
A Novel Technique for Generation and Optimization of 
Test Cases Using Use Case, Sequence, Activity Diagram and 

Genetic Algorithm 

 

Namita Khurana1, Rajender Singh Chhillar1*, Usha Chhillar2 

1 Department of Computer Science and Applications, M.D.U, Rohtak, Haryana, India. 
2 Department f Computer Science All India Jat P. G. College, Rohtak, Haryana, India. 
 
* Corresponding author. Tel. :+91- 9416277507; email:Chhillar02@gmail.com 
Manuscript submitted July 10, 2015; accepted December 10, 2015. 
doi: 10.17706/jsw.11.3.242-250 
 

 
Abstract: This paper presents a novel approach for generation of test cases from UML design diagrams. In 

this new generation scheme, we have considered use case diagram, activity diagram and sequence diagram. 

Our approach consists of converting the use case diagram into use case diagram graph (UDG), activity dia-

gram into activity diagram graph (ADG) and sequence diagram into sequence diagram graph (SDG). After 

that three graphs UDG, ADG and SDG are integrated to form System Graph (SYTG). The System Graph is then 

traversed to generate test cases also optimized using Genetic Algorithm. The generated test cases are suita-

ble to detect maximum number of faults like use case dependency, interaction, scenario, pre-post condition 

faults and error handling. 

 

Key words: Activity diagram, genetic algorithm, online examination system, sequence diagram, system test-

ing graph, use case diagram. 

 

1.  Introduction 

Software Testing plays a very important part in life cycle of software development. It is a trade-off be-

tween budget, time and quality. With the increase in size and complexity of software products, time and 

effort required also increases. More than 50% of the software development cost is spent on Software testing. 

Our approach for testing the object oriented system is generation of test cases from UML Models. Alt-

hough it is a challenging task for analysis of UML (Unified Modeling Language) models [1] since the infor-

mation is distributed across several model views yet they reduce the complexity of the problem with in-

crease in size and complexity. 

Use Case Diagrams [1] are basically for high level requirement analysis of a system. So during require-

ment phase of a system, functionalities are captured in use cases. Actors in the use case diagram are human 

users, some internal applications or may be some external applications. Fig. 1(a) shows the use case dia-

gram for online examination system. On the other hand a sequence diagram explains how processes operate 

with one another and in which order. Fig. 2(a) shows the sequence diagram for Online Examination System. 

An Activity Diagram shows the operational work flow of any system. An activity ultimately results in some 

action which is shown in Fig. 3(a).          

In this paper, we have proposed the test case generation from three types of UML diagrams as Use case 

diagram, Sequence diagram and Activity diagram. First of all use case diagram is converted in use case dia-

242 Volume 11, Number 3, March 2016

Journal of Software



gram graph, sequence diagram is converted in sequence diagram graph and activity diagram is converted in 

activity diagram graph. Then two algorithms are proposed for system testing graph which is formed by in-

tegrating the three graphs. After that genetic algorithm is being applied to optimize the test cases generated 

from system testing graph. The resulting test suite aims to cover maximum number of faults by covering all 

the possibilities.  

The paper is organized as follows. In Section 2, we discuss the existing work done on test case generation 

techniques using different UML diagrams. In Section 3, we discuss the use case diagram, sequence diagram 

and activity diagram for online examination system. Also, we have converted the diagrams into graphs and 

the three are integrated into the system testing Graph (SYTG) and finally the test cases are generated and 

being optimized using Genetic Algorithm. Section 4 contains the Case study for test case generated and op-

timized for On Line Examination System. Section 5 contains the Conclusion and Future work. Last Section 6 

contains the used references. 

2. Related Work 

Test cases are generated using three different techniques illustrated in different works like specification 

based, code based and model based. In this section, we survey various research papers related to test case 

generation techniques using UML diagrams. 

Abinash Tripathy and Anirban Mitra [3] presented an approach to generate test cases by using together 

UML Activity diagram and Sequence Diagram [3]. In this approach first the activity diagram is being con-

verted into activity graph and the sequence diagram is being converted into sequence graph and then the 

two graphs are integrated to form system Graph. Then the System Graph is being traversed to form the test 

cases by using Depth First Search Method (DFS) on an example of ATM card validation.  

M. Sharma, Rajiv mall [4] has proposed an algorithm, to generate test case from a combination of use case 

diagram and sequence diagram. First of all, they convert the use case diagram into use case graph and then 

sequence diagram into sequence graph. Integrating the two graphs a System Graph is being generated. How 

the two graphs are integrated is not clearly mentioned. Also the test cases generated are not optimized. 

Namita Khurana and R.S.Chhillar presented an approach [5] to Generate and optimize the test cases gen-

erated by Sequence Diagram and State Chart Diagram. First of all Sequence Diagram is being converted into  

Sequence Graph and the State Chart Diagram is being converted into state chart graph and then the two are 

integrated to form the System Graph. Then Genetic Algorithm is being applied on the resulting System 

Graph to generate and optimize the test cases. 

Ajay Kumar Jena, Santosh Kumar and Durga Prasad Mohapatra [6] presented an approach to generate test 

cases from Activity diagram. First of all an activity table is generated which is converted into Activity flow 

graph. After that Genetic Algorithm is applied to generate and optimize the test cases. 

3. Proposed Approach  

We present our work to generate optimized test cases from UML models. UML Model is standard by ob-

ject management group. It is a modeling language in software engineering. It is being designed to specify, 

construct and document to software artifacts with support to special aspects of software such as dynamics 

and structural aspects [1]. 

3.1 Conversion of UCD to UCDG 

Use case diagram also known as behavior diagrams used to describe a set of use cases (actions) that some 

system can perform in collaboration with one or more external users (actors).  

 

243 Volume 11, Number 3, March 2016

Journal of Software



 
    Fig. 1 (a).  Use case diagram for online examination system.  Fig. 1. (b). UCDG for online examination system. 

    

 
Fig. 2. (a). Sequence diagram  for online examination system. 

244 Volume 11, Number 3, March 2016

Journal of Software



3.2 Conversion of  SD to SDG 

This section presents the conversion of Sequence Diagram into Sequence Diagram Graph. 

 

 
            Fig. 2. (b) SDG for online examination system. 

3.3  Conversion of AD into ADG 

This section describes the conversion of Activity Diagram into Activity Diagram Graph. 

 
Fig. 3. (a) Activity diagram for online examination system.         

245 Volume 11, Number 3, March 2016

Journal of Software



 
Fig. 3.(b) ADG for online examination system. 

3.4 Integration of ADG,SDG and UDG into SYTG 

After conversion of diagrams into Graphs, our next step is to integrate the three graphs into a single graph 

which is called System Graph (SYTG). 

   Definition of System Testing Graph (SYTG) 
The system testing Graph is defined as SYTG={S,N,T,F} ,where S is initial node of the system graph.                    

N={NUDG   U  NSG  U  NAG}is the set of all nodes of three graphs.  T={TSG  U  TUDG   U  TAG} is set of transi-

tions of the three graphs. F is the final node of SYTG.  

 

 

Fig. 4.  SYTG graph formed after the integration of the three graphs.  

Next we present the algorithm to generate the system testing graph from UCDG, SDG, and ADG. 

Algorithm 1: ASDG (Activity-Sequence Diagram Graph) 

246 Volume 11, Number 3, March 2016

Journal of Software



Input: Activity Diagram Graph (ADG) and Sequence Diagram Graph (SDG) 

Output: Activity–Sequence Diagram Graph (ASDG) 

1) P = Identify all the paths of (ADG). 

2) For each path pi ϵ P do 

3) Aj = Ai //Start with the Ai the starting node 

4) For each activity Aj of path pi do 

5) If ci ϵ Aj //current node has multiple conditions 

6) β = Ai-1  SG //Edge from the previous node to the sequence Graph 

7) ϒ = SG (Last) Ai+1 //connect the last node of SG to the next node of AG. Edge from unsuccessful 

final node of SG to node Ai+1 where the value of V=0 else edge from successful final node of SG to 

node Ai+1 where the value of V=1 

8) End If 

9) If ci ϵ Ai  

10) δ=AiAi+1//connect the present node to the next node of the same Activity Graph. 

11) End If  

12) End For 

13) End For 

14) End 

Algorithm 2: System Graph 
Input: ASDG, UCDG 
Output: System Graph (SYTG) 

1) P=Identify all the paths of (UCDG) 

2) For each path pi ϵ P do 

3) α = ui       Ai (ASDG) //Connects the successful node of Use case diagram (UCDG) to Ai (ASDG)(Initial 

Node) otherwise the Unsuccessful final node of UCDG to unsuccessful node of the system Graph. Now 

start with ui as the starting Node. 

4) End For 

5) End 

3.5 Generation and Optimization of Test Cases 

After creating SYTG Graph, our next step is to generate the test cases. After generating the test cases we 

need to optimize those test cases. For Optimization we need to apply an Evolutionary Algorithm, so we ap-

ply here Genetic Algorithm for Optimization of test cases. 

Algorithm 3: Test Set Generation-Optimization 
Input: - System Graph (SYTG) 

Output: - Optimized test cases 

1) Identify all the paths P= {p1, p2, p3, p4, p5…..} from start node to a final node in SYTG. 

2) Assign weights to the individual nodes. The actual weight of the child node is weight of the parent node 

plus one . If a child has multiple parents then weight of that node is the sum of the weights of the par-

ent’s node. Also weight is allocated to paths from left to right. 

3) Calculate the (x) cost of each path as the cost of that path is sum of the weights of that path. 

4) Apply Genetic Algorithm to the graph (SYTG).  

5) Calculate the fitness value  

For each path cost(x) has been calculated. 

Apply the fitness function as F(x) = x  x 

247 Volume 11, Number 3, March 2016

Journal of Software



Now calculate the probability for individual as P (i) =F(x)/ ƩF(x)  

6) Generate the random numbers to calculate the new population. 

7) Apply Crossover operation on the pair of chromosomes. Mate first two individuals together by applying 

single point crossover from 3rd bit from right.  

8) Apply Mutation function by mutating every fifth bit only in case when random number generated is less 

than 0.4. 

9) Whole process is repeated till the fitness value minimizes or maximum number of generations is 

reached or all the paths have been covered. 

10) Best test path is generated or we can say that the test cases are optimized. 

11) End.      

7. Case Study 

This section shows the case study done on the example Online Examination System. The possible paths 

generated from the above graph in (Fig. 4) are:     

                               

Table 1. Fitness of Initial Population 

Path No. Chromosome X XX Probability Cumulative Probability Associated bin 

1 010110011 179 32041 0.115538 0.11553 0-0.2 

2 011100001 225 50625 0.182550 0.29808 0.2-0.4 

3 101000101 325 105625 0.380877 0.67897 0.4-0.7 

4 

5 

6 

010100001 

010100010 

011000000 

161 

162 

192 

25921 

26244 

36864 

0.093469 

0.094634 

0.132929 

0.77243 

0.86707 

1 

0.7-0.8 

0.8-0.9 

0.9-1 

 Sum  277320    

 

Table 2. Selection of New Generation 

Random No. Falls into bin Selection Crossover Mutation 

0.67645 3 101000101 101000101 101000101 
0.65438 3 101000101 101000101 101000101 
0.73425 4 010100001 010100010 010100010 
0.81764 
0.14521 
0.75671 

5 
1 
4 

010100010 
010110011 
010100001 

010100001 
010110001 
010100011 

010100001 
010100001 
010100011 

 

Table 3. Fitness of Next Population 

Path No. Chromosome X XX Probability Cumulative Probability Associated bin 

1 101000101 325 105625 0.334356 0.334356 0-0.2 
2 101000101 325 105625 0.334356 0.668712 0.2-0.5 
3 010100010 162 26244 0.083075 0.751787 0.5-0.6 
4 
5 
6 

010100001 
010100001 
010100011 

161 
161 
163 

25921 
25921 
26569 

0.082053 
0.082053 
0.084104 

0.833840 
0.915893 
1 

0.6-0.8 
0.8-0.9 
0.9-1 

 Sum  315905    

 

Table 4. Selection of New Generation 

Random No. Falls into bin Selection Crossover Mutation 

0.17854 1 010110011 010110001 010100001 
0.74135 4 010100001 010100011 010100011 
0.61875 3 101000101 101000101 101000101 
0.60914 
0.82129 
0.61225 

3 
5 
3 

101000101 
010100010 
010110011 

101000101 
010100011 
010110010 

101000101 
010100011 
010110010 

 

248 Volume 11, Number 3, March 2016

Journal of Software



Table 5. Fitness of Next Population 

Path No. Chromosome X XX Probability Cumulative Probability Associated bin 

1 010100001 161 25921 0.080677 0.080677 0-0.2 

2 010100011 162 26244 0.081669 0.162346 0.2-0.4 

3 101000101 325 105625 0.328698 0.491044 0.4-0.6 

4 

5 

6 

101000101 

010100011 

010110010 

325 

162 

178 

105625 

26244 

31684 

0.328698 

0.081669 

0.098598 

0.819742 

0.901411 

1 

0.6-0.8 

0.8-0.9 

0.9-1 

 Sum  321343    

 

From these tables it may be observed that, the fitness value has been changed in two generations. The dif-

ference between the values of the chromosomes between two generations also started decreasing. We no-

ticed that the new population again contains the test case 3. By further calculations; we observed that the 

test case 3 is the optimized test case. 

8. Conclusion and Future Work 

UML diagrams are converted into graphs and then are integrated to generate the test cases. Genetic algo-

rithm is also applied to optimize the test cases. The proposed model covers maximum number of faults. So, 

time and cost for test case generation is also minimized. The approach is applied on Online Examination 

System. In our future aspects the proposed approach can be automated. Also the same approach can be ap-

plied on different UML models. 

References 

[1] Free Uml Diagram Tool. Retrieved, from http://www.uml-diagrams.org/use-case-diagrams.html 

[2] Mall, R. (2009). Fundamentals of Software Engineering (3rd edition.). Prentice Hall. 

[3] Tripathy, A. M. (2013). Test case generation using activity diagram and sequence diagram. Proceedings 

of ICAdC (pp. 121– 129). 

[4] Monalisa, S., Debashish, K., & Rajib, M. (2007). Automatic test case generation from UML sequence  

digrams. Proceedings of IEEE Conference on  Software Maintenance.  

[5] Namita, K., & Chhillar, R. S. (2015). Test case generation and optimization using UML models and geneic 

algorithm. 

[6] Ajay, K. J., Santosh, K. S., & Durga, P. M. (2014). A novel approach for test case generation from UML 

ativity diagram. Proceedings of the 2014 International Conference on Issues and Challenges in Intelligent 

Computing Techniques. 

[7] Ranjita, K. S., Vikas, P., & Prafulla, K. B. (2013). Generation of test cases using activity diagram. 

Interntional Journal of Computer Science and Informatics, 3(2). 

[8] Namita, K., & Chhillar, R. S.  (2014). Literature review of test case generation technique for object 

orented system. 

[9] Swagatika, D. (2012). Test case generation for concurrent object oriented systems using combinational 

UML models. Arup Acharya and Durga Prasad Mohapatra. 

 

Namita Khurana has done her graduation from the Kurukshetra University, Kurukshetra, 

Haryana. She received her M.Sc(I.T)  from Guru Jambeshwar University Hisar, Haryana. She 

received her M.Phil  from C.D.L.U, Sirsa, Haryana. Now she is working as a Ph.D research 

scholar in Maharishi Dayanand University, Rohtak, Haryana, India. Her research interests 

include software engineering, soft computing and artificial intelligence. She has a total of 

more than six years of teaching experience.  

249 Volume 11, Number 3, March 2016

Journal of Software

http://googleads.g.doubleclick.net/aclk?sa=l&ai=CpxPsB7GMVu_aDcKZ9gWt7aPIDPHC4OwGma2j9fgB3bGghGMQASC6pNgSYJ3J4IHoBaABy-uG_QPIAQGoAwHIA-MEqgSOAU_Q9Syyht2byKc_Ql58_dO0LryHJNKlUuXEtcIFUA-FXhm4kW24Zl_qXGA8eM-b3Nd-9y7dEGTiX5XERIcaVWfb6EgGvo3sxgZhq9p2Xb81uZwWaHafuha_hu7n3q6_cdP8XDpIw-Ht-NOxDqz1R_Xg8WRighx3EOJkJLqh02MyHJdKFwKAiQft91xVbdeAB52U-QKoB6a-G9gHAQ&num=1&sig=AOD64_0ygT9o4v1BmtmptN1AMa1br299_A&client=ca-pub-5002105358288202&nm=34&mb=2&bg=0&adurl=https://www.lucidchart.com/pages/landing/display/uml_diagram_tool%3Futm_source%3Dgoogle%26utm_medium%3Dcpc%26utm_campaign%3Dumldiagrams_display_placements_only_text


Rajender Singh Chhillar is a professor at the Department of Computer Science at 

Maharshi Dayanand University, Rohtak, Haryana, India. During his service in Maharshi 

Dayanand University, Rohtak. He served as the director at the University Institute of 

Engineering and Technology; a director at the Computer Centre; He served as the head at 

the Department of Computer Science, Chairman, a board of studies; a member, a executive 

and a academic councils. His research interests include software engineering, software 

testing, software metrics, web metrics, bio metrics, data warehouse and data mining, computer networking, 

and software design. He has published more than 91 journal and 65 conference papers over the last several 

years and has also written two books in the fields of Software Engineering and Information Technology. He 

has visited many countries including France, Hong Kong, China, U.K, Dubai and Nepal. He also won the best 

paper award in International Conference ICCEE- 2013 held in Paris, France during October 12-13, 2013.  

     Professor Chhillar is a director of board, CMAI asia association, New Delhi and a senior member of IACSIT, 

Singapore and a member of Computer Society of India. Professor Chhillar has been serving as a editorial 

board member, guest editor and reviewer of multiple international journals, and serving as a program 

committee chair, keynote speaker and session chair of multiple international conferences. He also performs 

advisory work to Government agencies and academic bodies. 

 

Usha Chhillar is working as a head at the Department of Computer Science, A.I.J.H.M. PG   

College, Rohtak, Haryana, India. She obtained her Ph.D degree in computer science from the 

Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, 

Haryana, India. She pursued her master degree in computer science from Maharshi 

Dayanand University (MDU), Rohtak and the M.Phil (computer science) from Ch. Devi Lal 

University (CDLU), Sirsa. She has total more than thirteen years teaching experience. Her 

research interests include software engineering, object-oriented and component- based  software metrics.

  

250 Volume 11, Number 3, March 2016

Journal of Software




