A Model Driven Engineering Approach to Support the
Development of Secure Software as a Service

Pablo Matos, Denivaldo Lopes®, Zair Abdelouahab
Federal University of Maranhdo - UFMA, CCET, PPGEE, Sao Luis — MA, Brazil.

* Corresponding author. Tel.: +55 98 3272 8243; email: denivaldo.lopes@ufma.br
Manuscript submitted September 22, 2015; accepted December 5, 2015.
doi: 10.17706/jsw.11.2.118-132

Abstract: The development and use of software based on cloud computing have been highlighted more and
more nowadays. Software as a Service (SaaS) is considered as a trend for small, medium and large
enterprises. However, SaaS brings some challenges concerning information security. In this context, we
propose an approach based on Model-Driven Engineering (MDE), weaving models and security techniques
for developing secure software as a service. An illustrative example helps to understand our proposed
approach and demonstrates its feasibility and benefits.

Key words: Model driven engineering, model transformations, weaving model, cloud computing.

1. Introduction

In the context of cloud computing, Software as a Service (SaaS) provides some benefits such as needless
to install a software locally and resource provision on demand [1]. Furthermore, it guarantees the use of
updated releases.

SaaS is widely used by enterprises and customers in different applications scenarios, for instance, the
Gmail mail service provided by Google. However, security is an important issue in SaaS. In this regard, we
can talk about the lack of sophisticated resources for cloud service providers in order to integrate its
platform and identity verification services placed behind firewalls of a corporate network [2]. Another
relevant point in security of SaaS is the integrity of data that must be guaranteed by the SaaS provider, e.g.
assuring integrity based on encryption algorithms and authentication systems [3]. Furthermore, security of
SaaS must take into account the data transmission security over the Internet. In the literature, solutions for
security in cloud computing are concentrated only in final source code, e.g. algorithms for security and
security Application Programming Interface (API). However, there is an absence of discussion about
approaches to take into account security in SaaS from the design to the final code.

In this paper, we provide an approach that takes care of security in SaaS from design to code. This
approach is based on Model Driven Engineering (MDE) and security mechanism to support SaaS
development. MDE is an approach where software development is based on models [4]. Here we present
the idea to aggregate security mechanisms, for instance, role-based access control systems, into SaaS
applications conceived as models. The security concerns are usually managed as an isolated feature in the
software design process, but in our approach we take care of security from the beginning thanks to models
and model transformation definitions. Security concerns are modeled from the beginning together with the
business model following a similar Y development process presented in [5], and these security concerns are

118 Volume 11, Number 2, February 2016

propagated in other low level models thanks to transformation definitions until to obtain the source code.

This paper is organized as follows. Section 2 presents our approach based on MDE, weaving models and
security techniques, including a framework and a methodology. Section 3 shows a prototype
implementing the proposed approach. Section 4 depicts an illustrative example that helps to understand
the proposed approach. Section 5 shows related works and compares them with our approach. Section 6
contains a conclusion and trends for future research works.

2. An Approach Based on MDE to Support the Development of Secure SaaS

The proposed approach aims to meet some security goals for SaaS as shown in Table 1. Security models
can define aspects such as authentication, access control, encryption and persistence. Due to page limits, we
present only authentication and access control in this paper.

Table 1. Security Goals for SaaS Applications (Based on [6])

Security goals Security Requirements Policy type
Access to resources; properties and

Confidentiality and . Access control policies based on user roles
. . operations must be controlled
integrity of stored
. . To use a system, a user must be L .
information . Authentication policies
authenticated
The contents of exchanged
Confidentiality and messages must be kept confidential
integrity of information The content of messages must be Message-level confidentiality policies
in transmission verified whether it has been
modified during its transmission
The contents of exchanged
Confidentiality of messages must be transformed . .
. Data encryption policies
intercepted information from its original form to another
unreadable
Persistence of the The contents must be stored S -
. . . Data serialization policies
information stored persistently

Fig. 1 presents a Framework for Developing Secure SaaS (FD3S) that is based on MDE, Weaving and Y
development process. At the top, we find the Platform Independent Model (PIM) and Platform Description
Model (PDM) that are related by the weaving model following a Y development process suggested in [5]. A
PIM conforms to a metamodel as UML metamodel, and a PDM conforms to a metamodel as our proposed
Security metamodel. In the center, a weaving tool aids with the creation and edition of a weaving model that
is conform to a Weaving metamodel. Once the weaving model is done, an Intermediate Model Generator
takes as inputs a PIM, a Weaving Model and a PDM and gives as output an Intermediate Model. This last
model merges the information from the PIM, Weaving Model and PDM. An Intermediate Model is needed
before the generation of a PSM, because the former contains the merged information from PIM, weaving
model and PDM. Afterward, a Transformation Engine takes as input a Model-to-Model Transformation
Definition, an Intermediate Model and gives as output a PSM. This Model-to-Model Transformation
Definition relates at the top an Intermediate Metamodel and at the bottom another metamodel for instance
a Web Service Metamodel. Then, a Transformation Engine takes as input another Model-to-Model
Transformation Definition and an abstract PSM and gives as output a concrete PSM. This Model-to-Model
Transformation Definition relates at the top to a Web Service Metamodel and at the bottom a Java
Metamodel and the Pattern for applying Java API of Web Service. Then, another Transformation Engine
takes as input a Model-to-Text Transformation Definition and a concrete PSM and gives as output a Source
Code. This Model-to-Text Transformation Definition relates to a Java Web Service and Java API for Web

119 Volume 11, Number 2, February 2016

Service and an EBNF grammar of the Java programming language.

Weaving
Metamodel

UML Metamodel Security Metamodel

conformsTo conformsTo conformsTo

inputLeft ///77%\"‘*\ inputRight

PIM ‘ N Weaving TOOI/ | PDM based on Security

outputWeaving

modellLeft modelRight

linkLeft Weaving
Model

linkRight

inputWeaving

outputintermidiateModel .
Intermediate Metamodel

conformsTo

Intermediate Model

inputModel Model-to-Model

executy Transformation Definition

(Transformation Engme /

-
Web Service
outputModel

Metamodel
conformsTo top

AbstractPSM

inputModel Model-to-Model

/ Transformation Definition
executes

Transformation Engine \/

1 I — 1

Pattern for applying Java
API for Web Service outputModel Java Metamodel

accordingToPattern conformsTo

ConcretePSM

bottom

top

Model-to-Text
Transformation Definition

\\\ e

Transformation Engine

inputModel

bottom
outputSourceCode
— / Java EBNF
Source conformsTo
Code

Fig. 1. Framework for developing secure SaaS (FD3S).

Our approach contains a methodology to develop secure SaaS as presented in Fig. 2. The steps of this
methodology are presented as follows:
e Create a PIM: A business model (PIM) is created.
e Create a PDM (based on Security): This model contains security information, in other words, this PDM

is a pattern for a security which may be reused many times.

120 Volume 11, Number 2, February 2016

e Create a Weaving Model: In order to relate a PIM and a PDM.

¢ Generate an Intermediate Model: That contains the merged information from PIM, weaving model and
PDM.

e Execute a Transformation Definition M2M: In order to generate a PSM from an Intermediate Model.
This is organized as follows. First, an M2M transformation takes as input an Intermediate Model and
generates an Abstract PSM. The latter contains information about a platform, e.g. Web services. Second,
another M2M transformation takes as input an abstract PSM and generates as output a concrete PSM.
The generated model contains details about the implementation of a platform in a specific
programming language. For this purpose, the concrete PSM reuses the model of an API, e.g. the model
of Web services APl in Java, and a pattern of the API usage.

e Edit a PSM: In order to include information specific to a platform that is not present in Intermediate
Model, i.e. information which is not present in the PIM or in the PDM.

¢ Execute a Transformation Definition M2T: For creating a source code conforming to an EBNF grammar
of a programming language.

¢ Edit a source code: In order to complete it and be ready for compilation.

e We provide a metamodel for creating Weaving Models, a metamodel for creating PDM and a
metamodel for creating PSM. A PIM can be conform to UML metamodel that is available in UML

Create PIM <Create PDM (based on SecurityD
I
@reate Weaving ModeD

\

@enerate Intermediate ModeD

]

Execute Transformation Definition M2M
from Intermediate Model to Abstract PSM

specification [7].

e
&

()

Edit Abstract PSM
Execute Transformation Definition M2M
(from Abstract PSM to Concret PSM)

Edit Concrete PSM

@xecute Transformation Definition MZ‘D

Edit Source Code

Fig. 2. A methodology to develop secure SaaS.

Fig. 3 presents a metamodel to create a weaving model. The metamodel extends and adapts the one
presented in [8] for mapping specification in order to support the creation of a weaving model. Each

121 Volume 11, Number 2, February 2016

element of the metamodel is described as follows:

e Historic: Contains WeavingDefinitions and has the attributes update, note, version and timestamp in
order to indicate the current WeavingDefinition and the versions.

e Weaving Definiton: Is a container for elements that define the weaving. For example, it contains
ModelHandlers that point to models that are related, WeavingNode that relates two or more elements
pointed by linkLeft and linkRight, i.e. ElementModelHandler.

e ModelHandlers: Is a pointer to models that are related by a weaving model. It contains
ElementModelHandler that points to elements of a metamodel related to other elements of another
metamodel.

Fig. 4 presents a metamodel to create a PDM for security aspects (focused on authentication and
authorization) that is based on concepts presented in [9], [10]. This metamodel is described as follows:

e RoleSpace: is a container for Roles that are actions performed by Users according to Permission.

e User: contains Property and Operation. A Property defines static features and Operation defines
behavior features.

e Permission: is related to constraints on Actions that Resource needs to perform. An Action can be read,
updated, deleted and executed.

Element

+name : EString

T

WeavingDefinition

Historic

+wDefinition

+update : EString
+note : EString 1 *
+version : EString

+timestamp : EString

+version : EString
+note : EString
+timestamp : EString

1 1 1

*

|

+node

1 | +left 1 | +right

+subNode

ModelHandler WeavingNode

+description : EString
+filter : EString
+stitchStatement : EString

| | +path:EString
+type : EString
+version : EString

+timestamp : EString . 1
1
+linkLeft | * * | +linkRight
LinkLeft LinkRight
+expression : EString +expression : EString
* *
1 1
+handler | ElementModelHandler | +handler

+handlers | Lpath : EString 1

" +type : EString

+nested [*

Fig. 3. A metamodel for weaving (based on [8]).

122 Volume 11, Number 2, February 2016

Element

> <t T
+name : EString
""""""""""""""""""" Action
ROIeSpace A . +actions 1
............................... L +action_id : EInt X
I Permission “| +action_type : ActionType | *2cton
u . .
clespace +permissions 1 +action_target : EString
+permission_id : EInt | .
0.* | +roles 1.* +default : EBoolean *permission [P
Property +value : EString [1
Role 1 +visibility : EString 0.* | +permissions CompositeAction AtomicAction
. +type : EString
+role_id : Elnt +rolel +yalue : EString 0.* | +constraints
* i . . .
1Y sroe 0-* | #properties | A thorizationConstraint Resource .
1 .
e +resource_id : EInt
» . +resources
User +user +resource_type : EString
+user o <<enumeration>> +reference : EString
0.* . > +operations R
: [
+users | tuser_id: Eint . 1 ActionType
+user_password : EString Operation
+user_role : EString P +read
+visibility : EString +:p|date
+returnType : EString +delete
""""""""""" e — +execute

Fig. 4. A metamodel for defining a PDM based on security aspects: authentication and authorization
(fragment) (based on [9], [10]).

Extension MergedElements

+tag : EString 1 +mergedElements] +modelName : EString

. +modelPath : EString
+modelElement : EString

T +modelTimeStamp : EString

+modelVersion : EString

Element
> < I
+name : EString
Parameter +paramete
+directionkind : EString *
Merge +isReturn : EBoolean
] +leftModel : EString
+rightModel : EString
+weavingModel : EString +method Method
1 * X . 1
+expression : EString
* | +mergeClass 1
Class 1| +actionSemantic
™ +isinterface : EBoolean ! ActionSemantic
1
+nestedClass | * 1
+property Property
*

Fig. 5. Intermediate metamodel (fragment).

We propose the metamodel presented in Fig. 5 for creating an Intermediate model. The metamodel
supports the creation of Class, Property and Method like to UML metamodel. We have enhanced the
metamodel with the ability to define extensions containing MergedElements that are pointers to elements of
other metamodels. In this way, we can create an intermediate model by merging a PIM, Weaving Model and
PDM, but maintaining the link with the original elements from where intermediate elements were derived.
Thus, MergedElement has a name, path, timestamp and version of a metamodel.

In order to create Abstract PSM based on Web Services, and the Concrete PSM based on Java plus API for

123 Volume 11, Number 2, February 2016

Web Services, we have reused, extended and adapted the metamodels proposed by D. Lopes et al [8] and].
Bézivin et al. [11].

3. Prototyping
Fig. 6 presents the architecture of the prototype that implements our proposed framework FD3S,

methodology and metamodels.

UMLEditor
+umlEdit
umitditor +weavingHandler
* WeavingHandler
PDMEditor WeavingTool
*
+pdmEditor
+intermediateGenerator
N) * mnter Jt del ator
WeavingEditor 1
*
ingEditar
veavingE
1 EditorPool 1 +transfEngineHandler oo ——————————
—— * 11 | TransfEngineHandler |
1{
appingEditor [—’ ’ : : Transformati
AN - L S |
+mappingEdit<ir+ itdr KerneIFDss !
,4
* 1 S
—— [PP I
WebServiceEditor ’ 1 i
|
1 |
+webServiceEditor 1#+modelHandler |
« |
I
SourceCodeEditor ModelHandler +mt4MDE py————
+sourceCodeEditor T « MT4MDE
N

ModelRepository

Fsamt4MDE

SAMT4MDEHandler
Metamodels Models SAMT4MDE

Fig. 6. Architecture of security weaving tool for MDE (SWT4MDE).

Resource - WeavingMadel model, awingModel.weaying - Eclipse Platform

Fla Edit MNavigate Search Project “Wesving Editer Sample Pun ‘Window Help

il] J_;| Z% i v - - =1 r |QUL|~-’-u-=u= 151 | I Resource
7 Proect Explorer 13 = B & weavinghtodel weaving ES = B8
= % e = W Lefrmode B E T p mieaving mode! Y & oM % BT Y Rt mode! E =
= PdrtModel lohrs - - U -y s BB Aukhystem
PimModel : P cksysten . Defirition Chrs_authSystem l BB Administrabar
Weavinghodel B H use L Model Handler Ohrs =6 Methodaocess
£ sic .. B3 username : EString == Elemen Model Hander Pekavstem l =% ExecutsMzthad © execute
[IJRE Svsten Library [Javask- e o .I — = Element Model Handler Lssr 3 Method_agin @ methad
[#1-B Pug-in Dependenies pass.wn FERng) _ ~ Element Model Harder username I
[¢l-4= META-INF ki 4 log_infusername : ESing] : void - Element Model Hander password
+- 48 loo_oL(usernanie : ESng) ; ol ~ Elament Madel Harder log_in - 4 DelskaMsthod @ delote
2 Authsystem, pim - Customer * Elernent Model Harder log_s & Erkityfocess
: "'; Shrs.umimet zmodel = 3 Admiristrator Element Modsl Handler Customer
R Weavingodel weaving - 5 Hoel Ekement: Model Handler Admiristrator I A UpdateEriity : update
H uritTyps Element: Model Handler Hotel e Deleteentry : delete
5 Eosking Elament Model Handler LIREType l & Systemariess
5 Fayment Element Modzl Handler Baaking [+~ UpdateSystem : update
s it . ~{i~ Element Model Handler Payment I [F-22 ReadSyskem @ read
L Data Typs Estring Mo-del Handler AuchSysbzm [re—
ﬁ Dara rype ECnt * Elemert: Model Hander Admiistrakor % Mame : skring
- Data Type EDate [Element Mcdel Handler Us=r % Addross ; string
s
+ 1 Data TypsEQouble Element Model Handler Methodaccess - @ age :int
Model H a ndler = log_n Element Model Handler Encitvaccess % Password : string
referencin ge lements 4] log_out L | 7= Element Model Handler Systemdccess A Login : hoolsan
from left model [view_avallabilky k: El.emert Wodel Hander Guest 4} Logaut : boalean
0 baok unit - Elemenk Mcdel Handler Ussr Elm (Gaeck
0; " Element Model Handler Mathadaccass HeE Methodiccess
- anes At Elzment Model Handler Ervitydicosss 5B Erkitydceess
- reserdation_staius v {7 Element: Mods! Handler Systeméy &
- " wskemAcess &5
Model Handlgr ,; | - :

cdgg}[g:rkggnging elements
from right model

Fig. 7. Screenshots of the prototype of SWT4MDE.

124 Volume 11, Number 2, February 2016

The prototype Security Weaving Tool for MDE (SWT4MDE) implements our proposed FD3S as follows.
KernelFD3S has the basic functionalities to start and contains handlers to integrate other tools such as
weaving tools (i.e. WeavingHandler), transformation tools (i.e. TransfEngineHandler), mapping tool (i.e
MappingHandler), matching tool (i.e. MatchingHandler). It integrates an editor pool containing editors for
creating and editing UML models, Platform Description Model (PDM), Weaving models, mapping models,
web services and source code in Java. The KernelFD3S manages the ModelRepository that includes
metamodels and models.

The prototype SWT4MDE was developed combining the following software: Java SE Development Kit
(J2SDK) version 7, Eclipse IDE version Juno Service Release 1, Eclipse Modeling Framework version 2.8.3
[12], ATL SDK for Eclipse version 3.3.1, Papyrus UML editor version 0.9.2, Netbeans version 8.0.2 (including
Glassfish Server Open Source Edition 4.1), MT4MDE version 0.5.1[13] and SAMT4MDE version 0.8.2 [14].

We have developed the following parts of the prototype SWT4MDE: Weaving editor version 0.1.0,
Weaving Tool version 0.1.0, PDM editor based on the metamodel presented in Fig. 4, Web Service editor
based on the metamodel presented in [8], intermediate model generator based on the metamodel
presented in Fig. 5, and transformation definitions presented in Listing 1.

Fig. 7 presents a screenshot of the prototype SWT4MDE implemented as a plug-in for IDE Eclipse. The
PIM of OHRS, the weaving model and the PDM of security are presented on the left, center and right
respectively. The weaving model has handlers to manipulate the left and right model elements.

4. Illustrative Example

In this section, we present the development of a software system as an illustrative example following our
proposed approach. Fig. 8 presents the PIM for this illustrative example that is an “Online Hotel Reservation
System (OHRS)” which is extracted and adapted from the works of Ritu Sharma and Manu Sood [15], [16].

L™ Project Explorer 23 =408 ‘i,ohrs.umlmetamodel 22 |2 Ohrs.umlmetamodel

58| T E7 Resource Set

#-4= PdmMadel

B4 PimModel
- src & pcksystem
[+ IRE System Library [JavaSE-1.7] &-H User
(12, Plug-in Dependencies I username : EString
4= META-INF O password : EString
== model &% log_in(username : EString) : void
3 Ohrs.umimetamodel &% log_out{username : EString) : void
- WeavingMode! &-H Customer
O cust_ID : EString
B cust_name : EString
3 cust_addr : EString
O cust_phone : EString
2 cust_email : EString
&% view_availability(book_from : EDate, book_to : EDate) : void
&% book_unit{unit_ID : EString) : void
[T Properties 53 L o | &% cancel_unit{unit_ID : EString) : void
[= B v s8-8 Adeinist‘rator ‘)
admin_ID : EString
Propert I Value | i & admin_name : EString

O3 admin_addr : EString
O admin_phone : EString
2 admin_email : EString
% view_availability(book_from : EDate, book_to : EDate) : void

% book_unit{unit_ID : EString) : void

cancel_unit(unit_ID : EString) : void

% reservation_status{dt_of_booking : EDate) : void

% cancellation_status{dt_of_booking : EDate) : void

% revenue_report(hotel_ID : EString) : void

% modify_tariff(unit_ID : EInt) : void

i H 8 arrival_chart(hotel_ID : EString) : void

& H Hotel

" O hotel ID:ESting =
Selection ‘\ Parent ‘ List \ Tree ‘(Table i Tree with Columns ‘

Fig. 8. PIM for OHRS (extracted and adapted from [15], [16]).

&-&B--8--8--8-8-E

OHRS allows its customers to make reservation, payment and cancelation of hotel services. This software

125 Volume 11, Number 2, February 2016

system also allows a manager to perform procedures, for instance, modify prices and generate reports. The
PIM for OHRS is the first input model. The PDM for security is presented in Fig. 9. The PIM is the business
model while the PDM represents the security aspects.

Fig. 9 presents the PDM conforms to a metamodel based on security aspect described in Fig. 4. The PDM
model depicts the RoleSpace AuthSystem. The RoleSpace contains the Administrator and Guest roles. These
roles contain their respective users and permissions, e.g. permissions to access a method or entity. The
permissions enable to perform actions, such as read, execute, and so on, over resources that can be entities,
methods or attributes from the system.

L5 Project Explorer 23 =z 8 EnuthSystem.pdm 22 [5] AuthSystem.pdm

- 5 ‘ o o E_ Resource Set
=52 pdmModel =] ‘_.t platform: fPdm dm
L@ s - B AuthSystem RoleSpace
[+-®%}, IRE System Library [JavaSE-1.7] =)-E0 Administrator RO|e
[+, Plug-in Dependencies - ® Methodaccess
[#-4 = META-INF #-2G ExecuteMethod : execute
N in;:’d::JthSystem.pdm [T f EZ;‘:Z;::::; :Z:lete Perm R
-2 pimModel |- EntityAccess
-2 weavingModel #-22 ReadEntity : read
(- A UpdateEntity : update
#- A DeleteEntity : delete
™ SystemAccess
- f UpdateSystem : update
[#-22 ReadSystem : read
=B user U ser
‘ MName : string
[Properties 52 = 78 @ Address : string
@ Age:int
e @ Password : string
Property] Walue L} Login : boolean
£} Logout : boolean
=B Guest
& MethodAccess
#-2Q ExecuteMethod : execute
#-2Q ReadMethod : read
=™ EntityAccess
[#-22 ReadEntity : read
- A UpdateEntity : update
=™ SystemAccess
[#-2Q ReadSystem : read
=B User
@ Name : string
@ Password : string

Pl _,] felection | Parent ‘ List i Tree ! Table i Tree with Columns ‘

Selected Object: platform: fresource/PdmModel/model/AuthSystem.pdm

0

Action

otE » Rk v

Fig. 9. PDM for security.

Once we have the PIM and the PDM, a weaving tool is used to create a weaving model that relates PIM and
PDM. Fig. 10 presents the Weaving model relating the OHRS model (PIM) and the Security Model (PDM). At
this point, the weaving model contains references to OHRS model and references to Security Model. The
weaving model is created combining the elements from the PDM and the elements from the PIM.

An Intermediate Model is generated containing the aspects from business model (PIM), security aspect
(PDM) and weaving model. Figure 11 presents the Intermediate Model that is the merging of OHRS model
and Security model. For example, it associates features of the Roles Administrator/Guest from PDM with the
classes Administrator/Customer from PIM, assigning them their features. It also associates features of
Resources from PDM with the classes from PIM, such as Hotel, Booking and Payment, by merging them. An
intermediate model is transformed in an abstract PSM using a model-to-model transformation definition
executed in transformation engine like ATL [17].

Listing 1 presents a fragment of the transformation definition based on ATL from Intermediate Model to
Abstract PSM. This transformation definition takes as input a model based on Intermediate Metamodel and
gives as output a model based on Web Services Metamodel. The MergeZDefinition rule transforms the Merge
elements from the Intermediate Model to Definition elements of Web Services Model. The ClassZService rule

126 Volume 11, Number 2, February 2016

catches information of Class elements from the Intermediate Model to produce elements Service, Port,
Binding, and PortType of Web Services Model. In the same way, other rules are created but they are omitted

due to page limits.

File Edit Mavigate Search Project Weaving Edtor Sample Run window Help
B . 3 FRTTRL MR, o e R = & . - JQuick access s ”LD Resource
[Project Explorer §3 = 8 H:) WeavingModel.weaving 22 =]
=] <.3==D | o 7 i Leftmodel E] - p “eaving model Y & b B BT Ye Right model B =
Pdratadel = -[Eh = E AuthSystem
PimMadel = .H} PkSystem Definition Ohrs_AuthSystem =1 B Administrator
WeavingMode! S User mmm - Madel Handler Chrs I & MethodAccess
2 s "3 usemame : Estring Model Handler Authsystem | B34 ExecuteMethod : execute
B JRE System Library [JavasE- ' _ * 45> Mode User -3 MethodLogin : method
B, Plug-in Dependencies & passward : Estring -4 Node username ! © MethodLogout : method
META-IHF 4 log_in{ussrname | EString) ; void “oof] UnkLeft usermame B3¢ ReadMethod : read
(= model B Iog_out{usermame : E3 (% Node passward I “H- DelateMethod : delete
E AuthSystem pdm - E Customer m—— - Node log_in EnkityAccess
; . Ohrs.umimetamodel - [Administrator I -5 Node log_out I 3¢ ReadEntity : read
¥ WeavingMadel.weaving i Hotel =[] Link Left User K UpdateEnitity : update
£ old 2B UnitType i w4 o Customer | A DeleteEntity : delete
- B Booking EJ45 Mode Administrator 4 N - ¥ SystemAccess
& H payment =<5 Node MethodAccess ~J Updatesystem : update
s =“E* Node ExecuteMethad 3¢ ReadSystem : read
1 Eu- Data Type Estring ; S Mode MethodLogin r- B user
-l Data Type Elnt * Mode MethadLogout @ Name : string
) B Data Type EDate {J= Link Right ExecuteMethod @ Address : string
Left links -E% Data Type EDouble <& Node ReadMethod B Age:int
log_in < Node DeleteMethod ¥ Password : string
log_out = Link Right Methodéccess ~-L} Login : boolsan
. . view_availability -7 Node EntityAccess ﬂ Logout ; boalean
ng ht links book_unit = (-5 Node Systemfccess I =B Guest
canc; it -5 Hade Liser - - & Methodhccess
- = Link Right Administrator & EntityAccess
reservation_status 45> Node Guest o Systemdccess
[l | cancellation_status =] B user

Selected Object: Historic

Fig. 10. Use of SWT4MDE for creating weaving model between PIM and PDM.

Resource - WeavingMod

File Edt Mavigate Search Project
i EEY RIV-FL 3

L7 Project Explorer &3

PdmMode

¢ FimModel

J Weavinghadel
[src

B Plug-in Dependendies
47 META-INF
== model

- E AuthSyster

Ohrs. umimetamodel
WeavingModel.weaving

Bl JRE System Library [JavasSE-1.7]

ntermediateModel.intermediate - Eclipse Platform

Intermediate Editor Sample Run Window Help

- - L= - |Qu|cknccess

=R
=l 0IntermediateModeI.\ntermediate 2

-

r[\h Resource Set

%\ | ||-D Resource

= g

=] 6 platform: fresource/WeavingModel fmodel/IntermediateModel intermediate. &

0r}‘_____

&% Merge Ohrs_authSystem
(W) Class User
- B Method log_in
B! By Method log_out
Property user_jd
Propetty user_name
Propetty user_passi
Property user_addr
Property user_phone
Property user_email
55 CustomerRale
Propetty role_id
Property role_level
(W] Class AdministratorRole
(W] Class GuestRole
--[W] Class MethodaccessPermission
Property permission_id
Property default
Property value
lass EntityAccessPermission
lass SystemAccessPermission
lass ExecuteMethodAction
Property action_id
Propetty action_target
Propetty action_type
lass ReadEntityAction
lass UpdateEntityAction
lass ReadSystemaction
lass HotelEntityResource
Property resource_id
Propetty resource_type
Propetty reference
Property hatel_id

LJ

)

4--

- c
[
[

==

o
o
[
Cl

e g

Merging of the
class User from
PIM and the
element User
from PDM

Assigning features
of the Roles from
PDM to the class
Customer from PIM

Merging
features of the
Resource from

n bou kol w
Selection | Parent | List | Tree | Table | Tree with Calumns |

o IntermediateModel. intermediate - WeavingModel/maodel

I PDM with class
l Hotel from PIM

Fig. 11. Intermediate model of the illustrative example.

127

Volume 11, Number 2, February 2016

INTERMED
Bo DL=/Interm
3 module intermsdiatsZwsdl;
create OUT : WSDL from IN : INTERMEDIATE;
rule Merge2Definition {
from merge : INTERMEDIATE!Merge

n : WSDL!Defi
nams <- 'Service ' + merge.nams,

o

1o o

to definitia on |

] targetNameSpace <- 'urn://' + merge.name + ".wsdl’'

11 }
rule ClassZ3ervice [
from class : INTERMEDIATE!Class
to service : W3DL!3ervice |
nams <- class.nams,
ownerd3erv <— class.mergs,
port <- port
)y
port : WSDL!Port |
name <—- class.name + 'Port',
binding <- binding
)i’
binding : WSDL!Binding |{
name <-— class.name + 'Binding'
ownerBind <

class.merge,
type <— portType

portType : WSDL!PortTypes |
name <- class.names,
ownerPTyp <—- class.merge,
binding <- binding

Listing 1. Transformation Definition written in ATL to generate an Abstract PSM from an Intermediate
Model

-
=2 @ platform:fresource/IntermediatezWSDLmodels/psm_wsdl.xmi
Bl Definition Service_Ohrs_AuthSystem

ATL - Intermediate2WSDL /models/psm_wsdl.xnr ipse [< Types user_id I
Fle Edt Navigote Sesrch Project Somple Refecive EforSample Run w\rI 4 Types user_name
ity SRF SRR SR RPN Te= Rt SR i [4 Types user_password I
T .
ud 4 Types user_addr — e o o . o oy
L7 Project Explorer 53 = B G psw_wsdxmi 52 I """ 4 Types user_phone 4 Message log_in
=% v OB dfonpeorenten 4 Types user_email 4 Message log_out
= . = El- 4 Defintion Service) § i Tvpes role_id . ol
5B emadstezveo. =l e . i ¥p & vl <4 Message view_availability
Fmetamodels o EEEEEESS @ s Tvpes role_level .
B+ models 4 Types user n%l - s S . 4 Message book_unit
=) IntermediateMode] intermediate % Tepes user_pfsword

<4 Message cancel_unit
< Message view_availability
I N S -

A Types useg addr
4 Types @€ phone
= 4 Types user_email

351 intermediate2wsdl, asm 'i’es role_id

€] intermediatezwsd, atl vpes role_level
2] javawszeode, asm o Types rale_d

) javawszcode.at & Trossole el
51 wedlzjavaws. ag -4 Types role_id

€ wsdiziavams. < Types role_level
45| ¥ javamszcods. oz ypes permission_id
£ % javawszeode.atl
= Intermedistelistamodel
IntermediateMetamodel . edit

ol psm_javaws smi

i
----- <~ Part Type User

----- < Port Type CustomerFols

----- < Port Type AdministrakorRols

----- < Port Type GuestRole

----- < Port Type MethodfccessPermission

-
I I
] I
- -
l I
I I
s value . L S pgrtTﬁe Eﬂancﬁpermlssmn 4
I I
I I
Loss
I
I
Jd

—-—

----- 4 Binding UserBinding

----- 4 Binding CustomerRoleBinding

----- 4 Binding AdministratorRoleBinding

IntermedisteMetamaodel editor
(= TavaWebServiceshetamodel " vpes value
JavawebServicesMetamods], edit ~ 7 Types permission_id
JavahebServicestetamodel, editor < Types default
PDMMetamadel wpes value

o Pt edt DO i A [4 Binding GuestRoleBinding
POMMetamodel. aditor 4 Types Mgpn_target
POMMetamodsl, tests b Typesactiongoe L e 4 Binding MethodaccessPermissionBinding
UMLMetamadel -4 Types action_i

""" + B|nd|ng Ent|twﬁ.ccessPerm|ssmnB|ndlng

(=) UMLMetamads edit -4 Types action_target \
UMLMetamodel editar -4 Types action_tvpe

"‘:?' SBrwce Llser

UMLMetamodsl tests b 4 Types action_d \
WeavingMetamodel & Types action_target -4 Service CustomerRole
(= weavingMetamodel, sdit 4 Types action_type \ ’ -
WeavingMetamadel, ediar - | 'i Types action_d I < Service AdministratorRale
e minnatamarsl Facke = Types action_targst = i
o e ~ < Service GuestRale
L& pem_wsdl.xmi - Intermediate2WSDL{madels \ + service MethoddcoessPermission

L -4 Service EntibyAccessParmission
— _— — _— — _—
Fig. 12. Abstract PSM based on web services.

128 Volume 11, Number 2, February 2016

Fig. 12 presents the abstract PSM based on Web Services generated by the transformation definition
described in Listing 1. The abstract PSM presents the Definition for Web Services Ohrs_AuthSystem. This
Definition contains elements representing Types, Messages, Port Types, Bindings and Services. The
elements are directly related to Intermediate Model, in which Properties, Methods, Classes, and some Class
features are transformed into Types, Messages, Services, Port Types and Bindings respectively.

The framework presented in Fig. 1 and the methodology presented in Figure 2 are applied until
generating the final source code. Listing 2 presents a source code of one generated file
“AdministratorOperationResource.java”.

The class AdministratorOperationResource has attributes and methods resulting from the weaving
model. At this point, it is noted that the weaving tool has merged the two input models. The references of
the element Resource from the security model is merged with the Administrator operations of the business
model. This class is created taking a new structure in which specific operations abstracted from business
model are defined as resources to a specific role (Administrator) from security model. The same happens
with the other elements of business model that are abstracted as users, roles and resources, and have their
actions controlled by the respective granted permissions based on user roles.

1 package Service Ohrs RAuthSystem;

3 import javax.jws.WebMsthod;
4 import javax.]jws.WebParam;
5 import javax.]jws.WebService;

EWebsService ()

public class ARdministratorOperationResource |
E GEJB

10 pubklic /*type*/ resource id;

11 REJB

1z public /*type*/ resource_ type:;

13 REJB

14 pukblic /*type*/ reference;

16 fWebMethod
1 public /*returnType*/ view availability() { //method bedy }
16 EWebMethod

2C public /*returnType*/ book unit() { //method body }

22 EWebMethod
23 public /*returnType*/ cancel unit() { //method body}

Listing 2. Source code for the AdministratorOperationResource.java

5. Related Works

Ritu Sharma and Manu Sood promoted the MDA approach for developing cloud software applications in
order to ensure that software solutions are more robust, flexible and agile, following constant evolving
technologies [15], [16]. However, Ritu Sharma et al do not take care of aspects like security.

Edwark Willink proposed a graphical transformation language which involves small UML extensions to
build a high-level language for model transformations [18]. Edwark Willink proposed the merging
operation to bring together a PIM and additional information platform provided by a PDM in order to
generate a PSM. He does not provide support to integrate aspects like security and his approach is not
applied to cloud computing.

129 Volume 11, Number 2, February 2016

Abdessamad Belangour et al proposed a software development process called M2T (MDATM 2 Tracks)
that provides an implementation of the MDA approach based on the Y development process [19]. M2T is
also based on Y development process like our approach, but we also provide a framework and a
methodology in order to include some aspects like security and we consider PDM as a model to recurrent
models like design patterns.

Marcos Fabro et al proposed the weaving models to improve the database schema evolution in the
context of MDE and provided Eclipse AMW plugin [20-21]. AMW plugin is a generic tool that was
developed and applied to database systems. We also provide a solution based on weaving models, but we
include a methodology and transformation definitions to take advantage of Y development process focusing
in security aspects present in PDMs.

6. Conclusions

In this paper, we have presented an approach to develop a Secure SaaS based on Web Service. We have
presented the PIM (i.e. business model), representing the SaaS application, and PDM model representing
the access control application model. The weaving model relates the PIM and PDM and allows generating an
Intermediate Model. We then take this Intermediate Model and transform it to an Abstract PSM conforms to
Web Services platform. The abstract PSM is transformed into a concrete PSM conforms to Java and Java API
for Web Service. Transformation definition takes as input the concrete PSM and generates source code
based on Java language plus API for Web Services in Java.

We have presented a solution to take care of security concerns that are usually managed as an isolated
feature of the software design process. In our proposed approach, we take care of security from the
beginning thanks to models and model transformation definitions.

The proposed approach brings some benefits, because it improves the software quality, enhancing
security, robustness and flexibility. In this approach, we introduced access control policies based on user
roles for a SaaS application.

Our proposed approach has the following limitations:

e The approach does not cover encryption and data serialization issues. These aspects can be included in
other PDMs, weaving models and model transformation definitions.

¢ The merging process between the business model and the security model cannot occur completely in
an automated form. It is always necessary for a user intervention in order to identify the related
aspects between models (i.e. PIM and PDM) and analyze if the correspondences between model
elements are valid.

Our proposed approach was presented and an illustrative example was proposed to help understand how
the things are going in the development process according to our methodology.

Acknowledgment

The work described in this paper was supported by CAPES, CNPq (Grant 560231/2010-5) and FAPEMA
(Grant UNIVERSAL-00568/14).

References

[1] Baun, C. Kunze, M., Nimis, J., & Tai, S. (2011). Cloud Computing Web-Based Dynamic IT Services. Berlin,
Heidelberg, Bertia: Springer.

[2] Ko, R, & Choo, R. (2015). The Cloud Security Ecosystem: Technical, Legal, Business and Management
Issues. Waltham: Syngress.

[3] Vemulapati,]., Mehrotra, N., & Dangwal, N. (2011). SaaS security testing: Guidelines and evaluation

130 Volume 11, Number 2, February 2016

framework. Proceedings of the 11th Annual International Software Testing Conference.

[4] Favre,]. M. (2004), Foundations of model (driven) (reverse) engineering: Models - episode I, stories of
the fidus papyrus and of the solarus. Post-Proceedings of Dagsthul Seminar on Model Driven Reverse
Engineering. Dagstuhl, Germany.

[5] Bézivin,], Hammoudi, S., Lopes, D., & Jouault, F. (2005). B2B applications, BPEL4WS, web services and.
Knowledge Sharing in the Integrated Enterprise, 183, 225-236. New York: Springer.

[6] Delessy, N. A, & Fernandez, E. B. (2008). A pattern-driven security process for SOA applications.
Proceedings of the Third International Conference on Availability, Reliability and Security (pp. 416-421).

[7] Object Management Group. (2015). Unified Modeling Language (OMG UML) (Version 2.5). OMG
Document Number: Formal.

[8] Lopes, D, Hammoudi, S., Bézivin, J., & Jouault, F. (2005). Generating transformation definition from
mapping specification: Application to web service platform. Advanced Information Systems Engineering
- Lecture Notes in Computer Science, 3520, 183-192.

[9] Basin, D., Doser, |., & Lodderstedt, T. (2006). Model driven security: From UML models to access control
infrastructures. ACM Transactions on Software Engineering and Methodology, 15(1), 39-91.

[10] Alalfi, M. H., Cordy, J. R,, & Dean, T. R. (2012). Automated verification of role-based access control
security models recovered from dynamic web applications. Proceedings of the 14th IEEE International
Symposium on Web Systems Evolution (WSE) (pp. 1-10).

[11] Bézivin,], Hammoudi, S., Lopes, D., & Jouault, F. (2004). Applying MDA approach for web service
platform. Proceedings of the Eighth IEEE International Enterprise Distributed Object Computing
Conference (EDOC) (pp. 58-70).

[12] Steinberg, D., Budinsky, F, Paternostro, M., & Merks, E. (2008). EMF — Eclipse Modeling Framework.
Second Edition. Addison-Wesley Professional.

[13] Lopes, D., Hammoudi, S., & Souza, ., & Bontempo, A. (2006). Metamodel matching: Experiments and
comparison. Proceedings of International Conference on Software Engineering Advances.

[14] de Sousa,]., Lopes, D., Claro, D., & Abdelouahab, Z. (2009). A step forward in semi-automatic metamodel
matching: Algorithms and tool. Enterprise Information Systems, 137-148.

[15] Sharma, R, & Sood, M. (2011). Enhancing cloud SaaS development with model driven architecture.
International Journal on Cloud Computing: Services and Architecture, 1(3), 89-102.

[16] Sharma, R., & Sood, M. (2011). Cloud SaaS: Models and transformation. Communications in Computer
and Information Science, 305-314.

[17] Jouault, E, & Kurtev, 1. (2005). Transforming models with ATL. Proceedings of the 2005 international
Conference on Satellite Events at the MoDELS (pp. 128-138). Berlin: Springer Verlag.

[18] Willink, E. D. (2003). UMLX — A graphical transformation language for MDA. Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the Context of Model Driven Architecture. Anaheim.

[19] Belangour, A., Bézivin,]., & Fredj, M. (2006), Towards a new software development process for MDA.
Proceedings of the European Workshop on Milestones, Models and Mappings for Model-Driven
Architecture (pp. 1-15). Spain.

[20] Del, E. M. D., Bézivin, |., Jouault, F, & Valduriez, P. (2005). Applying generic model management to data
mapping. Proceedings of Base de Données Avancées. Saint-Malo.

[21] Del, E. M. D., Bézivin,]., & Valduriez, P. (2006). Weaving models with the eclipse AMW plugin. Eclipse
Modeling Symposium. Eclipse Summit Europe.

131 Volume 11, Number 2, February 2016

Pablo Matos was born in S3o Luis, MA, Brazil. He received his B.Sc. in information
systems from CEUMA, Brazil in 2009. He received his M.Sc. in computer science from
Federal University of Maranhdo (UFMA), Brazil in 2015. His research interests are
model driven engineering, cloud computing and information security.

Denivaldo Lopes is Ph.D. in computer science by University of Nantes, France. He is
professor at Federal University of Maranhao (UFMA) and his lectures are about system
engineering and development, model driven engineering and computer architecture. His
research subjects are model driven engineering, embedded systems, cloud computing,
security and software testing.

Zair Abdelouahab is Ph.D. in computer science by University of Leeds, United
Kingdom. He is professor at Federal University of Maranhdao (UFMA) and his lectures
are about concurrent programming and distributed systems. His research subjects are
model driven engineering, distributed systems, cloud computing and information
security

132 Volume 11, Number 2, February 2016

