

A Flowchart for Rapid Technical Debt Management
Decision Making

Congyingzi Zhang*, Yan Wu

Bowling Green State University, Bowling Green, Ohio, U.S.

* Corresponding author. Email: czhang@bgsu.edu, yanwu@bgsu.edu
Manuscript submitted August 31, 2015; accepted December 1, 2015.
doi: 10.17706/jsw.11.2.212-219

Abstract: Technical debt is known as delaying certain software maintenance tasks during software

development life cycle to meet development goals in a short run. Such compromise increases maintenance

cost in a way like growing financial interest in later development of software life cycle. Despite all the

negative impact induced by technical debt, enterprise architects have to leverage between incurring

technical debts and meeting short-term customer and financial related goals while making the decision for

whether to pay the technical debt. However, the decision making, management, and tracing for technical

debt is never formalized and surprisingly done by ad hoc. This study is aimed for constructing a

step-by-step decision making map which helps the decision makers consider all possible impact factors.

More importantly, such standardized process would improve the efficiency, consistency, stakeholders’

communication, and documentation for technical debt handling throughout the software life-cycle. In order

to evaluate the effectiveness of the proposed decision making map and the according practice, a survey is

composed as the appendix of this research report. This preliminary work, although with resource

constraint, is a great foundation to build on for further study.

Key words: Decision making, refactoring, software engineering, technical debt management.

1. Introduction

Widely accepted by the software engineer community, technical debt features sacrificing one dimension

of development, for example software quality, to obtain growth on another dimension, such as meeting the

deadline with promised product features [1]-[4]. The famous analogy of incurring and paying debt came

from Cunningham’s report in 1992 on OOPSLA conference. He mentioned that during an incremental

development, consolidating the code base by promptly rewriting and revising is the key for the sustainable

growth of the product. He coined the process as Incremental Design Repair which they believed is the best

way leading them to the most appropriate product in reasonable amount of time. He drew the analogy

between shipping first time code and going into debt. A little debt does not jeopardize the project as long as

it is paid back promptly by rewriting. However, it would cause the entire project to a stand-still when the

accumulated debt costs all the flexibility and consolidation of a product [5]. Technical debt has negative

impacts on software products such as low code quality, low maintainability and increased cost in later

development. These tradeoffs have to be compromised to satisfy some other dimensions of software

product, such as meeting the requirement of new features before the deadline.

As a solution for paying technical debt, researches proposed code refactoring as a practice to alleviate

212 Volume 11, Number 2, February 2016

Journal of Software

technical debt problem in an ongoing project. Code refactoring features code transformations while

preserving the same external behavior. Through code refactoring, programmers would be able to optimize

the code structure and rewrite corrupted code to improve the maintainability and performance of the

software product. Fowler and his colleagues [6] brought the term of code smell to this research field

referring to certain code structures in that screaming for the possibility of refactoring. They have

categorized and discussed the design pattern for several featured code behaviors in the book, such as

duplicated code, long method, large classes, parallel inheritance hierarchies, message chains, data classes,

and the others. These are good indicators suggesting programmers to refactor their code for avoiding

deeper system problems. More importantly in this study, knowing how to refactor code does not mean

knowing when to perform it. Also, a large reason that keeps developers from exercising these recommended

practices is that addressing technical debt usually means large uncertainty in time and resource investment.

To solve such problem, approaches such as automatic code smell detection, domain-specific code smell

detection, and other policies were proposed in some prior researches, which were dedicated to find a

balancing point of improved code quality and investment of resources. However, the study of technical debt

management of enterprise-level products shows that the support from automated code smell detecting tool

is very limited and too low-level for addressing the architectural refactoring needs [7], [8]. Although code

refactoring was highly recommended for clearing technical debt, the practical meaning of code refactoring

in an ongoing project usually deviates from its designed original in various software development scenarios.

Kim et al. found from a survey conducted with a developers in a large software company that the common

narratives of this process are considered costly and risky, which can be a short version of the reason why

technical debt exists all the time [7].

The lack of confidence of performing code refactoring comes from an unclear estimation of workload and

task complexity. A guideline standardizing decision making on technical debt management is missing. The

approaches from current research addressing the technical debt management problem are either too

high-level or too costly in man hours. An all-in-one map would be an initial step for formalizing the decision

making process tailored to the situation. Many research works in this field discussed the factors upon which

the stakeholders, non-technical and technical, decide whether a code refactoring is worth the effort. These

factors are the properties of an ongoing project, such as product size, tool support, time constraints, and so

on. It is hypothesized that if the most common factors under such circumstance are identified, categorized,

and presented on a map indicating their causal relationship, developers could have a better estimation for

feasibility of a code refactoring based on the project status. As a living document, the flowchart could be

revised to accommodate for a particular development environment and contribute to product development

as one of the routine practices because of its low cost, efficiency, easy-following, and effectiveness for

handling technical debt during a development life cycle.

The goal and expected outcome of this research is to construct a decision flowchart for developers to

follow at any time of a development life-cycle. The diagram would help them identify more decision making

factors from their own situation. After that, they would be able to traverse down and find the estimation by

following the causal relations among the factors. At the forks of the diagram, they would have a chance to

evaluate by the complexity and weight of the considered factors to make a sub-decision until they reach the

final estimation. This method is easy-to-follow and not time-consuming, which makes it a simple add-on

activity to development daily routine.

2. Literature Review

In order to identify the factors from real world cases that have an impact on the decision making process

of technical debt management, the related works and literature review section are organized by discussion

213 Volume 11, Number 2, February 2016

Journal of Software

over ten research questions over this topic.

What is the bad consequence expected from unpaid technical debt?In Zazworka et al.’s research on

examining the effect from unfixed technical debt throughout the SDLC, they found technical debt caused

growing debt and slowed down development. They suggest technical debt should be closely identified and

managed during the development process [3]. In another research study for finding how technical debt

affects a project, a delayed maintenance task was tracked throughout the SDLC. After comparing the

technical debt cost from the actual project and simulated project, the researchers found out the actual

project contains more defects than the simulated [1].

Despite the bad consequences from unpaid technical debt, why it happens enterprise product manager

choose trading off long-term cost for short-term gain? There are several factors that could introduce

intentionally incurring technical debt into the project. Some are considered less harmful and even

necessary when handled properly.

According to an enterprise software management study by Klinger, in real world scenarios, it seems that

avoiding technical debt is not considered the first priority as recommended in academic and research areas.

Obviously, the technical stakeholders are experienced enough to handle the level of acquiring technical debt

in the circumstances when they can foresee paying less effort on code refactoring after the release.

The second source of incurred technical debt is from unexpected changes in requirements, time, or

development environment. For example, the unexpected cascaded impact and other unexpected events

could be a factor such as having new requirements from the changing market. The technical debt induced

under this circumstance can possibly lead to a cost and is difficult to avoid.

The third source of incurred technical debt is from gaps in communication between technical and

non-technical stakeholders. In the study [8], they found that the decision maker for code refactoring is

usually the non-technical stakeholder instead of the system architect. To improve the global communication,

the technical stakeholders have to remind the non-technical stakeholders of paying back the tech debt with

a reliable estimation of potential cost and effectiveness of a code rewrite. So, all dimensions of the project

will be collectively considered and the management plan would be optimized globally for the people and

the product [8]. For example, Narayan et al. closely examined the different tradeoff patterns in enterprise

software. According to their result, they proposed some actionable policies for technical debt management

for large commercial enterprise software product packages [9].

From the developers’ perspective, why they hesitate about refactoring during development?According to the

surveys toward developer’s perspective over code refactoring, there are some common fears which hold

them from paying technical debt on time.

First of all, the surveyed developers had different understandings of the definition of code refactoring.

Recalling its academic definition, code refactoring is not supposed to change code external behavior.

However, it is reported from the industry that it sometimes does lead to code behavior changes. It was

further investigated and found that rarely does anyone do pure refactoring revisions. In other words, most

code refactoring was done when combined with other behavior-changing code modifications [7], [10].

Another common and obvious fear comes from the huge amount of code base and high complexity of

inter-component dependency, which is usually observed on legacy system and enterprise-level software

package.

Developers reported their confusion after rename and move refactoring because version control system

usually is sensitive to such changes. So, without sufficient tool support for merging and integrating

refactored code they start losing track of their object in the code history. It was reported that more than half

of them do all of their refactoring manually even though they have been aware of the refactoring tool [11].

Is there any automated tool support for code refactoring?Post development automatic refactoring includes

214 Volume 11, Number 2, February 2016

Journal of Software

using automated architectural level identification of code smell to discover the sites for refactoring, or

paying technical debt. For example, a plug-in was designed for Eclipse to detect inappropriate use of

inheritance [10]. The limitation of such specifically designed post-fix plugin is obvious because there is no

such plug-in for all types of code smell. Even though it might benefit from a fast detection rate, it still

requires a huge amount of man hours to review and fix each occurrence of the same type of code smell.

Fontana et al. research suggests paying the design technical debt before than other types of technical debt

[12], [13].

They categorized and found domain-specific code smell and anti-pattern, which might help to focus and

alleviate the complexity of code smell detecting algorithm for the automatic architectural level detection

[14].

What types of technical debt are ‘quick fixes’? What are not? To clarify, ‘quick fixes’ exist along with the

code development and are also known as low-level refactoring. Such refactoring is easier to pay back. To

compare with large code bases which require architectural-level refactoring does not considered done with

‘quick fixes’. To perform refactoring in a large code base, a top-down scheme could be applied. The other

approach requires investment in customized refactoring support tools for post-refactoring quality check

[7].

What are the motivations eventually make developers refactor their code? Over half of the code refactoring

is done with other code changes. Such changes are made because of development needs. It is less often for a

developer to initiate a code rewrite because he or she realized somepotential and uncertain benefits from a

code refactoring. The second high motivation for a developer fixing their code is the poor code readability.

The third factor make them perform refactoring is fixing duplicated code.

What are the motivations eventually make architects order the performance of an architectural/high-level

code refactoring? Usually, several architects initiate the discussion and suggest for a code refactoring upon

the observation of large inter-modular dependency and parallel team development. The effort is worthy

because they want to maximize parallel development efficiency so the rebuild and retest won't fail when

two parallel development teams merge their code. Code reuse for fast release of new product is also

considered a reason for lowering the inter-module dependency through high-level code refactoring.

What are the known benefits of code refactoring? If code is refactored during prior development, defects in

later development will decrease in number [14]. Code refactoring would help to save cost in code

maintenance from repairing potential issues from technical debt [15]. It also helps to avoid new technical

debt [16]. To summarize, the benefits from refactoring are considered as improved readability,

maintainability, modularity, testability, code performance, ease for adding features, fewer bugs, significant

reduction in inter-module dependencies, and post-release defect [17].

What are the known challenges of code refactoring? It is known that certain types of refactoring (API, or

structural change) may cause more bugs than regular refactoring [18], [19]. Incomplete and incorrect

refactoring can also introduce bugs. According to a report, some automated refactoring tool assistance on

IDEs contain bugs [20]. The actual usage of such automated tool facilitates is quite low in developers. One

reason is that they are not expressive enough so programmers just ignore the messages [10]. There are also

programmers who are not aware of existence of such tools.

What procedure one would follow to form and track the code refactoring decision? The decision is

suggested by a few architects over certain potential architectural issues. However, the decisions for inducing,

managing, and tracking tech debt are rarely conducted formally. Instead, they are often made by ad hoc.

Certain formalization for this process is missing so the impact of technical debt related decision is rarely

quantitatively estimated. The history and mental map of product technical debt handling surprisingly rely

on 'tribal memory' of team members [8].

215 Volume 11, Number 2, February 2016

Journal of Software

3. Methodology

The confusion, hesitation, and reluctance of code refactoring and paying technical debt largely originated

from the lack of confidence in technical debt related estimation. Mentioned by programmers and system

architects, a legitimate estimation for the impact of a possible code refactoring should be quantitative and

also reflect the ‘wisdom’ from the past decisions. To respond to these requirements, a solid and simple

practice is evolved and proposed in this section. The design for the proposed practice is guided by the

following several requirements. 1. The practice should include as many factors that dictate the decision

making process as possible. 2. The practice should include the weight for the dictating factors leading to

final estimation. 3. The practice should be customized according to team characteristics. 4. The practice

should be kept as a living document for a development team to accommodate to the climate changes in the

development process, which refers to the changes in requirements, time, technical environment, and other

unexpected situation. 5. The practice should be archived promptly in order to track the historic information

of past technical debt related decisions.

The factors that dictate the decision making process are extracted initially from the real world study

cases and categorized. Then, according to the past experiences, the logical connections between these

dictating factors are pointed out to establish a branching structure of the decision making diagram. Lastly, a

series of rules for adding weight for each decision fork are listed for a development team to follow. The last

subsection provides a way to examine the effectiveness of this proposed method according to developer’s

perspectives, productivity, correctness, defect detection rate, and ease of keeping such a practice as a team

routine.

4. Results

4.1. Extracting And Classifying Dictating Factors

From the literature, there are many commonalities in the reported case study regarding the conditions

upon which the technical debt decisions were made. In order to build the diagram, those conditions were

extracted, simplified, and categorized as the decidingfactors in Table I. Overall, these factors fall into four

groups according to their impact on the project. The groups are code base, tool, people (architect/ technical

stakeholder, developer, non-technical stakeholder), and outside conditions.

4.2. Finding Logic Connections among Dictating Factors

In fact, many of the dictating factors connect with each other and have a combined impact on the final

decision on whether it is wise to perform a code refactoring and pay the technical debt. The organization of

the diagram is starting from the left, weighting the decision making process using the results from each

group of dictating factors, then exit on the right side with a finalized decision. The diagram shows a skeleton

of the practice, and to make the diagram really useful for a development team, the team has to customize it

with their value for each factor.

4.3. Customizing Decision Making Diagram

In Fig. 1, each line represents a chance for team voting. After they have voted for the current group, they

should have either ‘Yes’ or ‘No’ for each group of impact factors. After finishing voting for all categorized

group, the decision will naturally be made on the right end by adding the vote on the left side. Also, before

entering any voting process, a team should review the diagram and decide the weight for each line

according to their characteristics.A survey is composed for this report aiming to evaluate the effectiveness

and practical meaning of the proposed diagram and practices. The purpose of this survey is to examine how

many of the impact factors mentioned in this study are actually recalled and considered by the surveyed

216 Volume 11, Number 2, February 2016

Journal of Software

group in real world software development activities. Also, the surveyed subjects are to provide a score for

each of the impact factors reflecting its influence on making the final decision.

Fig. 1. Decision making diagram integrated with technical debt related dictating factors.

Table 1. Categorized Dictating Factors

CATEGORY DICTATING FACTOR SUGGESTION / POSSIBLE OUTCOME

Code Base Code hierarchies Pay attention to god-class refactoring

Pay design technical debt first

Code merge Good chance to refactor, reduce duplication

Acquisition new technique Good chance to refactor

Development environment change Good chance to refactor

Low level refactoring Good chance to refactor

Low code readability Sign for refactoring

Code duplication Sign for refactoring

Existence of inter-modular dependency Sign for refactoring (could be architectural level)

Reuse code module in different products Refactor to increase the current code business value

Automated Tools Cost-benefit analysis Run an analysis if possible at any time

Quantitative assessment Using the provided metrics to estimate the impact

Correctness checker Architects are not willing to order code refactoring until

knowing there is a way to ensure correctness

Ide support Ensure the level of support from before committing using

ide refactoring support. It’s better not to set expectation

too high.

Specific structural level tool support

other than ide

If investing for a specific code refactoring product, make

sure it support structural level refactoring.

217 Volume 11, Number 2, February 2016

Journal of Software

Specific code smell tool Cover more types of code smell, also provide code smell

and anti-pattern categorizing to reduce the complexity of

detection.

Man hour for reviewing If there is no enough resource guaranteeing the refactored

code, do not easily use automated refactoring tool.

Ide/refactoring tool contain bugs Check tool reliability before integrating it into process

Outside Conditions Paying less effort on code refactoring

after product release

If Such Possibility Is Obviously High, Code Refactoring Is

Not 1st Priority

Requirement changes shortly after code

refactoring

If The Possibility Of Requirement Changing Shortly After

Code Refactoring Is High, Code Refactoring Is Not 1st

Priority

People-Developer Completeness of refactoring Incomplete code refactoring could bring more trouble

Refactoring while making behavior

changes/bug fixing?

No

Awareness of refactoring facilitating tool Should encourage developers get know the available tool

People-Architect Communication gap with non-technical

stakeholder

Show the potential cost of keeping technical debt inside of

the code and clear the communication gap before making

decision

Parallel development Structurally refactor the project to lower the dependency

between team modules

People-Non-Techni

cal Stakeholder

Communication gap with technical

stakeholder

Understand the potential cost of keeping technical debt

inside the code before making decision

5. Conclusion

The flowchart aims to simplify and standardize the decision making of current technical debt

management. Even though the research outcome is not fully confirmed from the survey due to the resource

constraint, this research provides an innovativedirectionto work towards another practice fitting into the

current Agile methodology.

References

[1] Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., Silva, F. Q. B. D., Santos, A. L. M., & Siebra, C.

(2011). Tracking technical debt An exploratory case study. Proceedings of the 2013 IEEE

International Conference on Software Maintenance (pp. 528–531).

[2] Brown, N., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N., Cai, Y., Guo, Y., Kazman, R., Kim,

M., Kruchten, P., Lim, E., MacCormack, A., & Nord, R. (2010). Managing technical debt in software-reliant

systems. Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research (pp. 47-52).

New York: ACM.

[3] Zazworka, N., Shaw, M. A., Shull, F., & Seaman, C. (2011). Investigating the impact of design debt on

software quality. Proceedings of the 2Nd Workshop on Managing Technical Debt (pp. 17–23).

[4] Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., & Vetrò, A. (2012). Using technical debt

data in decision making: potential decision approaches. Proceedings of the Third International

Workshop on Managing Technical Debt (pp. 45–48).

[5] Cunningham, W. (1993) The WyCash portfolio management system. ACM SIGPLAN OOPS Messenger,

4(2), 29–30.

[6] Fowler, M. (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[7] Kim, M., Zimmermann, T., and Nagappan, N. (2012). A field study of refactoring challenges and benefits.

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering (pp. 50:1–50:11). New York, NY, USA.

218 Volume 11, Number 2, February 2016

Journal of Software

[8] Klinger, T., Tarr, P., Wagstrom, P., & Williams, C. (2011). An enterprise perspective on technical debt.

Proceedings of the 2nd Workshop on Managing Technical Debt (pp. 35–38).

[9] Ramasubbu N., & Kemerer, C. Managing technical debt in enterprise software packages. IEEE

Transactions on Software Engineering, 40(8), 758-772.

[10] Murphy-Hill, E., Parnin, C., & Black, A. P. (2012). How we refactor, and how we know it. IEEE

Transactions on Software Engineering, 38(1), 5–18.

[11] Vakilian, M., Chen, N., Negara, S., Rajkumar, B. A., Bailey, B. P., & Johnson, R. E. (2012). Use, disuse, and

misuse of automated refactorings. Proceedings of 2012 34th International Conference on Software

Engineering (ICSE) (pp. 233–243).

[12] Fontana, F. A., Ferme, V., & Spinelli, S. (2012). Investigating the impact of code smells debt on quality

code evaluation. Proceedings of the Third International Workshop on Managing Technical Debt (pp.

15–22).

[13] Fontana, F. A., Ferme, V., Marino, A., Walter, B., & Martenka, P. (2013). Investigating the impact of code

smells on system’s quality: An empirical study on systems of different application domains. Proceedings

of 2013 IEEE International Conference on Software Maintenance (pp. 260–269).

[14] Ratzinger, J., Sigmund, T., & Gall, H. C. (2008). On the relation of refactorings and software defect

prediction. Proceedings of the 2008 international working conference on Mining software repositories

(pp. 35-38).

[15] Beck, K. (2000). Extreme Programming Explained: Embrace Change. Addison-Wesley Professional.

[16] Belady L. A., & Lehman, M. M., (1976). A model of large program development. IBM System Journal,

15(3), 225–252.

[17] Kolb, R., Muthig, D., Patzke, T., & Yamauchi, K. (2006). Refactoring a legacy component for reuse in a

software product line: A case study. Journal of Software Maintenance and Evolution: Research and

Practice, 18(2), 109–132.

[18] Kim, M., Cai, D., and Kim, S. (2011). An empirical investigation into the Role of API-level refactorings

during software evolution. Proceedings of the 33rd International Conference on Software Engineering

(pp. 151–160).

[19] Weißgerber P., & Diehl, S. (2006). Are refactorings less error-prone than other changes?. Proceedings of

the 2006 International Workshop on Mining Software Repositories (pp. 112-118).

[20] Daniel, B., Dig, D., Garcia, K., & Marinov, D. (2007). Automated testing of refactoring engines.

Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (pp. 185-194).

[21] Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software developers using the Elipse IDE?

IEEE Software, 23(4), 76–83.

Congyingzi Zhang is currently working as an IT advisory consultant in Ernst &Young. She

received her M.S. in computer science in 2015 from Bowling Green State University. She has

strong research and industry background in project management and software development

methodologies/practices. She has publications in multiple computer science research areas

and also has presented her work towards professional audience.

Yan Wu is currently working as an assistant professor at Computer Science Department of

Bowling Green State University. She was a guest researcher in SAMATE team at NIST. She

received her Ph.D. degree in information technology in 2011 from the University of Nebraska.

Her research focus is empirical study on analyzing software engineering knowledge in order to

support the development and maintenance of reliable software-intensive systems.

219 Volume 11, Number 2, February 2016

Journal of Software

