

A Model Driven Framework for Automatic Detection and
Tracking Inconsistencies

A. Ananda Rao1, T. V. Rajini Kanth2, G. Ramesh3*
1 Director Academic and Planning, JNT University Anantapur, Ananthapuramu, Andhra Pradesh, India.
2 CSE Department, Sreenidhi Institute of Science and Technology, Ghatkesar, Hyderabad, Telangana, India.
3 Research Scholar, CSE Department, JNT University Anantapur, Ananthapuramu, Andhra Pradesh, India.

* Corresponding author. Tel.: 09440862112; email: ramesh680@gmail.com
Manuscript submitted January 28, 2016; accepted March 28, 2016.
doi: 10.17706/jsw.11.6.538-553

Abstract: Software design model inconsistencies precipitate into flaws in system that can be avoided at the

time of design of the system. Recent contributions in the software engineering domain confirmed this fact

clearly. Obstructions in software development and delivery can lead to economic and time-to-market

attributes of the software. The consequences of model inconsistencies will have ripple effect in three areas

such as cost, development time and delivery. Though UML provides unified and common notations across

the globe, the developers may use the models inappropriately leading to model inconsistencies. Many

researches came into existence to handle model inconstancies. However, a comprehensive, flexible and

extensible framework that caters to the needs of developers with diverse tool usage and skill set is desired.

Towards this end, in our previous work, we proposed a framework named Extensible Real Time Software

Design Inconsistency Checker (XRTSDIC) for checking software design inconsistencies. The framework was

made flexible with placeholders to support different modeling tools, rule detectors and visualizations. In

this paper we focus on providing more features for all placeholders to realize a truly flexible and extensible

design inconsistency checker. This improved framework and the implemented prototype can help software

engineers to build more consistent software design models that can avoid cost and budget overruns as the

application can provide early detection of inconstancies. Moreover, the application can support certain

degree of tolerance for inconsistencies and help software engineers to switch between UML tools,

consistency checkers and visualization mechanisms. The empirical evaluation shows that our framework is

flexible and reveals significant performance improvement over other state-of-the-art inconsistency

checkers in terms of accuracy, speed and scalability.

Key words: UML tools, design inconsistencies, consistency rules, visualization.

1. Introduction

The utility of Computer Aided Software Engineering (CASE) has been around for last two decades and it is

growing consistency. Towards this, many modelling tools such as Rational Rose [1] came into existence. This

was due to the UML specifications provided by OMG as it helped many vendors to build modelling tools.

However, the modelling tools do little about software design model inconsistencies. When inconsistencies

are not identified in the design phase, they can reflect in other phases of SDLC. This will lead to defects or

flaws in software and that can eventually affect cost and time and time-to-market parameters of the

software. It has its consequences which are not desirable. As we explored in our previous paper [2] there

538 Volume 11, Number 6, June 2016

Journal of Software

https://en.wikipedia.org/wiki/Hyderabad,_Telangana
https://en.wikipedia.org/wiki/India

exists many tools that focused on Model Driven Engineering (MDE). They are Andro MDA, BoUML, BluAge,

Enterprise Architect, and Md Workbench to mention few.

he existing tools used for checking model inconsistencies follow different approaches in terms using

modelling tool, consistency rule language and visualization techniques. In the literature it was found that

the tools were built with different approaches. An important insight in the literature is that there was little

research on having a comprehensive tool that can support different modelling tools, consistency checking

languages and visualization techniques. The rationale behind this kind of need is that software engineers

across the globe do have different skill sets and experience in using certain modelling tools, visualization

and consistency rules. A comprehensive tool can provide them choices for selecting modelling tool,

consistency checking language and visualization mechanism prior to building software design models. This

however is a challenging problem to be addressed.

In our previous work we proposed a comprehensive, flexible and extensible framework known as

Extensible Real Time Software Design Inconsistency Checker (XRTSDIC). This framework has two broad

parts. First one is personalized configuration while the second one is execution model. The personalized

configuration helps users to choose any modelling tool, consistency rule language and visualization

mechanism while the execution model takes care of model checking for inconsistencies in a live

environment. To our knowledge, it is the first of its kind with such features. More details of the framework

can be found in our previous papers [3], [4].

In this paper, our contributions are described here. We improved the framework named Extensible Real

Time Software Design Inconsistency Checker (XRTSDIC) proposed by us in [3]. We provided different

approaches for rule detection and visualization. These contributions made the framework and the

corresponding application to allow software engineers to select modelling tool, consistency rule language

and visualization based on their knowledge and choice. This kind of flexibility in the tool can help users to

adapt to the tool with ease. The remainder of the paper is structured as follows. Section 2 reviews literature

on prior works on consistency checking. Section 3 provides preliminaries. Section 4 presents the proposed

framework. Section 5 provides experimental results while Section 6 concludes the paper besides providing

directions for future work.

2. Related Works

This section provides prior works on consistency checking models. Some researchers compared design

models for discovering inconsistencies while others transformed models and compared. In [5] a graph

structure is used to find the difference between class and sequence diagrams. In [6], [7] also transformation

approach is followed. Groher et al. [8] makes use of description logic in order to find discrepancies between

state chart and sequence diagrams. Campbell et al. [9] explored a model named SPIN for consistency

checking in UML. Knowledge base and discovery of patterns is another approach for expressing consistency

rules [10]. Incremental consistency checking approach was found in [11]-[13] which is used when

transformation is expensive. ArgoUML also supports incremental consistency checking provided annotated

consistency rules [14]. Warm queue and hot queue are the two methods of consistency checking in

ArgoUML. There were many consistency checking methods that directly use UML models for comparison

without the need for transformation [15]-[17].

Consistency of documents is done using xLinkIt [17] which is an XML based solution for consistency

checking. Another approach which is similar to that of xLinkIt is in [18] which rely on SQL queries. Research

on tolerating inconsistencies is found in [6], [19] that allow inconsistencies in models as they are allowed

intentionally. In [20] lazy consistency checking was explored which is something close to the tolerance of

inconsistencies. However, the tolerated inconsistencies are to be resolved ultimately as explored in [21] -

539 Volume 11, Number 6, June 2016

Journal of Software

[24]. Upstream modelling technique and viewpoints were explored in [21], [25]-[27] for consistency

checking.

In [28] the researcher presented an automated approach for finding and tracking inconsistencies. It

allows software engineers to define rules to detect inconsistencies. It automatically detects inconsistencies

when model is changed. Reder and Egyed [29] presented a tool named Model/Anlyzer which is practically a

plug-in for modelling software named Rational Software Modeler (RSM). Based on the context of model, the

tool could provide feedback on the rules defined by software engineers. The tool is incremental in nature in

detecting and providing feedback on model inconsistencies. Costa et al. [30] explored the detection of

semantic conflicts with respect to UML class diagrams. Their tool can detect conflicts between two versions

of class diagrams and help software engineers to resolve them. In [31] a tool was presented for instance

checking of inconsistencies in UML models that are used as part of software engineering. The tool could

keep track of errors if any.

Ebeid et al. [32] explored source code generation from sequence diagrams of UML/MARTE. To this effect

they proposed a methodology that can help in systematic approach in generating code. Ahmed et al. [33]

explored automatic checking of non-functional and functional requirements with an integrated approach.

Their method focused on self-adaptive systems using a tool named OMEGA/IFx. Marco et al. [34] combined

Open Service for Lifecycle Collaboration (OSLC) and Xtext in order to have an integrated model-based

solution for requirements engineering. They have explored tool chaining in order to achieve best results in

requirements engineering. Han et al. [35] explored model-based analysis of IEEE 802.11 systems that are

space-aware. They used BeSpaceD tool in order to verify spatial constraints. They worked on autonomous

robots in their experiments in wireless environment.

Lytra et al. [36] explored the notion of component models that helped in making well informed

architectural decisions. Their research helped in easing the difficulties in making architectural decisions by

harmonizing them. Wawrzik et al. [37] explored modelling and simulation of cyber-physical systems. They

built a framework to achieve this follows certain methodology. Abdul Ganiyyi [38] focused on UML class

diagrams with vertical semantic consistency rules. Thus their research helped in refining class diagrams.

Soltana [39] explored model-based solution for legal compliancy checking with respect to legal policies. Sun

et al. [40] explored a novel approach based on slicing for improving model checking. Especially they focused

on model invariant checking as part of model driven development (MDD). They found that slicing could help

reduce model checking time significantly. Buchmann and Karagiannis [41] explored modelling of mobile

application requirements with the facility known as semantic traceability.

Sporer et al. [42] explored the gaps between software engineering tools and model-driven engineering

tools and tried to bridge gap between them in order to improve consistency, completeness and correctness.

Tran et al. [43] provided a graph based solution for checking model inconsistencies. They proposed a light

weight approach for containment checking which is essential in UML modelling. Their focus on UML activity

diagrams. Gargiulo et al. [44] focused on consistency verification of requirements and reviewed several

solutions for the same. Lorber [45] used mutation testing for checking inconsistencies in real world systems.

Their solution was model-based. Zurowska and Dingel [46] explored a tool named UML-RT provided by IBM.

They followed a dedicated approach in verification of models using MDD approach that made use of

algorithms. Swaminathan Jayaraman and Bharat Jayaraman [47] explored design-time specification in

finding consistency of Java run-time. They could compare and map runtime behaviour with design time

specifications.

In this paper we implemented a framework known as Extensible Real Time Software Design

Inconsistency Checker (XRTSDIC) for checking software design inconsistencies. The framework was made

flexible with placeholders to support different modelling tools, rule detectors and visualizations. In this

540 Volume 11, Number 6, June 2016

Journal of Software

paper we focus on providing more features for all placeholders to realize a truly flexible and extensible

design inconsistency checker.

3. Our Framework

This section provides the overview of our framework explored in [3]-[4] for automatic detection and

tracking of inconsistencies in UML design models. The framework is flexible and extensible with

placeholders that can help in adding new approaches for every possible functionality in future. The

framework is named as eXtensible Real Time Software Design Inconsistency Checker (XRTSDIC). The

framework allows software engineers to choose modelling tool, consistency rule language and vitalization

technique. Thus the framework can help software engineers with diverse skill set and preferences. The

personalized preferences part of the framework can leverage flexibility as it can facilitate software

engineers to have a choice in the aforesaid options. Once the preferences are registered with tool and

associated with the user profile, the execution model comes into picture. Fig. 1 shows an overview of the

framework.

Fig. 1. Overview of proposed framework.

As the software development is done by team of individuals who have diversified skills in designing, the

framework helps them to choose different UML notations, different language for consistency rules and

different visualization based on their choice. Thus the architecture is made flexible ad extensible. Based on

the framework shown in Fig. 1, we built a prototype application using Java programming language. The

application can demonstrate the proof of concept and helps developers to have personalized configurations

with respect to design models.

Personalized configuration is the feature that lets software engineers to choose different aspects of

modelling as said earlier. These choices or preferences are personalized so as to associate choices with user

and their models. Thus the tool is made very flexible and useful for software engineers. When an engineer

draws UML diagrams using the selected modelling tool, instance checking of inconsistencies is possible.

This is done automatically as user draws model diagrams. The execution model section below provides

more insights into this. The preferences are made available to execution model so that it works accordingly.

When a model is built or modified, the model dynamics tracker is responsible to record changes. Then the

rule detector is responsible to know the rules that are affected by the model changes. Only those rules are

identified and given to consistency checker. The consistency checker will check those rules to know

whether model has violated them. Then the modelling tool will provide feedback to end user based on the

visualization preference that was made by the user prior to drawing model.

541 Volume 11, Number 6, June 2016

Journal of Software

4. Execution Model

Let the selected modelling tools be MT, consistency checker CC, rule detector RD, model dynamic tracker

MDT, and visualize V. The design model is denoted as M. Change in the model is denoted as MC. The user

preferences are denoted as UP. These are considered global variables available to all routines. The pseudo

code provided here provides the dynamics of execution model. The execution model comes into picture

once user selects her preferences.

4.1. Pseudo Code for the Flow of Execution Model

 The pseudo code provides the details of the proposed execution model which takes care of runtime

model change and detection of inconstancies. It makes use of three different algorithms to achieve this.

Based on the user drawing of model, it follows an iterative approach to detect corresponding rules and

identify inconsistencies. Once inconsistencies are identified, they are visualized based on the preferences

chosen by end user of the application.

4.2. Rule Detector Algorithm

Rule detection plays a vital role in the inconsistency checking. Rules are used based on the user

preferences. The rule selection language is part of the preferences based on the rules are taken from rules

database. The rule detector is responsible to detect all the possible rules that are to be applied against the

model change occurred when model is drawn or modified.

Algorithm 1 – Rule Detection

542 Volume 11, Number 6, June 2016

Journal of Software

This algorithm takes model dynamics as input. The model dynamics refer to the changes that have been

made to model. It applies the rules based on user preferences with respect to rule selection. Then it applies

all rules to each model element that has been subjected to changes. In each iteration, it identified whether a

rule is to be considered for verification. Ultimately it returns the set of rules that are to be verified against

model violations if any.

4.3. Consistency Checker Algorithm

Algorithm 2 – Consistency Rule Checking

This algorithm takes rules considered for verification and the model dynamics as input. Each rule is

verified against each model change and the inconsistency vector is build. Then the inconsistency vector is

returned back to its caller.

4.4. Visualization Algorithm

Algorithm 3 – Visualization

This algorithm takes the context vector which contains the model violations and its related meta data

containing application, module, and other details pertaining to the model element in which violation

occurred. It visualizes the inconsistencies based on user preferences. It has different visualization

capabilities such as textual visualization, graphical visualization, structural visualization and so on.

5. Consistency Rules

There are many notations to model software systems using UML. They include Use Case, Sequence,

Collaboration, Class, Object, State Chart, Activity, and so on. UML modelling tools may not be able to show

inconsistencies. Therefore it is important to have support for automatic consistency checking. Early

detection of inconsistencies in software systems in design models can help reduce time and cost of software

development. Consistency rules can help in achieving this as explored in [48]. Fig. 2 shows inconsistencies

in design.

543 Volume 11, Number 6, June 2016

Journal of Software

Fig. 2. Class and sequence diagram (a), sequence and collaboration diagram (b with inconsistencies.

Fig. 3. Detection of duplicate attribute rule violation.

When the inconsistencies are not identified at design level, it goes to subsequent phases in software

development causing unnecessary waste and time and money. The consequences may be severe when

deadlines are not met. Consistency rules as shown in Table 1 can help in automatic checking of

544 Volume 11, Number 6, June 2016

Journal of Software

inconsistencies in software design models.

Table 1. Consistency Rules

RULE DESCRIPTION CONTEXT

Rule 01 An object in the sequence diagram should exist as a concrete class in class

diagram.

Class vs. Sequence

Rule 02 When a class name is modified in class diagram, it should reflect in all

instance of sequence diagram synchronously.

Class vs. Sequence

Rule 03 When an object sends message to another object, there must be

dependency relationship between them and there must be at least one

message between such classes.

Class vs. Sequence

Rule 04 In sequence diagram a message should have corresponding operation in

the receiver and it should be visible to sender.

Class vs. Sequence

Rule 05 When an object is deleted from a class diagram, its instances should be

removed automatically from sequence diagrams.

Class vs. Sequence

Rule 06 An object represented in sequence and collaboration diagrams should

correspond to same class in class diagram.

Sequence vs.

Collaboration

Rule 07 An object represented in state machine must be an instance of concrete

class in class diagram.

Sequence vs.

Collaboration

Rule 08 When a class is deleted from class diagram, corresponding state machine

diagrams should be deleted automatically.

Sequence vs.

Collaboration

Rule 09 A state represented in state machine diagram should be a legitimate value

of an attribute of corresponding class in class diagram.

Sequence vs.

Collaboration

Rule 10 The operation used in the state machine diagram should be consistent with

the operation in the class diagram in all aspects.

Class vs. State Machine

Rule 11 An activity in state machine diagram must be a message represented in the

sequence diagram.

Sequence vs. State

Machine

Rule 12 Use cases represented in use case diagram should be reflected in the

operations of class diagrams.

Use case vs. Class

Rule 13 Activities and swim lanes in an activity diagram must have corresponding

operations in respective classes.

Activity vs. Class

Four methods exist for inconsistency checking. They are manual check, dynamic check, automatic

maintenance and compulsory restriction. The relationship between the rules and the methods is presented

in Table 2.

Table 2. Consistency Checking Methods and Rules

Method Description Best Applicable Rules (as shown in
Table1)

Manual check Software engineer checks
inconsistencies manually

7, 9, 12, 13

Dynamic check Real time checking of inconsistencies
against changes

6, 10, 11

Automatic maintenance Modelling tool makes required
changes to user initiated ones

2, 4, 5, 8

545 Volume 11, Number 6, June 2016

Journal of Software

Compulsory restriction Modelling tool does not allow
inconsistent design

1, 4, 6, 10, 11

The relationship dynamics provided in Table 2 provide suitability of methods for applying different rules.

However, in practice it is possible to apply more than a rule for rule enforcement.

6. Case Study and Prototype Evaluation

As shown in Table 3, 10 UML models are taken for experiments. The prototype application we built is

used to check consistency of the models. However, the results of the evaluation of one model named

“University Portal” with administration use case. Every employee belongs to a department. The employee

and department classes are used to check inconsistencies in UML design models. The inconsistencies are

visualized with different vitalization approaches.

As shown in Fig. 3, the duplicate attribute rule is violated in the model. Therefore the execution model has

utilized the proposed algorithms and finally the detected violation is presented with different visualization

approaches such as textual, graphical and structural.

As shown in Fig. 4, the duplicate method rule is violated in the model. Therefore the execution model has

utilized the proposed algorithms and finally the detected violation is presented with different visualization

approaches such as textual, graphical and structural.

Fig. 4. Detection of duplicate method rule violation.

546 Volume 11, Number 6, June 2016

Journal of Software

As shown in Fig. 5, the invalid method rule is violated in the model. Therefore the execution model has

utilized the proposed algorithms and finally the detected violation is presented with different visualization

approaches such as textual, graphical and structural.

Fig. 5. Detection of invalid method rule violation in sequence diagram.

7. Experimental Results

Table 3. Models Used for Experiments

Model Name Class Diagram Sequence

Diagram

State chart Diagram # Model

Elements

ATM Yes Yes Yes 145

Video on Demand Yes Yes Yes 46

Online Courses Yes Yes Yes 185

Billing System Yes Yes Yes 230

Hospital Management Yes Yes Yes 540

Hotel Management Yes Yes Yes 890

University Portal Yes Yes Yes 1230

Defect Tracking System Yes Yes Yes 450

Valuation Portal Yes Yes Yes 1125

School Management Yes Yes Yes 1500

547 Volume 11, Number 6, June 2016

Journal of Software

We used our prototype application for experiments. As many as 10 models shown in Table 3 are used for

testing our application and the underlying framework on which the application is built. User preferences

and the personalization of them is the important feature of the application. Prior to the drawing models,

user can choose his preferences pertaining to modelling tool, consistency rule language and visualization

method. Then the preferences are saved and associated with user profile. Afterwards, user can draw models

or modify them.

The 10 models are used to find the feasibility of the proposed solution as it needs to check the

computational cost and resource utilization for optimizing the application performance. The models are

used to evaluate them based on the consistency rules defined by the developer. The rule detector is very

important here to know the corresponding rule based on the model change.

Fig. 6. UML Models with number of model elements.

Fig. 7. Performance comparison.

The model evaluation time decreases significantly due to the approach used. This approach makes use of

model elements that have been modified. The entire model is not verified for inconsistencies. This will save

time and thus the proposed model can reduce evaluation time. It is an incremental and hierarchical

approach that makes it intelligent to effectively delegate consistency checking to components in the

architecture. It also provides scalability and accuracy. As the approach is heuristic that can make well

informed decisions besides getting rid of unnecessary verifications.

548 Volume 11, Number 6, June 2016

Journal of Software

As seen in Fig. 7, it is evident that the percentage of model change has its influence on the evaluation time

taken. The horizontal axis represents the percentage of changes while the vertical axis provides average

model evaluation time in milliseconds. We made 10 experiments for each percentage change and the

average model evaluation time is recorded. The results reveal that there is performance improvement when

our approach is compared with an existing approach. The evaluation time is very less as shown in results

and thus the system is scalable to large models as well. With respect to memory cost, the observations show

that the cost is increased when model size increases in linear fashion.

Fig. 8. Model size vs. memory consumption.

As can be seen in Fig. 8, model size has its influence in the consumption of main memory. As the modern

computers have plenty of RAM, the memory consumption is not a big issue. However, it is a good practice to

have resource efficient consistency checking models for optimal performance. Since the approach is

heuristic in nature, memory is obviously consumed. Though it affects scalability, its effects are less and the

system remains scalable.

8. Conclusion and Future Work

In this paper we focused on the framework proposed by us in our previous work. It is known as Extensible

Real Time Software Design Inconsistency Checker (XRTSDIC). It provides a comprehensive, flexible and

extensible architecture that can adapt to new UML modeling tools, consistency rule languages, and

visualization mechanisms. However, in the previous paper the implementation had minimal features. In this

paper we improved the framework and the application to realize the intended features of it. Thus our

consistency checker has got more flexibility and offers different choices in terms of modeling tool,

consistency rules, and visualization to software engineers while modeling their systems. This will make

software engineers to utilize their skills in most productive way. As there was little research found in such

comprehensive framework, we believe that our framework can help in building models with high accuracy

thus avoiding unnecessary wastage of time and money. XRTSDIC also helps developers to tolerate model

inconsistencies to certain extent. This will help them to skip certain unimportant aspect intentionally and

move on to complete the design. The ability to choose different modeling tools, consistency rule languages

and visualization mechanisms besides providing significant performance in terms of speed, accuracy and

scalability makes it very useful in software engineering domain. Our empirical results with the prototype

application reveal this fact. In future, we intend to focus on model transformations and improving our

framework to support Software Product Lines (SPLs) for checking model inconsistencies.

References

549 Volume 11, Number 6, June 2016

Journal of Software

[1] Diab, H., Koukane, F., Frappier, M., & St-Denis, R. (2005). Automated measurement of COSMIC-FFP for

rational rose real time. Journal of Information and Software Technology, 47(3), 151–166.

[2] Madhavi. K. (2015). MDA tool support for model driven software evolution: A survey. International

Journal of Computer Science Engineering, 4(1).

[3] Ramesh, G., Kanth, T. V. R., & Rao, A. A. (2016). XRTSDIC: Towards a flexible and scalable framework for

detecting and tracking software design inconsistencies. The First A. P. Science Congress Tirupathi.

[4] Ramesh, G., Kanth, T. V. R., & Rao, A. A. (2016). Extensible real time software design inconsistency

checker: A model driven approach. Proceedings of the International Multi Conference of Engineers and

Computer Scientists 2016.

[5] Forgy, C. (1992). Rete: A fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence, 19, 17-37.

[6] Balzer, R. (1991). Tolerating inconsistency. Proceedings of the 13th Int’l Conf. Software Eng (pp.

158-165).

[7] Belkhouche, B., & Lemus, C. (1996). Multiple view analysis and design. Proceedings of the Int’l Workshop

Multiple Perspectives in Software Development.

[8] Groher, I., Reder, A., & Egyed, A. (2010). Instant consistency checking of dynamic constraints.

Proceedings of the 12th Int’l Conf. Fundamental Approaches to Software Engineering.

[9] Campbell, L. A., Cheng, B. H. C., McUmber, W. E., & Stirewalt, K. (2002). Automatically detecting and

visualising errors in UML diagrams. Requirements Eng. J., 7, 264-287.

[10] Zisman, A., & Kozlenkov, A. (2001). Knowledge base approach to consistency management of UML

specification. Proceedings of the 16th IEEE Int’l Conf. Automated Software Eng (pp. 359-363).

[11] Shen, W., Wang, K., & Egyed, A. (2009). An efficient and scalable approach to correct class model

refinement. IEEE Trans. Software Eng., 35(4), 515-533.

[12] Blanc, X., Mounier, I., Mougenot, A., & Mens, T. (2008). Detecting model inconsistency through

operation-based model construction. Proceedings of the 30th Int’l Conf. Software Eng (pp. 511-520).

[13] Habermann, A. N., & Notkin, D. (1986). Gandalf: Software development environments. IEEE Trans.

Software Eng., 12(12), 1117-1127.

[14] Robins, J., et al. (2010). ArgoUML. Retrieved, from http://argouml.tigris.org.

[15] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994). Inconsistency handling in

multi-perspective specifications. IEEE Trans. Software Eng., 20, 569-578.

[16] Grundy, J., Hosking, J., & Mugridge, R. (1998). Inconsistency management for multiple-view software

development environments. IEEE Trans. Software Eng., 24(11), 960-981.

[17] Nentwich, C., Capra, L., Emmerich, W., & Finkelstein, A. (2002). Xlinkit: A consistency checking and

smart link generation service. ACM Trans. Internet Technology, 2, 151-185.

[18] Reiss, S. (Sept. 2006). Incremental maintenance of software artifacts. IEEE Trans. Software Eng., 32(9),

682-697.

[19] Fickas, S., Feather, M., & Kramer, J. (1997). Proceedings of the ICSE-97 Workshop Living with

Inconsistency.

[20] Roussopoulos, N. (1991). An incremental access method for view-cache: Concept, algorithms, and cost

analysis. ACM Trans. Database Systems, 16, 535-563.

[21] Egyed, A. (2007). Fixing inconsistencies in UML design models. Proceedings of the 29th Int’l Conf.

Software Eng., 292-301.

[22] Egyed, A., Letier, E., & Finkelstein, A. (2008). Generating and evaluating choices for fixing

inconsistencies in UML design models. Proceedings of 23rd Int’l Conf. Automated Software Engineering.

[23] Nentwich, C., Emmerich, W., & Finkelstein, A. (2003). Consistency management with repair actions.

550 Volume 11, Number 6, June 2016

Journal of Software

Proceedings of the 25th Int’l Conf. Software Eng (pp. 455-464).

[24] Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., & Mei, H. (2009). Supporting automatic model

inconsistency fixing. Proceedings of the Seventh Joint Meeting of the European Software Eng. Conf. and

the ACM SIGSOFT Symp. Foundations of Software Engineering.

[25] Easterbrook, S., & Nuseibeh, B. (1995). Using viewpoints for inconsistency, management. IEE Software

Eng. J., 11, 31-43.

[26] Nuseibeh, B., & Russo, A. (1998). On the consequences of acting in the presence of inconsistency.

Proceedings of the Ninth Int’l Workshop Software Specification and Design (pp. 156-158).

[27] Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., & Chechik, M. (2007). Consistency checking of

conceptual models via model merging. Proceedings of the 15th IEEE Int’l Requirements Eng.

[28] Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., EHorowitz, R., Reifer, M. D., & Steece, B.

(2000). Software Cost Estimation with COCOMO II.

[29] Reder, A., & Egyed, A. (2010). Model/Analyzer: A tool for detecting, visualizing and fixing design errors

in UML. Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (pp.

12-17).

[30] Valéria, O. C., Rodrigo, S. M., & Leonardo, G. P. M. (2012). Detecting semantic equivalence in UML class

diagrams. ACM, (pp. 32-44).

[31] Alexander, E. (2007). UML/Analyzer: A tool for the instant consistency checking of UML models. ICSE,

12-17.

[32] Emad, E., Franco, F., & Davide, Q. (2015). HDL code generation from UML/MARTE sequence diagrams

for verification and synthesis.

[33] Manzoor, A., Nicolas, B., & Jean, M. B. (2015). Modeling and verification of functional and non-functional

requirements of ambient self-adaptive systems. Journal of Systems and Software, 107, 56-60.

[34] Nadja, M., Andrea, L., Beate, H., & Alfred, W. (2015). Combining Xtext and OSLC for integrated

model-based requirements engineering. Proceedings of the 41st Euromicro Conference on Software

Engineering and Advanced Applications (pp. 56-60).

[35] Han, F. L., Jan, O. B., Peter, H., & Heinz, S. (2015). Model-based engineering and analysis of space-aware

systems communicating via IEEE 802.11. Proceedings of the 2015 IEEE 39th Annual Computer

Software and Applications Conference (pp. 32-44).

[36] Ioanna, L., Huy, T., & Uwe, Z. (2015). Harmonizing architectural decisions with component view models

using reusable architectural knowledge transformations and constraints. Future Generation Computer

Systems (pp. 80–96).

[37] Frank, W., William, C., Javier, M. M., & Christoph, G. (2015). Modeling and simulation of cyber-physical

systems with sicyphos.

[38] Nuraini, A. (2014). Specification of vertical semantic consistency rules of UML class diagram

refinement using logical approach.

[39] Ghanem, S. (2014). A model-based framework for legal policy simulation and legal compliance

checking.

[40] Sun, W. L., Benoit, C., Robert, B. F., Arnaud, B., Benoit, B., & Indrakshi, R. (2015). Using slicing to improve

the performance of model invariant checking. Journal of Object Technology, 14(4).

[41] Robert, A. B., & Dimitris, K. (2015). Modelling mobile app requirements for semantic

traceability. Journal of Requirement Engineering.

[42] Harald, S., Georg, M., Eric, A., & Christian, K. (2015). Incorporation of model-based system and software

development environments. Proceedings of the IEEE 2015 41st Euromicro Conference on Software

Engineering and Advanced Applications (pp. 56-60).

551 Volume 11, Number 6, June 2016

Journal of Software

[43] Huy, T., Faiz, U. M., & Uwe, Z. (2015). A graph-based approach for containment checking of behavior

models of software systems. Proceedings of the 2015 IEEE 19th International Conference on Enterprise

Distributed Object Computing (pp. 84-93).

[44] Francesco, G., & Gabiella, G. (2015). A semantic driven approach for requirements consistency

verification. Int. J. High Performance Computing and Networking, 8(3), 56-60.

[45] Florian, L. (2015). Model-based mutation testing of synchronous and asynchronous real-time systems.

Proceedings of the 2015 IEEE 8th International Conference on Software Testing, Verification and

Validation (pp. 32-44).

[46] Karolina, Z., & Juergen, D. (2015). Language-specific model checking of UML-RT models. Journal of

Software and Systems Modeling (pp. 12-17).

[47] Swaminathan, J. (2015). Consistency of java run-time behavior with design-time specifications.

Proceedings of the 2015 Eighth International Conference on Contemporary Computing (pp. 213-313).

[48] Liu, X. H. (2013). Identification and check of inconsistencies between UML diagrams. Journal of

Software Engineering and Applications.

Ananda Rao Akepogu received the B.Tech degree in computer science and

engineering from University of Hyderabad, Andhra Pradesh, India and the M.Tech

degree in A.I & robotics from University of Hyderabad, Andhra Pradesh, India. He

received his PhD degree from Indian Institute of Technology Madras, Chennai, India.

He is a professor of Computer Science and Engineering Department and currently

working as a director academic and planning , of JNTUA College of Engineering,

Anantapur, Jawaharlal Nehru Technological University, Andhra Pradesh, India. Dr. Rao

has published more than 100 publications in various national and international journals/conferences. He

received the best research paper award for the paper titled: An approach to test case design for cost

effective software testing,” International Conference on Software Engineering, Hong Kong, 2009. He received

the best paper award: “Design and analysis of novel similarity measure for clustering and classification of

high dimensional text documents,” in Proc. 15th ACM-International Conference on Computer Systems and

Technologies, pp. 1-8, 2014, Ruse, Bulgaria, Europe. He also received best educationist award, Bharat Vidya

Shiromani Award, Rashtriya Vidya Gaurav Gold Medal Award, Best Computer Teacher Award and Best

Teacher Award from the Andhra Pradesh chief minister for the year 2014. His main research interest

includes software engineering and data mining

T. V. Rajinikanth received his M. Tech degree in computer science and engineering from

Osmania University Hyderabad, Andhra Pradesh, India and he received his PhD degree

from Osmania University Hyderabad, Andhra Pradesh, India. He is a professor of

Computer Science and Engineering Department, SNIST, Hyderabad, Andhra Pradesh,

India. He has published more than 50 publications in various national and international

journals/conferences. He has Organized and Program Chaired 2 International

Conferences, 2 grants received from UGC, AICTE. He is a editorial board member for

several International Journals. He received his best paper award: Design and analysis of novel similarity

measure for clustering and classification of high dimensional text documents,” in Proc. 15th

ACM-International Conference on Computer Systems and Technologies, pp. 1-8,2014, Ruse, Bulgaria, Europe.

His main research interest includes image processing, data mining, machine learning.

552 Volume 11, Number 6, June 2016

Journal of Software

G. Ramesh received his B. Tech degree in information technology from RGMCET,

Nandyal, Kurnool Dist. Andhra Pradesh, and He received his M. Tech degree in software

engineering from JNTUA College of Engineering, Ananthapuramu, Andhra Pradesh,

India, He is perusing his Ph. D at JNTUA, Anatapuramu, Andhra Pradesh, India. His main

research interest includes software engineering and big data. He has published a

several papers in various international journals/ conferences.

553 Volume 11, Number 6, June 2016

Journal of Software

