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Abstract: We often give proper names to variables in programs based on their types, usages, and means, 

and the regularity and there are several kinds of conventions for variable-naming in programming 

languages. 

  For example, we use variables i, j, k or i1, i2, i3 for thevariables of integer type. In this paper, we propose 

let-binding mechanism by which you can declare multiple variables simultaneously using regular 

expressions. We formalize this variable binding mechanism in the framework of the lambda calculus: we 

propose a lambda calculus with the regular expression let-bindings and a simple type system to the calculus 

in the style of Curry. We then study the calculus and the type system from the theoretical viewpoint. 

 
Key words: Programming language design, functional programming language, regular expression, variable 
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1. Introduction 

In this section, we would like to introduce several backgrounds of our research.  

1.1. Regular Expression 

The regular expressions [1] consist of constant symbols and operator symbols and denotes sets of strings. 

Suppose that a finite set Σ of alphabets is given. The Constant symbols of the regular expression are ∅, ϵ , 

and a (∈Σ ). The operator symbols are ⋅, ∣ , and ∗. 

Regular expressions are defined inductively by the following grammar. 

 Constant symbol ∅is a regular expression, which denotes the empty set of strings ∅; 

 Constant symbol ϵ is a regular expression, denotes a singleton set of the empty string ϵ; 

 Constant symbol a is a regular expression, denotes a singleton set of string consisting of only one 

character a∈Σ. 

 If R and S are regular expressions, then R ⋅ S is a regular expression, called concatenation, which 

denotes a set of strings 

                         . 

 If R and S are regular expressions, theR ∣ S is a regular expression, called alternation, which denotes a 

union of two sets of strings 
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 If R is a regular expression, the R∗ is a regular expression, called Kleene star, which denotes the 

smallest superset of |R| that contains ϵ and is closed under concatenation. 

For thesake of simplicity, we write concatenation R ⋅ S as RS in the later part of this paper. For example,  

(a | b ) c 

denotes a set {ac, bc } and ((a|b)c)∗ a set 

                                         

 

1.2. Variable Declaration and Variable Binding 

A variable declaration specifies the variable, which makes the existence and data type of the variable 

know to the compiler. For example, a fragment of C language's source program 

int i; 

int sum=0; 

for(i=0; i<10; i++){ 

sum += i; 

} 

i and j are declared as variables of type int and sum is initialized as 10 simultaneously with its 

declaration. 

In programming languages, variable binding is the association of data with variables. In functional 

languages, such as Haskell [2], Standard ML [3], and Scheme [4], typical binding of variables appears in 

let-expressions. For example, in a Scheme's expression 

(let ((i 1) 

  (j 2)) 

  (+ i j)) 

1.3. Naming Convention 
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We also use a Unix-style notation such as [0-9], which means a set consisting of the digits 0,1,2, …, 9. A set 

of the alpha-numeric characters is represented by [a-zA-A-Z0-9]. The notation[^ ] represents a set of single 

characters that are not contained within the brackets. For example, [^0-9] denotes a set of the characters 

except digits.

Pattern matching with regular expressions has been incorporated into text editors since 1960's. Many 

programming languages have provided regular expression facilities. In scripting languages such as Perl, 

JavaScript and Ruby, you can write regular expressions using the language's syntax and in the other 

languages, using the standard library. For example, you can match a regular expression (\d+):(\d+)(\d+) 

with a string 11:45:14 as

result = “11:45:14”.match(/(\d+):(\d+):(\d+)/);

where \d means a set of digits 0,…,9. If the pattern match succeeds, then you can extract each matched 

substring within parentheses referring. For example, you can get the second matched substring thorough an 

expression RegExp.$2, whose value is “45”.

variables i and j are bound to 1 and 2, respectively. In many procedural programming languages, a type of a 

variable is determined by its variable declaration. On the other hand, in typed functional languages such as 

Standard ML [3] and Haskell [2], a type of a variable is determined by type inference provided by a complier.  

The compiles knows theexistence of the variables used in a program by tracking variable bindings and 

therefore variables bindings play a role of variable declaration.



  

In programming, a naming convention is a set of rules for choosing the character sequence to be used for 

identifiers which denote variables, types and functions in program source code. Naming conventions are 

explicitly given as guideline in programming language communities and development teams. Naming 

conventions are also shared with unwritten rules in mathematics. For example, i,j,k are used for indices of 

matrices'  components in linear algebra, such as 

 

          
          
   

          

                   

but i, j, k should not be used for representing matrices themselves.In programming, names of variables often 

hint their types, usages, and meanings. Some people recommend that we should use descriptive names for 

global variables and short names for local variables [5]. 

1.4. Research Motivation 

When you write a program, you have to decide names of variables, paying attention to their data types. 

For example, for variables of the integer type, you should adopt names such as i, j, k, preferably. In this paper, 

we propose anew mechanism of variable declaration in typed programming languages, which enables us to 

relate variable names to their types effectively and systematically using aregular expression. 

First, we propose a simply-typed lambda calculus with regular expression bindings, called λ REG. To put it 

concretely, we extend the lambda calculus by adding let-expressions in which you can describe bound 

variables using regular expressions. The extended lambda calculus gives us a theoretical prototype of 

thevariable declaration with regular expressions. We give formal semantics to the calculus λREG both by 

defining reduction relation and by giving atranslation of λREG to the traditional lambda-calculus. We then 

study several theoretical properties. 

1.5. Related Works 

The regular expressions are incorporated into many programming languages; especially, scripting 

languages such as Perl and JavaScript [6] provide the regular expressions as a part of the languages' syntax.  

A regular expression in such languages, the matched text are a string data. On the other hand, the regular 

expressions in our calculus are matched with the variable identifiers. 

Recently, the lambda calculus with regular types [7] is proposed, in which the regular expressions are 

introduced into the type system and the expressiveness of the types is extended. For example, a type 

    means  

         

intuitively. The regular expressions are a part of types and are matched with types, which is clearly different 

with the approach in this paper. 

2. Lambda Calculus with Regular Expression Bindings 

In this section, we propose the lambda calculus with regular expressions, λREG. We first formulate it as 

an untyped calculus and give a simple type theory [8] to the system. 

2.1. Untyped Lambda Calculus with Regular Expression Bindings 

We assume that we have a countable set \kwd{Var} of strings, whose elements are called variables. 

Definition 1 (Terms and Values of λREG) Terms of λREG are defined inductively by the following 

grammar: 

222 Volume 11, Number 2, February 2016

Journal of Software



  

  
   

  
Constant 

 ∣   Variable 

 ∣    $-variable 

 ∣      Lambda abstraction 

 ∣      Function application 

 ∣                Pattern let-expression 

 

The constant c represents a primitive data or a data constructor. The variable x is similar to the one of the 

lambda calculus.The $-variable $n represents an identifier designating the result of pattern matching with a 

regular expression, which will be explained intuitively in the following example. The lambda abstraction 

     and the function application      are similar to the those of the lambda calculus. The pattern 

let-expression                is an extension of the let-expression of the functional programming 

language [8]. 

The subset of the terms, the set of values, is defined by the following grammar, which is the set of 

evaluation results: 

       

        

where p is a regular expression. In this paper, we describe regular expressions by the following syntax. 

       Empty 

     Constant symbol 

      Concatenation 

       Alternation 

      Kleene star 

where a means a character. 

We also use Unix-like notations of regular expressions for convenience. For example, [0-9] means 

                      

and    means     

We use L, M, N for terms and U, V, W for values.We present an example of pattern binding in the following. 

Example 1 Consider a pattern let-expression 

                                        

where i([0-9]+) is a regular expression and succ a successor function. The string matched with the 

parenthesized part i([0-9]+) is referred by $1 like regular expressions in scripting languages such as Perl 

and PHP.  

The patterni([0-9]+) is matched to variables appearing in the let's body, that is, i5 and i100. The 

$-variable $1 is substituted with 5 and 100, respectively. 

We may consider the term as  

     let i5 = (inc 5) 
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     and i100 = (inc 100) 

     in 

      (add i5 i100) 

Next, we introduce a reduction relation as an operational semantics of λREG, after preparing a matching 

operation match. 

Definition 2 (Function much) Suppose that p is a regular expression and M a term of λREG.Let         

be the variables that occurs freely in M and can be matched with p. Substitutions            are 

supposed to give matching between variables    and the patterns p, respectively. Function match is defined 

as follows: 

                                

For example, let p be a pattern i([0-9]+) and a term M                Then,  

                                         

The pattern p is matched to variables i5 and i100 through substitutions [$1↦ 5] and [$1 ↦ 100], 

respectively. 

 

If let p’ be h([0-9]+)w([0-9]+) and M’ (add h161w62 y170w75), then 

                                                                 

 

We give an operational semantics as a reduction relation, or small-step semantics. 

Next, we give an operational semantics to the calculus λREG as a small-step semantics. 

Definition 3 (Reduction    )We define a reduction relation as a binary relation     between 

terms M and N inductively by the following rules. 

 

 

'

'

' ' '

' '

1 1

1 1

Var Lam
. .

AppL AppL Beta
( ) ( ) ( . )

match( , ) = (( , ),......( , ))
Let3

let = in ( ),..... ( )

n n

n n

M M
x x

x M x M

M M N N M M

MN M N MN M N x M N M x N

p N x x

p N  L L x N x N

 



 

 






  

   

  

 

Readers should be noticed that instantiation of regular expressions is provided by rule \textrm{Let3} 

using the function match. We show an example of reduction sequence in λREG. 

Example 2 (Reduction) Consider a term  

Let i([0-9]+) = (inc $1) in (add i5 i100) 

As already explained, we have 

                                                   

where           and              
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A type system of λREG is introduced based on the simple type system of the lambda calculus. The syntax 

of the types is similar to the usual simply-typed lambda calculus. 

Definition 4 (Types) Types of λREGA, B, …are defined inductively by the following grammar. 

 

             

 

where c means a constant type. Concretely, we consider a numeral type num, a string type string, etc. 

Definition 5 (Type Assignment) A type assignment  

 

                

 

is a partial mapping of variables        to types          We will use meta-variables        If type 

assignment Γ maps x to A, we write          We write an extension of  adding correspondence between 

x and A, as         

Definition 6 (Typing Rules)Type judgement      is a ternary relation among typing assignment  , 

term M, and type A defined inductively by the following rules. 

 

 

where                                 

We next show an example of typing derivation. 

Example 3 (Typing)  

We consider typing of a term 

                                         

 

By Rule Var, we have                       (1.1) 

 

By RuleLam, (1.1) derives               and therefore                         (1) 

 

By Rule Var, we have                       (2.1) 

By Rule Lam, (2.1) derives               and therefore 

                              (2) 

 

By Rule Var, we have                                  (3.1.1) 

 Base Rule Lam and (3.1.1), we have                                   (3.1) 

 By Rule Var, we have                                 (3.2.1) 

 By Rule Lam and (3.1.1), we have 

                                    (3.2) 

 

 By (3.1) and (3..2),                                          (3) 
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By (1), (2), and (3), we have                                               (*) 

The above reasoning can be written as the following derivation tree. 

 

 

3. Translation of λREG into the Lambda Calculus 

In this section, we introduce a translation of λREG into the usual lambda calculus and discuss its 

theoretical properties.The translation of λREG gives a suggestion that a programming language with regular 

expression bindings can be implemented as a preprocessor. 

Definition 7 (Translation of λREG) A translation trans(-) of terms of λREG into λ-terms is defined 

inductively by the following equations. 

 

            

                         

                                       

                                                                  

                                      

 

The constructs except the pattern let-expressions are not changed by the translation trans. 

We first show soundness of the translation $\trans$ with respect to the reduction: if     , then 

          
          . In order to demonstrate the soundness property, we prepare several lemmas. 

Lemma 1 (Substitution Lemma) For terms M, N and variables            . it holds that 

 

                              

                                       (N))] 

 

(Proof) This lemma is proved by induction on the structure of term M. In the following, we show a proof 

of the case of the pattern let-expression; the other cases are easy. 

Let M be                                                      

                                   
               

                 
 
      

                 

               
              

                                 

                    

 (End of Proof) 

 

Theorem 1 (Soundness of Translation Trans) 

For a term M, if     , then  
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 (Proof) We prove this proof by induction on the structure of  . Due to lack of space, we focus on 

thecaseof App and Let3. 

Case of App. Let M and M’ be           and       , respectively. We then have 

               

                     

                       

                       

On the other hand,  

              

                       

since Lemma 1. Hence, we have 

                                

Case of Let 3. Let M and M’ be (let p=N in L) and                        respectively. Moreover, 

we suppose that 

                                

Then, 

                    

                                             

                              

since Lemma 1.  

(End of Proof) 

 

We next present invariance theorem of typing with respect to the translation:       if and only if 

            . Before proving the theorem, we prepare the following lemma. 

Lemma 2 

                    and                  

 

if and only if                     

This lemma is proved straight-forwardly by induction on the structure of term M. 

Theorem 2 (Invariance of Typing) For a term M and a type A,      if and only if               

(Proof) We prove this proof by induction on the structure of M. Due to lack of space, we focus on the case 

that M is a pattern binding (let p=N in L). 

 (Necessity) Suppose that                               and 

 

 
 

By the induction hypothesis, we have 

 

                  and                             

 

By Lemma 2, we have 
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that is,  

                          

 

(Sufficiency) Suppose that                                 and                          Since  

                                                                   

we have  

                    

and 

                      

By the induction hypothesis, 

             

and 

                      

By Lemma 2, 

                             

this is, 

                    

(End of Proof) 

4. Concluding Remarks 

We proposed a simply-typed lambda calculus with regular expression bindings, λREG, by extending the 

lambda calculus by adding let-expressions in which bound variables are specified by regular expressions. 

We provide semantics to the calculus λREG both by defining reduction relation and by giving atranslation of 

λREG to the traditional lambda-calculus [9]. The former formulated our intuitive semantics and the latter 

gives us a theoretical basis for compilation. We then study several theoretical properties between the two 

semantics. 

One of the future direction of our research is theincorporation of the regular expression bindings and the 

unification via thefirst-classenvironment [10]. 

The other kinds of the semantics of λREGare also interesting. For example, the abstract machine 

semantics [11]-[13]. The compatibility of the regular expression binding with the other programming 

paradigm such as object-oriented programming [14]-[16]. 
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