

minimization. Proceedings of the 16th Working Conference on Reverse Engineering (pp. 103-122). France.

[26] Ali, A. (2010). A comprehensive empirical validation of package level metrics for object-oriented

systems. MS Thesis, King Fahd University of Petroleum and Minerals, Saudi Arabia.

[27] Sellers, B. (1996). Object-oriented metrics-measures of complexity. Prentice Hall.

[28] Ahmed, M., Abubakar, A., & AlGhamdi, J. (2011). A study on the uncertainty inherent in class cohesion

measurements. Journal of Systems Architecture Embedded Systems Design, 57(4), 474-484.

604 Volume 11, Number 6, June 2016

Journal of Software

Shouki A. Ebad received his M.S. in computer science from University of Jordan, Jordan, in

2000 and Ph.D. in computer science and engineering from King Fahd University of

Petroleum and Minerals, Saudi Arabia, in 2012. Currently, he is working as an assistant

professor at the Faculty of Computing & IT, Northern Border University (NBU) in Saudi

Arabia. He also serves as an assistant dean of Technical Affairs at IT Deanship at NBU.

Before that, he held several positions: Lecturer, Head of Information Systems department,

and Vice-Dean. He is a Sun Certified Programmer for the Java 2 Platform. His current

research interests are search-based software engineering (SBSE), software metrics, software architecture,

and requirements engineering. He published a number of articles in these areas.

Moataz A. Ahmed received his PhD in computer science from George Mason University in

1997. Dr. Ahmed is currently a faculty member with the Information and Computer

Science Department, King Fahd University of Petroleum and Minerals, Saudi Arabia. He

also severs as an adjunct/guest professor in a number of universities in the US and Italy.

During his career, he worked as a software architect in several software houses. His

research interest includes softcomputing-based software engineering, especially, software

testing, software reuse, and cost estimation; and software metrics and quality models. He

has supervised a number of theses and published a number of scientific papers in refereed journals and

conferences in these areas.

Author’s formal
photo

Author’s formal
photo

605 Volume 11, Number 6, June 2016

Journal of Software

