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Abstract: An Dynamically Quantum Particle Swarm Optimization Algorithm with Adaptive Mutation 

(AMDQPSO) is given, the algorithm can better adapt to the problem of the complex nonlinear optimization 

search. The concept of the evolution speed factor and aggregation degree factor are introduced to this 

algorithm, and the inertia weight was constructed as a function of the evolution speed factor and 

aggregation degree factor, so that the algorithm has the dynamic adaptability in each iteration. This paper 

introduces the concept of the rate of cluster focus distance changing, and gives a new perturbations method. 

When the algorithm is found to sink into the local optimization, the new adaptive mutation operator and 

mutation probability are implemented at the best position of the global optimization. so that the proposed 

algorithm can easily jump out of the local optimization. The test experiments with six well-known 

benchmark functions show that the AMDQPSO algorithm improves the convergence speed and accuracy, 

strengthens the capability of local research and restrains the prematurity.  

 
Key words: Quantum particle swarm optimization (QPSO), adaptive mutation, the rate of cluster focus 
distance changing, inertia weight. 

 
 

1. Introduction 

The PSO (Particle Swarm Optimization, PSO) algorithm proposed by Dr. Eberhart and Dr. Kennedy in 1995 is 

swarm intelligence algorithm for global optimization [1]. The PSO algorithm can be easily implemented and 

has a faster converges speed, and has few parameters to adjust. However, we found that the PSO algorithm 

has poor local search ability and has a shortcoming of premature convergence in the study of PSO. To 

overcome those shortcomings, a lot of research work has been done by many scholars, and a variety of 

improved PSO algorithms have been proposed, which have improved the convergence precision and 

convergence speed in varying degrees. In 2004，inspired by quantum mechanics and trajectory analysis of 

PSO, a new algorithm called Quantum-behaved Particle Swarm Optimization (QPSO) is proposed [2]. The 

QPSO also can be easily implemented and has a faster converges speed, and has better global search ability. 

Since its emergence, QPSO has attracted the attention of several researchers all over the word. Compared 

with PSO algorithm, although QPSO algorithm has better global search ability, but QPSO also has the same 

problem of premature convergence with other intelligent evolutionary algorithm. To solve existing 

problems of the QPSO algorithm, the literature [3]-[6] have proposed different improvement strategies, 

which have improved the convergence accuracy and speed of the QPSO algorithm and the handling capacity 

of the algorithm premature convergence speed in varying degrees. 
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This paper presents a dynamic quantum particle swarm optimization algorithm with adaptive mutation 

(AMDQPSO). In this algorithm, we have introduced the concept of evolution speed factor and aggregation 

degree factor, and the inertia weight β was constructed as a function of the evolution speed factor and 

aggregation degree factor. so that the algorithm has the dynamic adaptability in each iteration. The QPSO 

algorithm easy to fall into the local optima, when the algorithm evolute to the last time. So the concept of 

the population fitness variance and the rate of change focusing distance are introduced in this paper, and we 

give a new disturbance method. In order to help the algorithm jumped out the local optima, when the 

algorithm trapped in the local optima, the global optima was changed with adaptive mutation. The test 

experiments with six well-known benchmark functions show that the AMDQPSO algorithm can improve the 

convergence speed and accuracy, strengthen the capability of local research and restrain the prematurity. 

2. QPSO Algorithm 

In 2004, Sun Jun proposed the QPSO algorithm [2]. In the quantum physics, the state of a particle with 

momentum and energy can be depicted by its wave-function ( , )x t . In the quantum space, the probability 

distribution function of the particle’s position can be calculated through the probability density function. By 

employing the Monte Carlo method, the particle’s position is updated according to the following equation:  
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where ( )id t  and ( )id t  are a random number uniformly distributed in [0,1] , 

1 2( ) ( ( ), ( ),..., ( ))i i i iDp t p t p t p t is a local attractor,
1 2( ) ( ( ), ( ),..., ( ))i i i iDP t P t P t P t is the personal best position , 

1 2( ) ( ( ), ( ), ..., ( ))g DP t P t P t P t  is the global best position . 

In the update equation of the particle states, the control method of the Li(t) weakening to zero is vital to 

the convergence rate and performance of the algorithm. 

The literature [7] proposed a more intelligent method, which is called “mainstream thought”, to evaluate 

the parameter Li(t). The mainstream thought point or mean best position (mbest) is defined as the center of 

pbest position the swarm. That is 
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Therefore, the parameter Li(t) is given by   

   

                                   (4) 

         
where parameter is called contraction-expansion coefficient, which controls the convergence speed of the 

QPSO algorithm. The most commonly used control strategy of β  is to initially setting it to 1.0 and reducing 

it linearly to 0.5. 

    ( ) 2 ( ) ( )id d idL t mbest t X t  
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3. QPSO Algorithm 

3.1. Evolution Speed Factor and Aggregation Degree Factor [7] 

In QPSO algorithm, compression - expansion factor β is the only parameter that needs to be determined, 

and plays an important role in the convergence process of the algorithm. Generally, the parameter decreases 

from 1.0 to 0.5 [8]. In the literature [7] , the concept of the evolution speed factor and aggregation degree 

factor are given .  
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The formula (5) expressing of the evolution speed factor 
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The formula (6) expressing of the aggregation degree factor. Where  F(Pg((t)) and  F(Pg(t-1)) represent 

the fitness of the global best position, current generation and previous generation. M(t) is the average 

fitness value of all the particles of the current best position ,it is calculated as            

   
1

1
( ) ( ( ))

N

i

M t F P t
N 

                                  (7) 

By their definition, we can know the parameter Sd and Jd all belong to the interval (0, 1]. The evolution 

speed factor Sd reflects the evolution speed of the particle , the smaller of the value, the faster of the speed 

of evolution, when the value of Sd always equal to 1, which shows that the algorithm stopped or found the 

optimal solution; The parameter Jd not only reflects the current degree of aggregation of all the particles, 

also reflects the diversity of the particles. The value of the Jd is more bigger ,the swarm has a greater degree 

of the aggregation and smaller diversity . 

In this paper, to making the algorithm to better adapt to the complex, high-dimensional, nonlinear 

optimization problem, we introduced the inertia weight adjustment strategy of the reference [10]. 

0 1 2Sd Jd                                      (8) 

where β 0  is the initial value of the parameter β, usually β=1, β1 and β2 are inertia weight, its value are  

β1=0.5 and β2=0.2.  

3.2. Algorithm Premature Judgments and Treatment Methods 

With the population continues to evolve, the differences between the every individuals has become more 

and more smaller, resulting in the algorithm prematurity. The paper [9] proposed a judgment method to 

determine whether the population premature. 

Definition 1 if 2 is the fitness variance of the swarm, then 2  is defined as:  

  2 2
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where N is the size of the population, fi is the fitness value of the i-th individual, favg is the average fitness 

value of all the population individuals. f  is a normalized scale factor, which is to limit the size of 2 , the 

value of f :  
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When 2 < C (C is a given value and tends to 0)，we can assume that the algorithm goes into a late search 

stage, prone to premature convergence. 

Definition 2 The rate of cluster focus distance changing: if k is the rate of cluster focus distance changing, 

Dmax and Davg  represent the maximum and average focus distance , then k is defined as: 
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During QPSO algorithm operation, when the population fitness variance tends to zero and the rate of 

cluster focus distance changing becomes more and more smaller, the particles fall into the local 

convergence. In order to effectively improve the algorithm, we give a new mutation operator. Based on the 

above analysis we propose a new adaptive mutation probabilityPm 
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where 0  is a given value, usually it tends to 0. Generate random numbers r∈[0,1], if r < Pm, given a  

random perturbations for the global optimum value with a new way of disturbance. 

(1 0.03* )g gP P rand                                   (15) 

3.3. AMDQPSO Algorithm Steps 

The steps of AMDQPSO algorithm are as follows: 

Step  1.  set parameter, Sd=0, Jd=0, β 1=0.5 andβ 2=0.2. 

Step 2. Initialize the position vector of particles, the optimal value of the individual and the global 

optimum value, for each particles, evaluate its fitness value. 

Step 3. whether the algorithm reaches the maximum number of iterations, if the algorithm iterations is 

reached going to step 8, otherwise going to step 4. 

Step 4. Evaluate the value of the Sd and Jd based on the (5) and (6). Evaluate the value of the β  

according (8). 

Step 5. Update the location of all the particles, evaluate its fitness value, update personal best value and 

the global optimum. 

Step 6. Evaluate the value of the 2 , k and Pm according (9), evaluate the value of the k according (11), and 

evaluate the value of the Pm according (14). 

Step 7. Generate random numbers r∈[0,1], if r < Pm，then perform mutation operation according (15), 

otherwise loop to step 3. 

Step 8. Output the global optimum value and the fitness value. 
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4. Experiments and Results 

4.1. Test Functions 

The six well-known benchmark functions [10] are used as test functions, which are as follows:  

●
1 ( )f x : Branin 
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where
15 10x   and 20 15x  , the global optimum is at * ( 3.142,12.275), (3.142, 2.275), (9.425, 2.425)x    

where *

1 ( ) 0.398f x  . 

● 2 ( )f x  : Schaffer’s F6 Function 

 

2 2 2

1 2

2 2 2 2

1 2

sin 0.5
( ) 0.5

[1 0.001( )]

x x
f x

x x

 
 

 

                           (17) 

 

where 1ix  . The global optimum is at * (0, 0)x  , where *

2 ( ) 0f x  . 

●  
3 ( )f x ：Sphere Model 
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where 1ix  . The global optimum is at * (0, 0)x  , where *

3 ( ) 0f x  . 

● 4 ( )f x ：Generalized Rastrigin’s Function 
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Where 5.12ix  .The global optimum is at * (0, 0)x  , where *

4 ( ) 0f x  . 

●  
5 ( )f x ：Ackley’s Function 
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where 32ix  .The global optimum is at * (0, 0)x  , where *

5 ( ) 0f x  . 

●
6 ( )f x ：Generalized Griewank Function 
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where 600ix  .The global optimum is at * (0, 0)x  , where *

6 ( ) 0f x  . 

4.2. The Design of Parameters 

For the experiments, we used the following parameters: number of particles N=0, 
0 1  , 1 0.5  ,

2 0.2  , 63 10C   , the inertia weights 1   decreases from 1.0 to 0.5 with evolution, the dimension of  

test functions include 2 and 30. 

4.3. Discussion of Results 

 

Table 1. Comparison Results by Experiment for f1(x) and f2(x) 

Function Solution AMDQPSO PSOCF PSORW PSOTC PSONW 

f1(x) 

Best 0.3979 0.3979 0.3979 0.3979 0.3979 

Mean 0.3979 0.3979 0.3979 0.3979 0.3987 

St. Dev 1.4156e-5 4.4693e-5 3.6656e-5 8.1641e-4 4.8221e-4 

f2(x) 

Best 0          3.1500e -7 2.2637e-7      9.6383e-7     2.0763e -7 

Mean 0 0.0053 0.0042 0.0086 0.0044 

St. Dev 0 0.0048 0.0048 0.0026 0.0047 

 

Table 2. Comparison Results by Experiment for f1(x) and f2(x) 

Function Solution AMDQPS

O 

PSOCR PSOCW NPSO1 NPSO2 

f1(x) 

Best 0.3979 0.3979 0.3979 0.3979 0.3979 

Mean 0.3979 0.3984 0.3979 0.3987 0.3979 

St. Dev 1.4156e-5 4.8221e-4 4.5790e-5 4.2979e-4 4.2236e-4 

f2(x) 

Best 0 2.3110e-4 2.8296e-8 1.6866e-7 2.2946e-8 

Mean 0 0.0082 0.0013 7.9980e-4 2.0430e-4 

St. Dev 0 0.0028 0.0033 0.0027 0.0014 

 

Table 3. Comparison results by Experiment for f3(x), f4(x), f5(x) and f6(x) 

Function Solution AMDQPSO PSOCF PSORW PSOTC PSONW 

f3(x) 

Best 4.4872e-57 6.6004e-6 7.3585e-6 7.8768e+3 6.9023 

Mean 1.2425e-50 9.4159e-6 9.4340e-6 1.0508e+4 712.7469 

St. Dev 8.1529e-50 5.8005e-7 5.8001e-7 1.0727e+3 897.2576 

f4(x) 

Best 10.9446 31.8387 25.8689 208.3870 33.6796 

Mean 21.6800 78.1592 66.3920 248.7455 67.0598 

St. Dev 6.8672 24.6041 18.4993 13.9451 18.5200 

f5(x) 

Best 4.409e-15 9.8306e-6 9.6763e-6 14.0627 0.0231 

Mean 0.1734 2.7624 2.4637 15.6602 5.1710 

St. Dev 0.4759 1.1450 1.2705 0.4188 2.2567 

f6(x) 

Best 0 6.8538e-6 8.4503e-6 68.9545 0.3653 

Mean 0.0554 0.0893 0.0429 97.0943 8.4631 

St. Dev 0.4759 0.1775 0.0771 9.4887 7.1134 

 

We performed 100 independent runs for each test problem, the results obtained the “Best”, “Mean” and 

“St.Dev”. We compared our approach against eight approaches [10]. All the experiments were executed on a 

personal computer with the Core i7 dual-core processor, 4GB internal memory and Windows 7 operating 

system. 

As described in Table 1 and Table 2, f1(x) is a simple 2-dimension test function, all improved approach 
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was able to find the global optimum; f2(x) is a complicated 2- dimension test function, In the nearby of the 

global optimum value, there are a lot of local minimum, so the algorithm is difficult to find the global 

optimum. 

 

Table 4. Comparison Results by Experiment for f3(x), f4(x), f5(x) and f6(x) 

Function Solution AMDQPSO PSOCR PSOCW NPSO1 NPSO2 

f3(x) 

Best            4.4872e-57 4.4455e+3 5.5001e-5 7.4440e-6 7.6941e-6 

Mean       1.2425e-50 6.0764e+3 10.1458 9.3597e-6 9.4682e-6 

St.Dev          8.1529e-50 704.9375 14.9335 6.0096e-7 4.9516e-6 

f4(x) 

Best            10.9446 179.5670 17.1001 21.8891 21.8891 

Mean       21.6800 233.3484 65.1484 55.7506 53.2171 

St.Dev          6.8672 17.4131 26.3254 22.8229 20.5359 

f5(x) 

Best            4.409e-15 11.7022 0.0010 8.4937e-6 8.6209e-6 

Mean       0.1734 13.6514 1.6272 0.4596 0.4867 

St.Dev          0.4759 0.4999 1.2498 1.5204 1.5098 

f6(x) 

Best            0 32.9148 9.6178e-5 8.1673e-6 6.9701e-6 

Mean       0.0554 56.6829 0.7671 0.0128 0.0112 

St.Dev          0.1119 6.2559 0.5324 0.0144 0.0159 

 

However, our approach can find the global optimum, other approaches failed to achieve the optimal 

solution, it shows that our approach has a good performance in the local search. 

Results in the Table 3 and Table 4 shows that, f3(x) is a simple 30-dimension test function. Those 

algorithm of the PSOCF, PSORW, NPSO1and NPSO2 only found the solutions very close to the global 

optimum in the test function f3(x), but our approach AMDQPSO has a very high accuracy. For those function 

f4(x), f5(x) and f6(x), those test function are high-dimensional and complex, so it has a great difficult to 

achieve the global optimum. In the test function f4(x) and f5(x), our approach has a better result than other 

approach. For the function f6(x), even though the mean fitness value running 100 times is worse than the 

algorithm NPSO2, but our approach has found the global optimum. According to Table I and Table II, we 

found the “St.Dev” result for all the test functions were very good. This shows that our algorithm has better 

robustness. 

5. Conclusion 

The purpose of this paper was to present a novel algorithm to solve the complex optimization 

problem.We proposed a novel algorithm called Dynamically Quantum Particle Swarm Optimization 

Algorithm with Adaptive Mutation. For the inertia weight, we make it dynamic adjustment. Furthermore, 

the premature judgment mechanism was added. Additionally, we introduced the concept of the rate of 

cluster focus distance changing. Finally, the new adaptive mutation operator and mutation probability are 

implemented at the best position of the global optimization. So that the proposed algorithm can easily jump 

out of the local optimization. Although our algorithm showed better performance, but it still needs further 

study. 
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