

Characterization of the Application of Service-Oriented
Design Principles in Practice: A Systematic Literature

Review

Michel S. Soares1*, Joyce M. S. França2

1 Federal University of Sergipe, São Cristóvão, Brazil.
2 Federal University of Uberlândia, Uberlândia, Brazil.

* Corresponding author. Tel.: 55 79 991272235; email: mics.soares@gmail.com
Manuscript submitted November 5, 2015; accepted February 20, 2016.
doi: 10.17706/jsw.11.4.403-417

Abstract: Service-Oriented Architecture (SOA) is a paradigm to implement loosely-coupled,

platform-independent distributed software systems using communicating services. Currently, SOA is

well-recognized as an established architectural paradigm for distributed systems. Specific design principles

for SOA have been recognized as fundamental for implementation in practice. In this article, a systematic

literature review is performed to characterize SOA design principles regarding criteria including main

domains of application, situations in which SOA is used, which basic design principles are used in practice,

how research is evaluated, what benefits of using SOA design principles have been reported, and how SOA

applications have been modeled. From 507 articles first selected, 67 were fully read, and 27 were

considered of relevance for this research. Interesting results were found from this review. Most studies

cited using at least one SOA design principle. Quality of SOA applications has been hardly mentioned. Few

studies dealing with the effective application of design principles and how they affect quality are mentioned.

SOA Design Principles are presented as key concepts in literature, but are not always shown in case studies

as being explicitly applied in practice.

Key words: Service-oriented architecture, systematic literature mapping, service design principles,

software quality.

1. Introduction

Several distributed solutions have been proposed for systems integration in past years, with varying

degree of success and limitations [1]. SOA (Service-Oriented Architecture) is an attractive technology

because it enables reuse of legacy systems as well as possibility of keep using a system instead of

developing a complete new version. SOA also facilitates integration of systems running on heterogeneous

environments. Legacy systems developed in past decades are known to be inflexible and difficult to

maintain for many reasons [2], including their complexity, which makes them difficult to understand, and

shortage of personnel who can understand their intricate logic. SOA has emerged with promise of allowing

legacy systems to expose their core functionality as services [3].

Currently, SOA is well established as an architectural paradigm for distributed systems [4]. Within SOA,

developers can combine and integrate internal legacy software assets with further components, possibly in

other networks, with purpose of creating new applications. All those legacy systems that used to operate in

403 Volume 11, Number 4, April 2016

Journal of Software

an isolated manner can be defined as services and integrated into new solutions.

Authors of article [5] described a number of research roadmaps on service-oriented computing research.

Among the research gaps, they have mentioned Design principles for engineering service applications as a

research challenge in the near future. Basic principles of software design are important for SOA

applications as well. Low coupling between services and high cohesion of services are principles to

guarantee that services are self-contained and are well-defined regarding boundaries and interfaces.

Therefore, composition of services is facilitated in this case. In this article, we want to investigate further on

what was proposed regarding this item of the roadmap. The systematic review proposed in this article

brings answers to research questions on what has been researched in academia and industry about web

services after the publication of roadmaps presented in [5].

Systematic Literature Reviews (SLR) in Software Engineering have gained importance in recent years [6]

[7]-[9] with the purpose of finding empirical evidence on many domains, research areas, and activities of a

software's life cycle, including Aspect-Oriented Programming [10], Requirements Engineering [11] and

Software Testing [12]. However, specifically for Service-Oriented Architecture, few publications were found.

In [13], the authors presented a SLR to identify the state of the art in research on testing in Service Oriented

Architectures with dynamic binding. In [14], the presented SLR has as main objective to identify process

models for developing SOA applications. Three main objectives of the SLR presented in paper [15] are to

assess methods for handling variability in quality attributes of service-based systems, to collect evidence

about current research that suggests implications for practice, and to identify open problems and areas for

improvement. To the best of our knowledge, there are no specific SLR publications on design principles for

SOA, their benefits when applied in practice, and their relation to application quality, as described in this

article.

2. Review on SOA Design Principles

According to the SWEBOK (Software Engineering Body of Knowledge), software design principles are key

notions, and are considered fundamental to many different software design approaches and concepts.

Several design principles for software have been proposed in the literature aiming to improve logic of

solution and/or deal with software complexity.

According to [16], a principle of design is defined as a widespread and accepted concept by industry

and/or academia. A principle can be compared to a good practice by the fact both propose a means of

achieving something based on experience or market acceptance. Erl presents eight specific principles for

SOA design: service contract, service loose coupling, service abstraction, service reusability, service

autonomy, service statelessnes, service discoverability, and service composability. These design principles

are considered fundamental for SOA applications and are widely referenced in literature. A brief description

of each principle is highlighted as follows.

 Service contract: services share standardized contracts. A service contract consists of a technical

interface or one or more service description documents.

 Service loose coupling: services are loosely coupled. Existence of a service contract, ideally, is

decoupled from implementation details and technology.

 Service abstraction: services are designed to limit information in service contract to what is really

necessary for each service to be functionally useful to consumers. Information beyond that is

published in a service contract and is considered private and should not be made available for creating

potential consumers of service.

404 Volume 11, Number 4, April 2016

Journal of Software

 Service reusability: services are reusable. Services encapsulate logic that is useful for more than one

service request. This logic is generic enough to allow many usage scenarios and can be used for

different types of service consumers.

 Service autonomy: services are autonomous. Services have a contract that expresses a well-defined

functional threshold which should not involve other services.

 Service statelessnes: services minimize dependence on states. Services are specifically designed to

minimize periods during which they exist in a condition of dependence on state information.

 Service discoverability: services are designed to be effectively discovered and interpreted so that

discovery, its purpose and capabilities are clearly understood. Service contracts should contain

adequate metadata that will be referenced correctly when viewing queries are issued.

 Service composability: services are designed to act as effective composition participants, regardless of

size and complexity of composition. Services can be composed to automate business processes of a

company.

Article [17] cites most of the design principles proposed by Erl, as well as additional principles, including

Service Encapsulation, Service Optimization and Service Relevance. According to the authors, Service

encapsulation means many services are consolidated for use under SOA. Often, such services were not

planned to be under SOA. Service Optimization means high-quality services are generally preferable to

low-quality ones. Finally, Service Relevance is a functionality presented at a granularity recognized by the

user as a meaningful service. Nevertheless, the article does not mention who proposed these new

principles.

Article [18] mentioned Service Component Modularity, Change Management and Integration as design

principles. Article [19] is another work presenting other types of design principles, such as Granularity.

Articles [20] and [21] also mentioned service granularity. Granularity is a design principle proposed by

Leger and Vogel in 2007 [22]. Article [23] mentioned the design principle Service Oriented Usability.

According to [24], usability is a nonfunctional software quality characteristic defined with

sub-characteristics. Major sub-characteristics are: understandability, learnability, and operability. Service

oriented usability is the grade given by a user of service oriented applications. Within this article, design

principles related to usability of services are defined, as for instance, if diagrams are developed for service,

if life cycle and lifetime of services are defined, and even if connections to access each service are defined.

Article [25] presented another design principle called Business Alignment, meaning the Service provides

related set of functionality. For example, a Service related to student registration should not perform

functionalities related to Professor.

3. Protocol

Steps for the systematic review include definition of research questions, definition of venues, definition of

the search string and testing the search string.

3.1. Research Questions

Research questions addressed in this article are described as follows. The reason for each research

question and what is expected from each one is briefly explained after each question.

RQ1: What are the purposes of using SOA?

SOA has been frequently associated with legacy systems [3]. With this question, we want to know most

common activities related to using SOA in practice. One can expect that services are used to integrate legacy

systems for developing new complex distributed applications. However, we want to know if there are

further purposes for using SOA besides integration of systems.

405 Volume 11, Number 4, April 2016

Journal of Software

RQ2: What are the most used design principles for SOA applications?

From the list of design principles for SOA, we want to know which ones are most used for developing SOA

applications, and also why these are most used. On the other hand, if a design principle is not used at all,

then it is of utmost importance to know why.

RQ3: What are the benefits of applying SOA design principles? Are these benefits measured?

With this question, we want to understand not only advantages of SOA design principles, but also

understand the expected final quality of SOA applications. This is most useful if one can find metrics to

support results, as has been common with other technologies, methods and processes in Software

Engineering [26] [27].

RQ4: How are SOA applications evaluated in practice?

Historically, evaluation is an issue in Software Engineering research [28] [29] [30]. We want to know if

this is true for SOA applications as well, i.e., if applications developed with SOA paradigm are evaluated in

practice, and what are the employed methods for evaluation.

RQ5: How are SOA applications modeled?

We want to know how modeling of SOA applications is performed, and which modeling languages and

specific diagrams are used for modeling SOA applications.

RQ6: For which domains are SOA applications developed?

The purpose with this question is to map which domains are most commonly using SOA, and if SOA has

been applied only to specific domains. Therefore, we want to know if SOA applications are restricted to

specific domains, or are widely applied in industry and academia.

3.2. Search Process

Search was performed in journals and conferences from 2008 to 2014. This choice of dates interval was

decided based on two reasons. First reason is because Design principles for engineering service applications

is a research challenge presented in 2008 [5]. Finding out if this gap has been adequately addressed by

researchers in the last seven years is an open question. Another reason is because publications to be

searched must be up to date, and more importantly, design principles for SOA were systematized by Erl in

his 2007's book [16] (although we have also looked at other design principles recently published).

Search strategies in SLR often involve automatic keyword searches in digital libraries. Venues searched

included ACM, ScienceDirect, Springer, and IEEE Xplore Digital Library. The defined search string was

((“service oriented architecture” or “service oriented computing”)) and (“design principles”). The total

number of retrieved articles was 507.

According to [31], software engineering digital libraries do not provide good support for identification of

relevant research and selection of primary studies. Therefore, a manual selection of articles in relevant

venues was also performed. We also searched in IEEE TSE (IEEE Transactions on Software Engineering)

and ACM TOSEM (ACM Transactions on Software Engineering and Methodology).

3.3. Inclusion and Exclusion Criteria

A criterion to effectively consider an article for evaluation in this SLR was divided into two steps. First

step consisted of analyzing all 507 articles in order to find those that would be the most important ones for

this SLR. In this first step, for each article, title, keywords, and abstract were read and catalogued. This is a

crucial part of the step which was taken carefully. Thus, the choice was to perform this part independently

by both authors. Each author classified each paper, in terms of selection for further steps, as “Definitely”,

“Possibly”, or “Not Selected”. For the final list of selected articles, the following rules were applied:

 R1 Article is selected if it has been classified with at least one “Definitely”.

 R2 Article is selected if it has been classified with two “Possibly”.

406 Volume 11, Number 4, April 2016

Journal of Software

 R3 Articles classified with two “Not Selected” were obviously not chosen.

 R4 If an article was classified as one “Possibly” and one “Not Selected”, then title, abstract and

keywords were read again, as well as the conclusion. Then, the article was classified again, and if

classification remained the same, it was discarded. Otherwise, one of the first three rules was applied.

These rules were applied by considering the selection process has some qualitative analysis, and it is

hard to make it completely deterministic.

After this first step of classification, 67 articles were selected. This number of selected articles can be

considered low (about 13%). However, according to article [6], which presents a Systematic Literature

Review of Systematic Literature Reviews in Software Engineering, the percentage of selected articles

normally varies from a minimum of 1,30% to a maximum of about 67%. Most works selected from 5% to

15% papers. Therefore, the final number of selected papers makes the research relevant.

Fig. 1. Paper selection process.

Another reason why the number of selected articles was low is because the word “service” has many

meanings, and is a common word even outside the service-oriented domain. However, even when the

domain is the right one, most articles were not meaningful for this systematic review because they consider

other aspects such as business or infrastructure.

For the second step, all 67 articles were fully read, with the purposes of comprehending main subject and

trying to find answers to defined research questions. Articles were considered relevant if they answered at

least one of the research questions. In summary, relevant articles considered at least one of the following

aspects:

 Article proposes a real application in practice, an experiment, a case study, or industrial cases.

 Article used some kind of modeling for SOA.

 Article mentioned design principles for SOA.

 Article mentioned keywords such as modularity, architecture, coupling, cohesion or granularity.

 Article evaluated influence of a design principle in the final quality of the product.

The overview of the selection process and exclusion is depicted in Fig. 1. Total number of relevant articles,

as described in Table 2, was 27 (about 5.5% of initial total number of articles).

407 Volume 11, Number 4, April 2016

Journal of Software

Table 1. Overview of Search Results and Selected Papers

Table 2. Relevant Papers

4. Characterization

Items for characterization of the research on application of Service-Oriented principles, and how SOA is

applied in practice, are domain of application, situations in which SOA is applied in practice, which

principles are used, how published researches are being validated, found benefits of SOA design principles,

and how SOA design has being modeled.

4.1. RQ1  What Are the Purposes of Using SOA?

In this section, we analyze how SOA has been used in practice. Table 3 shows that SOA has been

considered in activities related to refactoring legacy systems, integration of systems with the purpose of

producing a new system, and to create new methodologies to develop systems.

Currently, SOA is well-recognized as an established architectural paradigm for distributed systems [4].

Several systems can be connected to exchange information and implement business requirements. Services

in SOA are platform independent [32]. This feature is of great advantage because SOA enables integration in

heterogeneous environments. Thus, no matter what platform the system has been developed in, it is always

possible to propose integration using SOA [1].

Some articles in this review present real applications of using SOA to integrating systems. For example, in

[33], a real world application that uses SOA to create a service called AddressManagement is developed.

408 Volume 11, Number 4, April 2016

Journal of Software

This service currently retrieves addresses given an address identifier. Other articles present real word

applications of SOA through creation of new systems. In these cases, integration of systems originated new

systems. For instance, the proposal in [20] is a new software called “The AWARE” project, which overall

goal is to provide hydrologists with distributed and reusable tools to monitor and to predict water

availability.

Table 3. Use of SOA in Each Article

Another important contribution of SOA is to enable reuse of legacy systems. SOA has emerged promising

to allow legacy systems to expose their core functionality as services [3].

Some studies in this review presented applications in industry that used SOA to refactoring legacy

systems. In one case [18], services are created to update and insert business rules. According to the authors,

SOA represents an opportunity to renovate core banking systems in a progressive manner. SOA enables

banks to create an open, flexible technology framework, making integration of both internal and external

applications relatively simple and allowing for far easier and faster changes to business.

In other studies, SOA is presented with new methodologies. Those articles do not present real

applications of SOA, but they propose new methodologies based on SOA. Article [34] proposed a new

methodology to teach SOA using concepts of object-oriented programming. Article [23] proposes an

approach to measure service oriented usability.

4.2. RQ2  What Are the Most Used Design Principles for SOA Applications?

Some specific design principles for SOA have been used in the studies. One popular work in specific

design principles for SOA is the one proposed in [16]. Some other studies have cited other authors in this

area, including [22], [23], [17], [25].

409 Volume 11, Number 4, April 2016

Journal of Software

Table 4. Design Principles Used in Each Study

Table 4 presents design principles cited by each study. In this table, the following words were

abbreviated as follows. C means Service Contract, LC means Service Loose Coupling, A means Service

Abstraction, R means Service Reusability, At means Service Autonomy, S means Service Statelessness, D

means Service discoverability, Cm means Service Composability, G means Service Granularity, E means

Service Encapsulation, O means Service Optimization, Rl means Service Relevance, U means Service

Oriented Usability, BA means Business Alignment, SM means Service Component Modularity, CM means

Change Management, I means Integration and TU means Transformative User Experience.

All design principles mentioned in Table 4 were briefly explained in Section 2.

Six out of twenty-seven studies did not consider any design principle. Articles [35], [36], [37], [38], [39]

and [40] have not cited using design principles for development of their SOA applications. This does not

mean the principles were not considered: it just means they were not mentioned.

Twenty-one out of twenty-seven studies cited they used at least one SOA design principle. Service Loose

Coupling and Service Reusability were the most cited principles in studies (both were cited 11

times). In general, design principles described by Erl in [16] - Service Contract, Service Loose Coupling,

Service Abstraction, Service Reusability, Service Autonomy, Service Statelessness,

Service discoverability and Service Composability - are the most widely applied. Therefore, despite the

work of Erl can be considered for business professionals in industry, it is also relevant to academic studies.

Granularity is a design principle proposed in [22] and was considered by 3 studies ([19]-[21]). Service

Encapsulation, Service Optimization, Service Relevance, Service Oriented Usability, Business Alignment,

Service Component Modularity, Change Management, Integration and Transformative User Experience are

less addressed by studies. Each one of these design principle was cited just once.

Some articles (Articles [37], [41], [38], [40]) did not explicitly mention using design principles for

410 Volume 11, Number 4, April 2016

Journal of Software

implementation of the case study. Despite this, it is possible to infer that design principles were used during

development. For example, in [38] the principle of Service Contract was used because the WSDL standard

which specifies service interface is mentioned.

4.3. RQ3  What Are the Benefits of Applying SOA Design Principles? Are these
Benefits Measured?

In this section, we investigate if design principles for SOA provide benefits for final application quality

and how these benefits are measured. Few articles mentioned influence of design principles on final

software quality.

In [19], authors addressed the influence of design principles in quality of SOA applications. Considered

design principles were coupling and granularity. Metrics for measuring coupling and granularity of services

were proposed. As for conclusion, the paper explains that, in order to improve quality of SOA applications,

it is critical to obtain low values in coupling metrics and high values in granularity metrics.

Author of article [25] states Services that follow design principles are robust to changes and are largely

reusable in multiple scenarios but in similar domains. Based on this, the article proposes a formal, rigorous

approach to check adherence of design principles in the solution. Considered design principles were

Business Alignment, Coupling, Reusable, Autonomous and Stateless. This approach will help designers to

validate if Services follow principles at design time.

Table 5. Validation in Each Study

4.4. RQ4  How Are SOA Applications Evaluated in Practice?

Most studies were validated by using case studies. Only one article was evaluated with a controlled

Experiment (Table 5).

Two types of validation were performed in [42]. First one is a case study: a SOA software developed

specifically for this study, based on an existing service-oriented Academic Management System. Second

411 Volume 11, Number 4, April 2016

Journal of Software

step on this study is to conduct a controlled experiment to evaluate proposed coupling metrics.

Three studies - [43], [23], [34] - were proposed without any kind of validation.

Article [44] produced a quantitative evaluation by comparing the degree of coupling implied by different

Web services technologies: RESTful HTTP, RPC over HTTP, and WS-*.

4.5. RQ5 - How Are SOA Applications Modeled?

Some issues about modeling SOA are addressed in this review, such as how modeling is performed, and

which modeling languages and specific diagrams are used for modeling SOA applications. Table 6 shows

which modeling diagrams have been used to design SOA applications. The reason why not all 27 studies

appear in Table 6 is because only studies that explicitly applied modeling diagrams are presented in this

Table.

In Table 6, words had to be abbreviated due to lack of space. FC means Flowcharts, DF means Data Flow,

FSG means Functionality and Service Graph (a graph defined to identify services based on an aggregation or

disaggregation of functions or functionality). With respect to UML diagrams, Activ means Activity Diagram,

Class means Class Diagram, Collabo means Collaboration Diagram, Comp means Components Diagram and

Seq means Sequence Diagram.

Another study [36] represents services graphically, but the diagrams defined by authors did not follow

any standard. Due to lack of standardization, the understanding of the diagrams is difficult.

Nine studies have used some kind of diagram to model the developed system. Most studies, 18 out of 27,

did not mention any kind of modeling language.

Table 6. Modeling Diagrams Used in Each Study

SOA applications have been modeled with different diagrams. Each software designer represents the

system and services which must be developed in whatever way is most appropriate. However, this

represents a lack of standardization in this area. In addition, the fact most studies did not mention using

diagrams can mean the description of service functionalities is performed in natural language, which can

lead to problems related to misunderstandings, inconsistencies, and ambiguities [45], [46]. In this context,

it is possible to reflect on some questions for future research. Can SOA applications be fully modeled using

general purpose diagrams, such as UML diagrams? Does Natural language has been used due to lack of

adequate diagrams?

Surprisingly, SoaML [47], a modeling language specifically defined for designing SOA applications, was

not mentioned in this review. Reasons for this are not yet clear, and need to be investigated in future

research. One possibility is the novelty of the language, officially released on March 2012 (even tough beta

versions were published in 2009).

4.6. RQ6  For Which Domains Are SOA Applications Developed?

Articles found in this SLR present diversity in terms of fields of application of SOA. Case studies of each

412 Volume 11, Number 4, April 2016

Journal of Software

article are presented in Table 3. This listing has been performed to show which application domains are

used in the case studies. It is interesting to note that SOA has been applied in different domains, and the

application of SOA is comprehensive for various domains. In Table 3, one can analyze that SOA has been

applied from academic applications to military, healthcare and infrastructure systems.

Table 7. Domain Application of Each Article

5. Conclusion

According to the presented SLR, SOA has been applied in various areas, including financial systems,

manufacturing of goods, healthcare information systems, research-oriented applications in engineering,

and academic software applications. Therefore, it is safe to assume that SOA has been widely applied in

projects both in academia and industry.

Specific design principles for SOA were proposed in literature with the purpose of being crucial guides on

how to create applications based on services. However, few studies dealing with

413 Volume 11, Number 4, April 2016

Journal of Software

applying design principles and how they affect quality are mentioned. Design principles guide about how

services can be reused, but the high reusability of an application is to be defined by good

decisions taken by developers, which depends on knowledge and experience. This is true as well regarding

granularity.

Although SOA design principles are considered fundamental for SOA applications and are widely

referenced in literature, authors of six out of twenty-seven studies have not explicitly mentioned whether

they have used SOA design principles. Twenty-one out of twenty-seven studies cited using at least one SOA

design principle. Sixteen studies cited using two or more design principles. Design Principles are presented

as key concepts, but are not always shown in case studies as being explicitly used and how they are used in

practice. Design principles are proposed as key concepts to help developing good design solutions.

However, only two articles mentioned influence of design principles on final software quality. Quality of

SOA applications has been poorly mentioned as described in this article.

Even though a specific modeling language for SOA has been proposed, the SoaML modeling language was

not mentioned in this review. The reasons for this result are not clear, and can only be speculated.

One possibility refers to the novelty of the language. In addition, UML is well-known in academia and

software industry, which makes it a suitable choice for most authors.

As for limitations of this work, the number of selected articles can be considered a threat to validity.

Although most systematic literature reviews selected from 5% to 15% papers, and the one

presented in this article selected approximately 6%, the final number of selected papers, 27, could be

higher in future works. Another threat to validity is that results are based on information

written in published papers only, not on interviews with authors. Therefore, even when a design principle

is not mentioned in a study, it is possible the principle was used but the authors did not mention. Another

example is the choice of modeling language. Even in articles which did not mention the use of modeling

languages, one cannot infer the authors of respective articles did not use one.

Acknowledgements

We would like to thank the Brazilian research agency CNPq (grant 445500/2014-0).

References

[1] Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2010). Web Services: Concepts, Architectures and

Applications. Springer Publishing Company, Incorporated.

[2] Bennett, K. (1995). Legacy systems: Coping with success. IEEE Software, 12(1),19–23.

[3] Khadka, R., Reijnders, G., Saeidi, A., Jansen, S., & Hage, J. (2011). A method engineering based legacy to

SOA migration method. Proceedings of the 27th IEEE International Conference on Software Maintenance

(pp. 163–172).

[4] Goeb, A., & Lochmann, K. (2011). A software qquality model for SOA. Proceedings of the 8th International

Workshop on Software Quality (pp. 18–25).

[5] Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2008). Service-oriented computing: A

rresearch roadmap. International Journal of Cooperative Information System, 17(2), 223–255.

[6] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic

literature reviews in software engineering  A systematic literature review. Information and

Software Technology, 51(1), 7–15.

[7] Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in

software engineering. Information and Software Technology, 55(12), 2049–2075.

[8] Zhang, H., & Babar, M. A. (2013). Systematic reviews in software engineering: An empirical

414 Volume 11, Number 4, April 2016

Journal of Software

investigation. Information and Software Technology, 55(7), 1341–1354.

[9] Wohlin, C., & Prikladnicki, R. (2013). Systematic literature reviews in software engineering.

Information and Software Technology, 55(6), 919–920.

[10] Ali, M. S., Babar, M. A., Chen, L., & Stol, K.-J. (2010). A systematic review of comparative evidence of

aspect-oriented programming. Information and Software Technology, 52(9), 871–887.

[11] Pacheco, C., & Garcia, I. (2012). A systematic literature review of stakeholder identification methods in

requirements elicitation. Journal of Systems and Software, 85(9), 2171–2181.

[12] Engstrom, E., Runeson, P., & Skoglund, M. (2010). A systematic review on regression test selection

techniques. Information and Software Technology, 52(1), 14–30.

[13] Palacios, M., Garcia-Fanjul, J., & Tuya, J. (2011). Testing in service oriented architectures with dynamic

binding: A mapping study. Information and Software Technology, 53(3),171–189.

[14] Lane, S., & Richardson, I. (2011). Process models for service-based applications: A systematic literature

review. Information and Software Technology, 53(5), 424 – 439.

[15] Mahdavi-Hezavehi, S., Galster, M., & Avgeriou, P. (2013). Variability in quality attributes of

service-based software systems: A systematic literature review. Information and Software Technology,

55(2), 320 – 343.

[16] Erl, T. (2007). SOA principles of service design. The Prentice Hall Service-Oriented Computing Series

from Thomas Erl.

[17] Xing, Y., & Yao, E. (2010). Remote collaborative experiments based on service-oriented architecture.

Proceedings of the International Conference on Signal Processing Systems (ICSPS) (pp. 605–608).

[18] Liu, R., Wu, F., Patnaik, Y., & Kumaran, S. (2009). Business entities: An SOA approach to progressive

core banking renovation. Proceedings of the IEEE International Conference on Services Computing (pp.

466–473).

[19] Xiao-Jun, W. (2010). Metrics for evaluating coupling and service granularity in service oriented

architecture. Proceedings of the International Conference on Information Engineering and Computer

Science (pp. 1-4)

[20] Granell, C., D´ıaz, L., & Gould, M. (2010). Service-oriented applications for environmental models:

Reusable geospatial services. Environmental Modelling and Software, 25(2),182–198.

[21] Monsieur, G., Snoeck, M., & Lemahieu, W. (2012). Managing data dependencies in service compositions.

Journal of Systems and Software, 85(11), 2604–2628.

[22] Legner, C., & Vogel, T. (2007). Design principles for B2B services  An evaluation of two alternative

service designs. Proceedings of the IEEE International Conference on Services Computing (pp. 372–379).

[23] Liu, L. L.. (2009). Design principles and measurable service oriented usability. Proceedings of the IEEE

International Conference on Service-Oriented Computing and Applications (pp. 1–4).

[24] ISO/IEC. Software engineering  Product quality, ISO/IEC 9126-1. Technical Report, International

Organization for Standardization.

[25] Kannan, K., Bhamidipaty, A., & N. C. Narendra. (2011). Design time validation of service orientation

principles using design diagrams. Proceedings of the Annual (Services Research and Innovation Institure)

SRII Global Conference.

[26] Smite, D., Wohlin, C., Gorschek, T., & Feldt, R. (2010). Empirical evidence in global software engineering:

A systematic review. Empirical Software Engineering, 15(1), 91–118.

[27] Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software engineering: Trends,

techniques and applications. ACM Comput. Surv., 45(1).

[28] Glass, R. L., Vessey, I., & Ramesh, V. (2002). Research in software engineering: An analysis of the

literature. Information and Software Technology, 44(8), 491–506.

415 Volume 11, Number 4, April 2016

Journal of Software

[29] Shaw, M. (2002). What makes good research in software engineering. Int. Journal of Software Tools for

Technology Transfer.

[30] Glass, R. L., V. Ramesh, & Vessey, I. (2004). An analysis of research in computing disciplines.

Communications of the ACM, 47(6), 89–94.

[31] Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the

systematic literature review process within the software engineering domain. Journal of Systems and

Software, 80(4), 571–583.

[32] Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and directions.

Proceedings of the Fourth Int. Conf. on Web Information Systems Engineering.

[33] Jacobsen, H.-A., Wang, Y., & Hung, P. (2011). SATE-service BOUNDARY and abstraction threshold

estimation for efficient services design.

[34] Stubbings, G., & Polovina, S. (2013). Levering object-oriented knowledge for service-oriented

proficiency  Enhancing service capability in developers. Computing, 95, 817–835.

[35] Lanman, J. T., Darbin, R., Rivera, J., Clements, P. C., & Krueger, C. W. (2013). The challenges of applying

service orientation to the U.S. army’s live training software product line.

[36] Dirgahayu, T., Quartel, D., & Sinderen, M. V. (2008). Designing interaction behaviour in service-oriented

enterprise application integration. Proceedings of the 2008 ACM Symposium on Applied Computing.

[37] King, G.-H., Cai, Z.-Y., Lu, Y.-Y., Wu, J.-J., Shih, H.-P., & Chang, C.-R. (2010). A high performance multi-user

service system for financial analytics based on web service and GPU computation. Proceedings of the

International Symposium on Parallel and Distributed Processing with Applications.

[38] Vescoukis, V., & Dulamis, N. D. (2011). Disaster management evaluation and recommendation.

Proceedings of the Conference in Games and Virtual Worlds for Serious Applications (pp. 244–249).

[39] Kabir, M. A., Han, J., & Colman, A. W. (2014). Sociotelematics: Harnessing social interaction

relationships in developing automotive applications. Pervasive and Mobile Computing, 14, 129–146.

Baghdadi, Y., & Al-Bulushi, W. (2015). A guidance process to modernize legacy applications for SOA.

Journal Service Oriented Computing and Applications, 9(1), 41-58.

[40] Krammer, A., Heinrich, B., Henneberger, M., & Lautenbacher, F. (2011). Granularity of services  An

economic analysis. business and information systems engineering, 3(6), 345–358.

[41] Perepletchikov, M., & Ryan, C. (2011). A controlled experiment for evaluating the impact of coupling on

the maintainability of service-oriented software. IEEE Transactions on Software Engineering, 37(4),

449–465.

[42] Wu, B., Chi, C.-H., Chen, Z., Gu, M., & Sun, J. (2009). Workflow-based resource allocation to optimize

overall performance of composite services. Future Generation Computer Systems, 25(3), 199–212.

[43] Pautasso, C., & Wilde, E. (2009). Why is the web loosely coupled? A multi-faceted metric for service

design. Proceedings of the 18th International Conference on World Wide Web (pp. 911–920).

[44] Kamsties, E. (2005). Understanding ambiguity in requirements engineering. Engineering and Managing

Software Requirements.

[45] Soares, M. S., Vrancken, J., & Verbraeck, A. (2011). User requirements modeling and analysis of

software-intensive systems. Journal of Systems and Software, 84(2), 328– 339.

[46] OMG. Service oriented architecture modeling language (SoaML) specification. Retrieved 2012, from

http://www.omg.org/spec/SoaML/1.0/

[47] Cellary, W., & Strykowski, S. (2009). E-government based on cloud computing and service-oriented

architecture. Proceedings of the ACM International Conference Proceeding Series.

[48] García-Sánchez, P., Arenas, M. I. G., Mora, A. M., Castillo, P. A., Fernandes, C., Cuevas, P. D. L., Romero, G.,

González, J., & Merelo, J. J. Developing services in a service oriented architecture for evolutionary

416 Volume 11, Number 4, April 2016

Journal of Software

algorithms. Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary

Computation.

[49] Khoshkbarforoushha, A., Jamshidi, P., & Shams, F. (2010). A metric for composite service reusability

analysis. Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics.

[50] Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., & Picozzi, M. (2014).

User-driven visual composition of service-based interactive spaces. Journal of Visual Languages and

Computing, 25(4), 278–296.

[51] Cho, I., Kim, J., Kim, J., Kim, H. Y., & Kim, Y. (2010). Design and implementation of a standards-based

interoperable clinical decision support architecture in the context of the Korean EHR. International

Journal of Medical Informatics, 79(9), 611–622.

[52] Tian, Y., & Huang, M. (2012). Enhance discovery and retrieval of geospatial data using SOA and

semantic web technologies. Expert Systems with Applications, 39(16),12522–12535.

[53] Yamany, H. F. E., Capretz, M. A. M., & Allison, D. S. (2010). Intelligent security and access control

framework for service-oriented architecture. Information and Software Technology, 52(2), 220–236.

[54] Bianchi, L., Paganelli, F., Pettenati, M. C., Turchi, S., Ciofi, L., Iadanza, E., & Giuli, D. (2014). Design of a

restful web information system for drug prescription and administration. IEEE J. Biomedical and Health

Informatics, 18(3), 885–895.

[55] (2004). Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society. Angela Burgess,

EUA.

Joyce M. S. França received her BS in computer science in 2011 and her MS in computer

science in 2013, both from Federal University of Uberlândia in Brazil, and is currently a

PhD student with focus on software engineering from Federal University of Uberlândia, in

Brazil.

She has been working as a software developer, researcher and then an assistant

professor since 2013. Currently she is an assistant professor at Federal Institute of Education, Science and

Technology of Norte de Minas Gerais, Brazil. Her research interests include software architecture,

service-oriented architectures and software quality. MSc. França has worked in some research projects and

has published 7 articles in scientific conferences.

Michel S. Soares received his BS in computer science in 2000 from Federal University of

São Carlos and his MS in computer science in 2004 from Federal University of Uberlândia,

both in Brazil, and a PhD with focus on software engineering in 2010 from Delft University

of Technology, in The Netherlands.

He has been working as a software developer, researcher and then an assistant

professor since 2000. Currently he is an assistant professor at Federal University of Sergipe,

Brazil. His research interests include software architecture, requirements engineering, service-oriented

architectures and software quality.

Dr. Soares has published over 70 articles in scientific journals, conferences and books.

417 Volume 11, Number 4, April 2016

Journal of Software

