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Abstract: MDA is an approach to software development based on the design and transformation of models. 

In the MDA approach, models are the core artifacts throughout the software development lifecycle, and thus 

a key role is played by model transformations. Nevertheless, most MDA initiatives are dedicated, i.e., the 

platform features are implicitly employed in the transformation rules. As the aspects associated with the 

platform are not separated from the transformation rules, for each selected platform there must be a 

corresponding model transformation. This makes the model transformation development easier, although 

the model transformation becomes limited to a specific platform, once the platform features are strongly 

associated with the transformation rules. An open challenge consists of how to create transformation rules 

independently of the platform features. This paper presents a model transformation, called MT-AMP, 

particularly applied to embedded software development based on PI-MT Method. In addition, it allows the 

use of the model transformation to different RTOS-based platforms by means of Platform Models explicitly 

defined. As a result, the MT-AMP provides independence between the model transformation rules and the 

platform features.  
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1. Introduction 

Model Driven Architecture (MDA), a standard from the Object Management Group (OMG), is a software 

development approach based on model designing with high level of abstraction and platform independent 

[OMG]. MDA aims to make the application specification independent from the underlying platform or 

technology [1]. In order to do so, MDA provides means to separate platform aspects from implementation 

aspects by supporting the automatic transformation, from the modeling stage to the implementation stage.  

Software development based on the MDA approach begins with the design of a Platform Independent 

Model (PIM). The conceptual design of software functionalities is captured in the form of a PIM, a model 

represented at a high abstraction level. The PIM model is transformed into a Platform Specific Model (PSM), 

based on a Platform Model (PM) [1]. A PM defines a set of concepts that represents a concrete platform [2]. 

Thus, PIMs should survive the advancements in technology and software architectures. In its turn, a PSM is 

also a model of software containing details of the target platform such as a specific operating system, a 

software architecture or an execution platform. 

The transformation is an essential issue in the MDA approach, focusing on automated model 

transformations. In the MDA context, software development consists of a series of successive 

transformations of a model into another. Nevertheless, most MDA initiatives are dedicated, i.e., the platform 
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features are implicitly employed in the transformation rules [3]. As the aspects bound to the platform are 

not separated from the transformation rules, for each selected platform there must be a corresponding 

Model Transformation (MT) [4]. On the one hand, this makes the transformation development easier. On the 

other hand, model transformation becomes limited to a specific platform, once the platform features are 

strongly associated with the transformation rules. An open challenge consists of how to create platform 

independent model transformations. 

This paper presents a model transformation, called MT-AMP, which provides independence between the 

transformation rules and the platform features as well as supporting the design and evolution of embedded 

software, particularly with respect to the use of RTOS. The MT-AMP is the refinement of a PIM by adding 

details regarding a particular target platform. Specific platform features are thus treated in an independent 

way by means of a Platform Model (PM) used as input in the transformation. The use of an explicitly defined 

PM enables the creation of transformations that are reusable in new platforms.The proposed 

transformation focuses on the static modeling and supports UML class diagrams.  

The MT-AMP is based on the PIM-MT Method [11] and expressed in the Atlas Transformation Language 

(ATL), one of the most popular and widely used model transformation languages [5], [6]. In addition, it 

integrates some of the benefits from ATL superimposition to provide an efficient approach for the 

implementation of refinement in transformations with multiple input models [7].  

This paper is organized as follows: Section 2 describe the RTOS-based platforms, Section 3 details the 

PI-MT Method, Section 4 presents the proposed model transformation, Section 5 shows an illustrative 

example demonstrating the application of this transformation, Section 6 brings the discussions and future 

works. Finally, conclusions are presented in Section 7. 

2. RTOS-Based Model Platform 

A platform is any set of hardware or software mechanisms that enable the execution of software 

applications. A Platform Model (PM) defines a set of concepts that represent a concrete platform [2]. 

Specifically, embedded software based on RTOS benefits from the use of an explicitly defined PM, mainly 

due to the wide variety of existing platforms. Such platforms, in their turn, are formed by a specific RTOS 

and an associated processor. The PM must specify the set of hardware and software mechanisms that 

enable the execution of embedded software applications. The software refers to the RTOS and its respective 

APIs, while the hardware refers to the platforms based on specific processors. Depending on the platform 

employed by the application, a specific PM must be selected and used as execution input model of the 

models transformation. 

The input platform model of the model transformations implemented in the proposed transformation is 

defined through the application of elements from a platform profile, called swxRTOS [10].  This profile 

takes the X Real-Time Kernel RTOS as part of the target platform [8]. This RTOS is structured in modules, 

including: microkernel, hardware abstraction layer (X-HAL), shell, event tracing, TCP/IP stack, and USB 

stack. The X Real-Time Kernel can be employed in different hardware architectures, identified according to 

the processor used: ARM7TDMI, ARM9, Cortex-M4, among others. This way, several platforms can derive 

from this RTOS. The swxRTOS profile provides a practical way for promoting independence in MDA 

transformations by means of UML stereotypes that correspond to the X RTOS services. A UML stereotype 

defines how an existing metaclass may be extended and enables the use of platform in place of the ones 

used for the extended metaclass [9]. 

2.1. swxRTOS Profile 

The swxRTOS profile is part of the PROAPES profile and defines a set of stereotypes in order to describe 

the services provided by a platform that makes use of the RTOS and their respective hardware platforms of 
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embedded systems, based on specific processors [10]. The swxRTOS is used to describe PMs in structural 

models (i.e., class diagram). This profile, briefly illustrated in Fig. 1, is composed of the following 

subprofiles:  

• swxCoreRTOS: represents the basic concepts of high level designing, required to support the use of 

concurrent designing and iterations.   

• swxTimeRTOS: represents the basic time-related concepts. 

• swxShellRTOS: represents the depuration supporting concepts, which allow the user to track the 

processor resource allocation and use by its application.   

• ddxRTOS: consists in providing modeling artifacts for the description of device drivers employed in an 

embedded system and that make use of the RTOS X Real-Time Kernel. 

Fig. 1. swxRTOS profile. 

The swxRTOS subprofiles import the data types defined in the BasicTypesX model library as well as the 

process types defined in the TypesProcessorX model library. The swxCoreRTOS subprofile regards the main 

concepts of an operating system, and thus it is one of the most used. This subprofile defines five stereotypes, 

as follows: 

 swxCore: represents the basic concepts for context description of software concurrent execution for 

the RTOS X Real-Time Kernel. 

 swxSemaphore: represents the basic concepts for the creation and management of a semaphore for the 

RTOS X Real-Time Kernel. In this way, tasks can be mutually synchronized by implementing the RTOS X 

Real-Time Kernel critical regions. 

 swxPipe: represents a pipe between two tasks by storing the references to the data objects.   

 swxISR_Pipe: represents a pipe between an anonymous ISR and a thread that stores the references to 

the data objects. 

The platform profile is used in the design of Platform Models, proving means to obtain platform 

independence for a group of embedded computational platforms. Additionally, a linking profile defines 

stereotypes to be employed in PIM model elements so as to specify which of these elements make use of the 

implementation platform services. The linking profile thus enables the annotation of the application model 

elements that will employ the platform services, as defined in the PM. The transformation proposed in this 

paper uses the linking profile AMP, as presented next. 

2.2. AMP Profile 

The Application Modeling Profile (AMP) linking profile is used by the MT-AMP transformation to 
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annotate PIM models. This profile defines a set of stereotypes that can be employed to annotate operations 

of a PIM model, represented by a class diagram. Each stereotype represents a set of RTOS X Real-Time 

Kernel services. Therefore, the stereotypes defined in the AMP allow the design of a PIM with a sufficient 

platform independence level, permitting its transformation into specific platform models according to the 

selected RTOS and the respective associated hardware. 

Fig. 2 shows part of the AMP profile and presents the ServiceRTOS stereotype, defined through the 

extension of the Operation metaclass. This stereotype defines the following properties (tagged-values):  

• rtService - stores the name of the stereotype to be searched in the platform model; 

• opTarget - stores the name of the RTOS operations used by the PIM elements. 

 

 

Fig. 2. AMP profile. 

 

The rtSwOperation and rtDDOperation stereotypes generalize the ServiceRTOS stereotype and are used to 

annotate the PIM elements in order to identify the RTOS services abstractly employed by the application. In this 

way, an RTOS service can be a software operation service for an RTOS defined through the rtSwOperation 

stereotype, or a device driver operation service defined through the rtDDOperation stereotype. 

 

The PI-MT (Platform Independent - Model Transformations) is a method that aims at the development of 

platform independent model transformations in the context of RTOS-based software development. This 

method benefits from enabling the adaptation of the model transformation process to different platforms 

by means of Platform Models explicitly defined. As a result, the PI-MT method provides independence 

between the model transformation rules and the platform features [11].  

The main steps to be performed for the use of the PI-MT method, illustrated in Fig. 3, are the following: 1) 

Transformation Model Creation; 2) PIM Definition; 3) PM Selection; and 4) Transformation Execution [11]. 

The PI-MT method makes use of Platform Models explicitly defined and aims to systemize the process of 

creating adaptable Model Transformations. 

 

The MT-AMP model transformation, deriving from the PI-MT method, aims to provide platform 

independence in PIM-to-PSM model transformations, focusing on the development of RTOS embedded 

software. The MT-AMP focuses on the static modeling of the software system and supports the employment 

of UML class diagrams. 
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The proposed transformation framework is presented in Fig. 4. In this figure, the colored boxes represent 

the transformation flow by means of the input models (PM and PIM), output model (PSM), and 

transformation models (PIM2PSM.atl and UML2Copy.atl). The other boxes represent the metamodels used 

in the definition of such models (UML metamodel, ATL metamodel, MOF, swxRTOS profile, and AMP profile). 

 

 
Fig. 3. Main steps of the PI-MT method. 

 

 
Fig. 4. MT-AMP transformation. 

 

The MT-AMP is driven by the transformation module called PIM2PSM.atl, which contains the specific 

rules that perform the changes in the source model elements related to the RTOS services. The PIM2PSM.atl 

module superimposes the UML2Copy.atl module through the module superimposition technique [7]. The 

UML2Copy.atl module, proposed and made public by Wagelaar et al. (2010), copies all elements of an input 

UML model to an output model [7]. For each UML element of the input model, the UML2Copy.atl module 

copies such element to the output model.  

4.1. MT-AMP Definition 

The MT-AMP transformation was implemented in ATL, a hybrid transformation language dedicated to 

model transformation, i.e., containing declarative and imperative constructs [12]. Hybrid approaches allow 
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developing more complex applications [13]. The use of ATL language is appropriate to the development of 

this model transformation, once it provides mechanisms to produce a target model from a set of source 

models. Also, it can express model transformations in the MDA context based on explicit metamodel 

specifications [12]. In this way, rules are able to clearly state how concepts from source metamodels are 

mapped to concepts from the target ones. 

The target platform of this transformation is based on the RTOS X Real-Time Kernel employed in ARM 

processors [8]. The MT-AMP must replace RTOS generic services defined in the PIM by platform-specific 

operations (indicated in the PM). The transformation model must also define a PIM-PM interface, seeking to 

identify how the PIM elements must be related to the PM elements to generate a PSM model with features 

of a specific platform.  

In order to establish such link, the transformation makes use of rtSwOperation and rtDDOperation 

stereotypes defined in the AMP profile. These stereotypes must be applied to the PIM model elements so as 

to identify the elements that abstractly employ the RTOS software and device driver services. 

The MT rules must search the PM for elements annotated in the PIM and, then, create them in the PSM. 

Fig. 5 presents these steps, performed by the MT-AMP transformation model and succinctly described in 

natural language. 

 

o FOR EACH existing operation in the PIM model: 
o IF the operation is annotated with the <<rtSwOperation>> sterotype THEN   
o Recover the value of the rtService property.  
o Search the PM for the class that contains the stereotype whose name matches the value of the rtService 

property related to an RTOS software service.   
o Create a new class in the PSM model, with the same name of the PM found. 
o Recover the operations defined in the opTarget property and create a respective operation in the PSM for 

each existing operation.  
o Create a link between the new PSM class and the corresponding PIM class. 

o ELSE 
o IF the operation is annotated with the <<rtDDOperation>> stereotype THEN 
o Recover the value of the rtService property.  
o Search the PM for the class containing the stereotype whose name matches the value of the rtService 

property related with an RTOS device driver service.  
o Create a new class in the PSM model with the same name of the PM class found. 
o Recover the operations defined in the opTarget property and create a corresponding operation in the PSM 

for each existing operation.   
o Create a link between the new PSM class and the corresponding PIM class. 

o ELSE  
o Make a copy of such operation. 
 

Fig. 5. MT-AMP steps. 

 

4.2. MT-AMP Implementation 

The proposed transformation is a refinement expressed by endogenous transformations. In refinement, 

most elements must simply be copied, while others must be changed. As a result, the transformation 

preserves most parts of the source model [14]. Besides, endogenous transformations are transformations 

between models expressed in the same metamodel.  

The proposed solution uses UML-based metamodeling and refers to the UML metamodels. PIM, PM, and 

PSM thus conform to the UML metamodel. Currently, the UML metamodel is widely used and it is supported 

by several development tools [15]. Also, this work integrates some of the benefits from ATL 

superimposition to provide an efficient approach for the implementation of model refinement [15].  
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Superimposition allows the composition of two or more transformation modules in one single 

transformation execution by extending and overriding rules in transformation modules. Also, the 

superimposition enables the separation of the copying common rules from the refinement specific rules 

[16]. Consequently, reusability is improved by the ability to extend and adapt generic transformation 

modules. In this work, the transformation rules of the UML2Copy.atl module, proposed by Wagelaar et al. 

[7], are reused and overridden by the PIM2PSM.atl transformation module, when necessary.  

The UML2Copy.atl module provides the copy of a UML model and can be used as base for implementing 

refinement transformations. This module is based on the UML metamodel, and includes a transformation 

rule for every metaclass from which it must copy the instances. By separating the general copying 

functionality (defined in the UML2Copy.atl module) from the specific details of the transformation (defined 

in the PIM2PSM.atl module), it is possible to improve maintainability, since it becomes easier to find and 

solve specific problems. 

4.3. PIM2PSM.atl Module 

The PIM2PSM.atl module has multiple input models, namely: the PIM source model and the Platform 

Model. The output model refers to the PSM and is created as a result of the transformation. ATL supports 

the definition of custom operations by means of helpers. A helper aims to perform navigation over the 

source models. Once the model transformation presented in this paper is founded on a UML profile and 

considering the main impacts that stereotypes and property values have on this implementation, it is 

important: 1) to check if a certain stereotype is applied to a model element; and 2) to query the value of a 

certain property value definition in a specific stereotype. As a consequence, the PIM2PSM.atl module 

contains several helpers (described in Table 1) that determine whether a specified stereotype is applied to 

an element, and retrieve the value of a property from a specified stereotype.  
 

Table 1. PIM2PSM.atl Helpers 

Helper Name Helper Description 
getTagVal Returns a property value (tagged value) associated with a specific stereotype. 
getPMClass Searches the PM for a class containing a given stereotype applied. Gets the name of the 

stereotype from the swxRTOS subprofile to be found in a PM class as parameter.  
isStereotype Checks if a source-model Operation has an applied stereotype. 
isrtSwOperation Checks if a source-model Operation has an rtSwOperation stereotype applied. 

isrtDDOperation Checks if a source-model Operation has an rtDDOperation stereotype applied. 

In the scope of the ATL language, the generation of target model elements is achieved through the 

specification of transformation rules. The PIM2PSM.atl rules search in the PIM for annotated operations 

that contain specific stereotypes, create new classes and their corresponding RTOS operations in the PSM, 

and create the respective association between the existing PIM classes and the new classes generated in the 

PSM. Table 2 shows the rules defined in the PIM2PSM.atl module. 

Table 2. PIM2PSM.atl Rules 

Rule Name Rule Description 
Operation Copies the non-annotated operations of the PIM model to the PSM model. 
OperationStereotype Searches the source-model operations annotated with a stereotype. 
OperationRtSw Searches the source-model operations annotated with a <<rtSwOperation>> 

stereotype and based on the stereotype property information performs specific tasks 
to insert platform features regarding RTOS software services in the PSM. 

OperationRtDD Searches the source-model operations annotated with a <<rtDDOperationt >> 
stereotype and based on the stereotype property information performs specific tasks 
to insert platform features regarding RTOS device driver services in the PSM. 

Model Copies the PIM model properties to the PSM model.  
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5. An Illustrative Example 

In order to illustrate the proposed transformation, a simplified example is shown in Fig. 6. The example 

performs the transformation based on the PM RTOS X - eAt55, which considers the X Real-Time Kernel 

version 1.0 in ARM7 processors. The diagrams outlined in this example represent a system responsible for 

showing messages on the display. A class diagram presents a PIM model fragment regarding the messaging 

control module of an application. In this example, the PIM model contains two classes: “CtrlMsg” and 

“CDisplay”. The “CtrlMsg” class controls the flow of messages sent or received by RTOS processes under 

execution.  

In the example, only the “sendMsg” operation is defined in the “CtrlMsg” class, so it is responsible for 

sending messages to RTOS processes under execution. In its turn, the “CDisplay” class controls a monitor 

connected to the ARM7 processor and, in this brief example, defines only the “clear” operation, responsible 

for removing messages from the display, and the “displayMsg” operation, responsible for showing messages 

on the display. 

The swxRTOS profile, briefly illustrated beside the PIM model, is used to represent an abstraction layer 

(platform profile) for the RTOS X Real-Time Kernel version 1.0.The link between the PIM and the platform is 

obtained through interaction points, which correspond to the rtSwOperation and rtDDOperation 

stereotypes. 

 

 
Fig. 6. Example of the PIM into PSM transformation. 

 

In this way, the transformation searches the PIM model for elements annotated by those stereotypes and, 

based on information defined by properties (tagged values), searches the PM for the elements to be 

inserted in corresponding target model (PSM). A new class is thus created in the PSM to provide the 

services indicated in the PIM. The “sendMsg” operation of the “CtrlMsg” class is linked to the “sendPutMsg” 
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operation of the swxRTOS profile by tagged values associated with the rtSwOperation stereotype.  

The rtSwOperation stereotype defines the following properties: rtService and opTarget. The rtService 

indicates the stereotype to be searched in the PM model, in this case the swxCore stereotype.  In its turn, 

the opTarget stores the RTOS services indicated in the PIM according to elements of the swxRTOS profile, in 

this case the “sendPutMsg” operation. Likewise, the “displayMsg” operation annotated with the 

rtDDOperation stereotype is defined in the PIM “CDisplay” class and associated with the “wriStrLCD” RTOS 

service through the opTarget property. 

The transformation, succinctly illustrated in Fig. 6, is based on the PM - eAt55: RTOS X Real-Time Kernel 

(version 1.0) coupled with an ARM7 processor. In this way, the transformation instance shows the 

generation of a PSM model based on this reference platform. The swxCore stereotype (defined in the 

swxRTOS profile) is applied to the “X” class of the PM as well as the ddxLCD stereotype is applied to the PM 

“CDDX_LCD” class. By means of property values (tagged values), the transformation rules substitute the 

operations defined in the swxRTOS profile for the corresponding operations defined in the PM.    

6. Discussion and Related Work  

The high demand for new embedded products with additional functionalities is a trend, thus requiring 

the increment of more complex software components. As a result, the increasing complexity of embedded 

software systems emphasizes the need for development approaches that provide better productivity and 

quality, e.g. the MDA [17].  

In the same way, embedded software is commonly subject to rigid restrictions, once it is developed for a 

specific platform, i.e., a particular combination of basic hardware and software. That impairs the reuse of 

the developed software in different platforms, given the required customization according to the adopted 

platform. Such factors represent a big challenge for the embedded software development community [18]. 

According to Espinoza et al. (2009), the use of model driven approaches under the concept of embedded 

software promotes the software reuse and evolution [19]. 

Given the evolution of embedded systems, with additional functions and higher complexity, the use of 

embedded operating systems has constantly increased. Such systems are called Real-Time Operating 

Systems – RTOS and provide a set of standardized services for the management of the embedded hardware 

resources. An RTOS differs from a common-use operating system mainly because it supports the execution 

of embedded systems [20]. The support provided by MDA for the development of embedded software, 

manly RTOS-based embedded software, is still limited. 

Model transformation plays a key role in MDA. Most researches on model transformation, in the MDA 

context, are dedicated and define the platform aspects together with transformation rules [21]-[24]. In 

these cases, an explicitly defined Platform Model (PM) is not used and the transformation becomes restrict 

to a specific platform [3], [13]. Some initiatives adopt the concept of explicitly defined PM,[2], [4], [25], [26]. 

Such initiatives aim at the design and use of Platform Models, although they do not provide specific artifacts 

for modeling RTOS-based embedded systems services. 

In model transformations that do not make use of an explicitly defined PM, there must be a model 

transformation configured for each target platform employed. The MT-AMP’s highlight regards the creation 

enabling of generic transformations, applicable to new platforms, through the use of explicitly defined PMs 

and the definition of transformation rules regardless the adopted platform. 

A framework for model transformations based on the Modeling and Analysis of Real-Time and Embedded 

Systems (MARTE) profile is proposed by Chehade et al. (2011) and focuses on the conception of generic 

model transformations oriented to applications based on Real-Time Operating Systems [27]. 

The MARTE profile defines elements that enable the modeling of real-time embedded systems in different 
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RTOSs [28]. It is important to point out that RTOS-based embedded platforms have APIs (Application 

Program Interfaces) and implementation patterns that can vary considerably, requiring a very wide range 

to be covered by the MARTE profile. Therefore, the software system modeling for a specific RTOS using 

MARTE requires the adaptation of this profile to the modeling conventions of the selected operating system 

as well as deep knowledge of the developer on the elements defined in this profile. In this case, the main 

problems found regard the MARTE complexity and generality of use, which can be adapted to different 

RTOS and comprises several elements in its specification. 

The MT-PROAPES transformation also provides independence between the transformation rules and the 

platform features by means of the PROAPES profile [10]. However, the MT-PROAPES is based on dyxRTOS 

sub-profile and supports only behavioral models (sequence and activity diagrams). In its turn, the MT-AMP 

transformation is based on swxRTOS profile and supports class diagrams. 

In future works the MT-AMP may be adapted to other RTOS based platforms. Also, the proposed 

transformation was implemented in ATL language. Thus, the use of another model transformation language 

may be subject of study in future works.  

7. Conclusion 

The main contribution of this paper lies in proposing a model transformation that provides independence 

at different levels of embedded software development, from the modeling to the transformation stage. In 

this way, the same model transformation rules can be used in different platforms.  

For that, a PM containing specific features of a particular platform must be selected, once such platforms 

consist of an RTOS linked to embedded hardware platforms and based on specific processors. Explicitly 

defined PMs can bring significant contributions to model transformation development in terms of 

independence enhancing between models and platforms, thereby enabling the reuse and increasing 

productivity, particularly in RTOS-based embedded software development. 

Therefore, this research paper’s highlight consists in providing “platform independence” both at the 

application modeling and at the model transformation level. As a matter of fact, dedicated model 

transformations merely transfer the “platform independence” issue from the application development to 

the model transformation development. In embedded systems, this issue is even more critical, once such 

systems cab be implemented through the use of several platforms, each of them with specific characteristics 

and restrictions.  
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