

Let-Binding with Regular Expressions in Lambda Calculus

Takuya Ohata, Shin-ya Nishizaki*

Department of Computer Science, Tokyo Institute of Technology, 2-12-1-W8-69, Ookayama, Meguro, Tokyo
152-8552, Japan.

* Corresponding author. Tel.: +81-3-5734-3506; email: nisizaki@cs.titech.ac.jp
Manuscript submitted October 1, 2015; accepted December 10, 2015.
doi: 10.17706/jsw.11.2.220-229

Abstract: We often give proper names to variables in programs based on their types, usages, and means,

and the regularity and there are several kinds of conventions for variable-naming in programming

languages.

 For example, we use variables i, j, k or i1, i2, i3 for thevariables of integer type. In this paper, we propose

let-binding mechanism by which you can declare multiple variables simultaneously using regular

expressions. We formalize this variable binding mechanism in the framework of the lambda calculus: we

propose a lambda calculus with the regular expression let-bindings and a simple type system to the calculus

in the style of Curry. We then study the calculus and the type system from the theoretical viewpoint.

Key words: Programming language design, functional programming language, regular expression, variable
declaration.

1. Introduction

In this section, we would like to introduce several backgrounds of our research.

1.1. Regular Expression

The regular expressions [1] consist of constant symbols and operator symbols and denotes sets of strings.

Suppose that a finite set Σ of alphabets is given. The Constant symbols of the regular expression are ∅, ϵ ,

and a (∈Σ). The operator symbols are ⋅, ∣ , and ∗.

Regular expressions are defined inductively by the following grammar.

 Constant symbol ∅is a regular expression, which denotes the empty set of strings ∅;

 Constant symbol ϵ is a regular expression, denotes a singleton set of the empty string ϵ;

 Constant symbol a is a regular expression, denotes a singleton set of string consisting of only one

character a∈Σ.

 If R and S are regular expressions, then R ⋅ S is a regular expression, called concatenation, which

denotes a set of strings

 .

 If R and S are regular expressions, theR ∣ S is a regular expression, called alternation, which denotes a

union of two sets of strings

220 Volume 11, Number 2, February 2016

Journal of Software

 If R is a regular expression, the R∗ is a regular expression, called Kleene star, which denotes the

smallest superset of |R| that contains ϵ and is closed under concatenation.

For thesake of simplicity, we write concatenation R ⋅ S as RS in the later part of this paper. For example,

(a | b) c

denotes a set {ac, bc } and ((a|b)c)∗ a set

1.2. Variable Declaration and Variable Binding

A variable declaration specifies the variable, which makes the existence and data type of the variable

know to the compiler. For example, a fragment of C language's source program

int i;

int sum=0;

for(i=0; i<10; i++){

sum += i;

}

i and j are declared as variables of type int and sum is initialized as 10 simultaneously with its

declaration.

In programming languages, variable binding is the association of data with variables. In functional

languages, such as Haskell [2], Standard ML [3], and Scheme [4], typical binding of variables appears in

let-expressions. For example, in a Scheme's expression

(let ((i 1)

 (j 2))

 (+ i j))

1.3. Naming Convention

221 Volume 11, Number 2, February 2016

Journal of Software

We also use a Unix-style notation such as [0-9], which means a set consisting of the digits 0,1,2, …, 9. A set

of the alpha-numeric characters is represented by [a-zA-A-Z0-9]. The notation[^] represents a set of single

characters that are not contained within the brackets. For example, [^0-9] denotes a set of the characters

except digits.

Pattern matching with regular expressions has been incorporated into text editors since 1960's. Many

programming languages have provided regular expression facilities. In scripting languages such as Perl,

JavaScript and Ruby, you can write regular expressions using the language's syntax and in the other

languages, using the standard library. For example, you can match a regular expression (\d+):(\d+)(\d+)

with a string 11:45:14 as

result = “11:45:14”.match(/(\d+):(\d+):(\d+)/);

where \d means a set of digits 0,…,9. If the pattern match succeeds, then you can extract each matched

substring within parentheses referring. For example, you can get the second matched substring thorough an

expression RegExp.$2, whose value is “45”.

variables i and j are bound to 1 and 2, respectively. In many procedural programming languages, a type of a

variable is determined by its variable declaration. On the other hand, in typed functional languages such as

Standard ML [3] and Haskell [2], a type of a variable is determined by type inference provided by a complier.

The compiles knows theexistence of the variables used in a program by tracking variable bindings and

therefore variables bindings play a role of variable declaration.

In programming, a naming convention is a set of rules for choosing the character sequence to be used for

identifiers which denote variables, types and functions in program source code. Naming conventions are

explicitly given as guideline in programming language communities and development teams. Naming

conventions are also shared with unwritten rules in mathematics. For example, i,j,k are used for indices of

matrices' components in linear algebra, such as

but i, j, k should not be used for representing matrices themselves.In programming, names of variables often

hint their types, usages, and meanings. Some people recommend that we should use descriptive names for

global variables and short names for local variables [5].

1.4. Research Motivation

When you write a program, you have to decide names of variables, paying attention to their data types.

For example, for variables of the integer type, you should adopt names such as i, j, k, preferably. In this paper,

we propose anew mechanism of variable declaration in typed programming languages, which enables us to

relate variable names to their types effectively and systematically using aregular expression.

First, we propose a simply-typed lambda calculus with regular expression bindings, called λ REG. To put it

concretely, we extend the lambda calculus by adding let-expressions in which you can describe bound

variables using regular expressions. The extended lambda calculus gives us a theoretical prototype of

thevariable declaration with regular expressions. We give formal semantics to the calculus λREG both by

defining reduction relation and by giving atranslation of λREG to the traditional lambda-calculus. We then

study several theoretical properties.

1.5. Related Works

The regular expressions are incorporated into many programming languages; especially, scripting

languages such as Perl and JavaScript [6] provide the regular expressions as a part of the languages' syntax.

A regular expression in such languages, the matched text are a string data. On the other hand, the regular

expressions in our calculus are matched with the variable identifiers.

Recently, the lambda calculus with regular types [7] is proposed, in which the regular expressions are

introduced into the type system and the expressiveness of the types is extended. For example, a type

 means

intuitively. The regular expressions are a part of types and are matched with types, which is clearly different

with the approach in this paper.

2. Lambda Calculus with Regular Expression Bindings

In this section, we propose the lambda calculus with regular expressions, λREG. We first formulate it as

an untyped calculus and give a simple type theory [8] to the system.

2.1. Untyped Lambda Calculus with Regular Expression Bindings

We assume that we have a countable set \kwd{Var} of strings, whose elements are called variables.

Definition 1 (Terms and Values of λREG) Terms of λREG are defined inductively by the following

grammar:

222 Volume 11, Number 2, February 2016

Journal of Software

Constant

 ∣ Variable

 ∣ $-variable

 ∣ Lambda abstraction

 ∣ Function application

 ∣ Pattern let-expression

The constant c represents a primitive data or a data constructor. The variable x is similar to the one of the

lambda calculus.The $-variable $n represents an identifier designating the result of pattern matching with a

regular expression, which will be explained intuitively in the following example. The lambda abstraction

 and the function application are similar to the those of the lambda calculus. The pattern

let-expression is an extension of the let-expression of the functional programming

language [8].

The subset of the terms, the set of values, is defined by the following grammar, which is the set of

evaluation results:

where p is a regular expression. In this paper, we describe regular expressions by the following syntax.

 Empty

 Constant symbol

 Concatenation

 Alternation

 Kleene star

where a means a character.

We also use Unix-like notations of regular expressions for convenience. For example, [0-9] means

and means

We use L, M, N for terms and U, V, W for values.We present an example of pattern binding in the following.

Example 1 Consider a pattern let-expression

where i([0-9]+) is a regular expression and succ a successor function. The string matched with the

parenthesized part i([0-9]+) is referred by $1 like regular expressions in scripting languages such as Perl

and PHP.

The patterni([0-9]+) is matched to variables appearing in the let's body, that is, i5 and i100. The

$-variable $1 is substituted with 5 and 100, respectively.

We may consider the term as

 let i5 = (inc 5)

223 Volume 11, Number 2, February 2016

Journal of Software

 and i100 = (inc 100)

 in

 (add i5 i100)

Next, we introduce a reduction relation as an operational semantics of λREG, after preparing a matching

operation match.

Definition 2 (Function much) Suppose that p is a regular expression and M a term of λREG.Let

be the variables that occurs freely in M and can be matched with p. Substitutions are

supposed to give matching between variables and the patterns p, respectively. Function match is defined

as follows:

For example, let p be a pattern i([0-9]+) and a term M Then,

The pattern p is matched to variables i5 and i100 through substitutions [$1↦ 5] and [$1 ↦ 100],

respectively.

If let p’ be h([0-9]+)w([0-9]+) and M’ (add h161w62 y170w75), then

We give an operational semantics as a reduction relation, or small-step semantics.

Next, we give an operational semantics to the calculus λREG as a small-step semantics.

Definition 3 (Reduction)We define a reduction relation as a binary relation between

terms M and N inductively by the following rules.

 

 

'

'

' ' '

' '

1 1

1 1

Var Lam
. .

AppL AppL Beta
() () (.)

match(,) = ((,),......(,))
Let3

let = in (),..... ()

n n

n n

M M
x x

x M x M

M M N N M M

MN M N MN M N x M N M x N

p N x x

p N L L x N x N

 



 

 






  

   

  

Readers should be noticed that instantiation of regular expressions is provided by rule \textrm{Let3}

using the function match. We show an example of reduction sequence in λREG.

Example 2 (Reduction) Consider a term

Let i([0-9]+) = (inc $1) in (add i5 i100)

As already explained, we have

where and

224 Volume 11, Number 2, February 2016

Journal of Software

A type system of λREG is introduced based on the simple type system of the lambda calculus. The syntax

of the types is similar to the usual simply-typed lambda calculus.

Definition 4 (Types) Types of λREGA, B, …are defined inductively by the following grammar.

where c means a constant type. Concretely, we consider a numeral type num, a string type string, etc.

Definition 5 (Type Assignment) A type assignment

is a partial mapping of variables to types We will use meta-variables If type

assignment Γ maps x to A, we write We write an extension of adding correspondence between

x and A, as

Definition 6 (Typing Rules)Type judgement is a ternary relation among typing assignment ,

term M, and type A defined inductively by the following rules.

where

We next show an example of typing derivation.

Example 3 (Typing)

We consider typing of a term

By Rule Var, we have (1.1)

By RuleLam, (1.1) derives and therefore (1)

By Rule Var, we have (2.1)

By Rule Lam, (2.1) derives and therefore

 (2)

By Rule Var, we have (3.1.1)

 Base Rule Lam and (3.1.1), we have (3.1)

 By Rule Var, we have (3.2.1)

 By Rule Lam and (3.1.1), we have

 (3.2)

 By (3.1) and (3..2), (3)

225 Volume 11, Number 2, February 2016

Journal of Software

By (1), (2), and (3), we have (*)

The above reasoning can be written as the following derivation tree.

3. Translation of λREG into the Lambda Calculus

In this section, we introduce a translation of λREG into the usual lambda calculus and discuss its

theoretical properties.The translation of λREG gives a suggestion that a programming language with regular

expression bindings can be implemented as a preprocessor.

Definition 7 (Translation of λREG) A translation trans(-) of terms of λREG into λ-terms is defined

inductively by the following equations.

The constructs except the pattern let-expressions are not changed by the translation trans.

We first show soundness of the translation \trans with respect to the reduction: if , then

 . In order to demonstrate the soundness property, we prepare several lemmas.

Lemma 1 (Substitution Lemma) For terms M, N and variables . it holds that

 (N))]

(Proof) This lemma is proved by induction on the structure of term M. In the following, we show a proof

of the case of the pattern let-expression; the other cases are easy.

Let M be

 (End of Proof)

Theorem 1 (Soundness of Translation Trans)

For a term M, if , then

226 Volume 11, Number 2, February 2016

Journal of Software

 (Proof) We prove this proof by induction on the structure of . Due to lack of space, we focus on

thecaseof App and Let3.

Case of App. Let M and M’ be and , respectively. We then have

On the other hand,

since Lemma 1. Hence, we have

Case of Let 3. Let M and M’ be (let p=N in L) and respectively. Moreover,

we suppose that

Then,

since Lemma 1.

(End of Proof)

We next present invariance theorem of typing with respect to the translation: if and only if

 . Before proving the theorem, we prepare the following lemma.

Lemma 2

 and

if and only if

This lemma is proved straight-forwardly by induction on the structure of term M.

Theorem 2 (Invariance of Typing) For a term M and a type A, if and only if

(Proof) We prove this proof by induction on the structure of M. Due to lack of space, we focus on the case

that M is a pattern binding (let p=N in L).

 (Necessity) Suppose that and

By the induction hypothesis, we have

 and

By Lemma 2, we have

227 Volume 11, Number 2, February 2016

Journal of Software

that is,

(Sufficiency) Suppose that and Since

we have

and

By the induction hypothesis,

and

By Lemma 2,

this is,

(End of Proof)

4. Concluding Remarks

We proposed a simply-typed lambda calculus with regular expression bindings, λREG, by extending the

lambda calculus by adding let-expressions in which bound variables are specified by regular expressions.

We provide semantics to the calculus λREG both by defining reduction relation and by giving atranslation of

λREG to the traditional lambda-calculus [9]. The former formulated our intuitive semantics and the latter

gives us a theoretical basis for compilation. We then study several theoretical properties between the two

semantics.

One of the future direction of our research is theincorporation of the regular expression bindings and the

unification via thefirst-classenvironment [10].

The other kinds of the semantics of λREGare also interesting. For example, the abstract machine

semantics [11]-[13]. The compatibility of the regular expression binding with the other programming

paradigm such as object-oriented programming [14]-[16].

Acknowledgement

This paper is based on `Variable Bindings with Regular Expressions'' by T. Ohata and Shin-ya Nishizaki,

appeared in the Proceedings of theInternational Conference on Advances in Information Technology and

Mobile Communication 2013, and we extend it essentially adding the demonstration of the theoretical

properties and supplementing the introduction and concluding remarks, essentially.

This work was supported by Grants-in-Aid for Scientific Research (C) (24500009).

References

[1] Ullman, J. D., Hopcroft, J. E., & Motwani, R. (2006). Introduction to Automata Theory, Languages and

Computation, Pearson.

[2] Jones, S. P. (2003). Haskell 98 Languages and Libraries: The Revised Report. Cambridge University Press.

228 Volume 11, Number 2, February 2016

Journal of Software

[3] Milner, R., Harper, R., & MacQueen, D. (1997). The Definition of Standard ML (Revised). The MIT Press.

Sperber, M., Dybvig, R. K., Flatt, M., & Van, S. A. (2010). Revised [6] Report on the Algorithmic Language

Scheme. Cambridge University Press.

[4] Kernighan, B. W., & Pike, R. (1998). The Practice of Programming. Addison-Wesley.

[5] ECMAscript 2015 language specification, the 6th edition. (2015). Retrieved from

http://www.ecma-international. org/ecma-262/6.0/index.html

[6] Dundua, B., Florido, M., & Kutsia, T. (2015). Lambda calculus with regular types. Proceedings of the 17th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, to appear.

[7] Gunter, C. A. (1992). Semantics of Programming Languages Structures and Techniques. The MIT Press.

[8] Milner, R., Harper, R., & MacQueen, D. (1997). The Definition of Standard ML (Revised). The MIT Press.

[9] Nishizaki, S. (2012). Incorporating first-order unification into functional language via first-class

environments. Proceedings of the SPIT 2012 Second International Joint Conference.

[10] Nishizaki, S., Narita, K., & Ueda, T. (2015). Simplification of abstract machine for functional language

and its theoretical investigation. Journal of Software, 10(10), 1148–1159.

[11] Narita, K., & Nishizaki, S. (2011). A parallel abstract machine for the rpc calculus. Proceedings of the

International Conference on Informatics Engineering and InformationScience – ICIEIS 2011.

Communicationsin Computer and Information Science (pp. 320–332).

[12] Nomura, K., & Nishizaki, S. (2014). Simple abstract machine with delimited continuations. Proceedings

of International Conference on Advances in Communication, Network, and Computing, Advances in

Engineering and Technology Series (pp. 371–380).

[13] Abadi, M., & Cardelli, L. (1996). A Theory of Objects. Springer-Verlag.

[14] Nishizaki, S., & Ikeda, R. (2012). Typed and untyped object calculi with first-class continuations. Journal

of Software Engineering, 1, 1–10.

[15] Matsumoto, S., & Nishizaki, S. (2013). An object calculus with remote method invocation. Proceedings of

the Second Workshop on Computation: Theory and Practice, WCTP2012, Proceedings in Information and

Communication Technology.

Takuya Ohata received his bachelor's degree in computer science from Tokyo Institute of Technology in

2008. His bachelor's thesis is entitled ``Regulatory compliance checking by model checking.'' In 2010, he

received his master's degree in computer science with the master's thesis ``Variable declarations using

regular expressions.'' He majored in Software Engineering and was interested in the theory of programming

languages, formal methods, and system verification using model checkers.

 He is now working in DENSO Corporation.

Shin-ya Nishizaki is an associate professor of computer science at Tokyo Institute of Technology, Japan,

where he leads a research group on formal theory on software systems. He received his bachelor's, master's

and doctorate degrees from Kyoto University, in mathematical sciences. Before joining Tokyo Institute of

Technology in1998, Dr. Nishizaki held appointments in computer science as Associate Professor at Chiba

University for 2 years and assistant professor at Okayama University for 2 years.

229 Volume 11, Number 2, February 2016

Journal of Software

