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Abstract: In past four decades, many software reliability growth models (SRGMs) have been proposed to 

enhance the reliability of the software system. During the testing process potential fault sites are sensitized 

to detect the faults. Fault detection probability increases as learning and maturity of the testing personnel 

increases. Therefore, in this paper a time variant fault detection probability has been introduced and 

integrated into s-shaped coverage SRGM. Experimental results shows that the proposed model is better and 

will be helpful to improve the accuracy of the software reliability estimation.   

 
Key words:  exponential fault detection probability, non-homogeneous Poisson process (NHPP), software 
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1. Introduction 

Nowadays, the dependability of the modern society on the software systems is increasing rapidly. 

Therefore, demand of quality software becomes the most challenging task for software professionals and 

researchers. Software testing is one of the major software development activity, which helps in improving 

the quality. The main objective of the software testing is to uncover and removed the inherent and 

introduced faults with minimum expenditure [1]. Software reliability is the essential part of a quality 

software, so it is necessary to enhance the reliability of the software. In past four decades, different 

techniques and methodologies have been developed to improve the quality and reliability of software 

system, still it is a major concern to estimate the remaining software faults present in a software system 

accurately. According to Musa [2], ‘Software reliability is defined as the failure-free operation of a software 

under specified environment and specified time’. Many efforts have been made by researchers to estimate 

and predict the reliability of software through software reliability modeling. In past, various SRGMs have 

been developed with different approaches and assumptions [3]-[16].   

Testing coverage is the one of the important factor which affects the reliability growth of software. It 

helps in developing more efficient test cases. The main objective of the testing coverage analysis is to find 

the fault sites which are uncovered and additional test cases required to increase the testing coverage. 

During the testing process, to detect the faults present at the fault sites, potential fault sites are sensitized 

[1], [17]. One common assumption of the most of the SRGM that the fault present at the potential fault sites 

are detected with constant probability [1], [8]. Which is not realistic and reasonable. In reality, fault 

detection probability increases as the learning and maturity of the tester increases. Therefore, in the 
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present study fault detection probability has been considered as exponential function of time. Moreover, 

different studies have been done considering the various behavior of the testing coverage such as 

exponential, Weibull, s-shaped etc. [1]. Gokhale et al. [17] concluded that the selection of the coverage 

function depends on the criteria which fulfills the user’s specific requirements. The proposed study has 

been carried out with the s-shaped coverage factor.   

Testing coverage factor and fault detection probability can be affected by different factors such as testing 

environment, testing strategy, testing team constitution and efficiency, test case effectiveness, resources, 

etc. Changes in these environmental factors causes change in testing coverage and fault detection 

probability. These points at which changes are possible is known as ‘change point’. The concept of change 

point first introduced by Zhao [18]. Various SRGMs based on the concept of change point have been 

proposed by researchers in past few years [19]-[22]. 

In this paper, a NHPP based SRGM has been developed considering testing coverage. Also, time variant 

fault detection probability function has been introduced and integrated into the proposed SRGM. To study 

the effect of the different environment factor on testing coverage factor and fault detection probability, the 

concept of the change point has been incorporated. 

Rest of the article is organized as follows: related work has been presented in Section2. The assumption 

and formulation of the proposed model has been presented Section 3.  Section 4 contains parameter 

estimation of proposed model and different comparison criteria. Model validation and performance 

analysis has been carried out in Section 5. Finally, section 6 concludes the work. 

2. Related Work 

Applications of testing coverage has been considered by many researches in software reliability growth 

modeling [1], [23]. Initially, Gokhale et al. [17] proposed the NHPP based SRGM with testing coverage which 

is based on the following assumptions: 

1) Software faults are distributed uniformly over potential fault sites. 

2) When a potential fault site is sensitized, fault present at that site is detected with constant probability. 

3) The detected faults are repaired instantaneously without introducing new faults.  

 They [17] have considered three types of fault coverage functions: exponential, Weibull and s-shaped, 

and concluded that the selection of testing coverage function will depend on criteria which fulfils the user’s 

requirement. Latter, many SRGMs have been proposed based on the assumptions of Gokhale SRGM [1], [8].  

3. Software Reliability Modeling 

In this section assumptions and formulation of the proposed model with change point and without 

change point has been presented.  

3.1.   Proposed SRGM 

The proposed model is based on the following assumptions: 

1) Faults are uniformly distributed over all potential fault sites. 

2) Software failures follows an NHPP. 

3) When a potential fault site is sensitized at time t, any fault present at that site is detected with 

probability ( )d t  which increases as learning process increases. 

4) The testing coverage function is an s-shaped testing coverage function, i.e.,    ( ) 1 (1 )exp( )c t bt bt  

where b  is the parameters reflecting the quality of testing.  

5) The detected faults are removed immediately without introducing any faults. 

From the above assumptions mean value function (MVF) of the proposed model can be obtained by the 
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following expression: 

                                                                             
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where a  is  the number of faults which are expected to be detected, (0) 0m , (0) 0d  and (0) 0.c  Since, 

( )d t increases as learning process increases therefore, it will be an increasing function of time. Let 

  ( ) 1 exp( )d t t  where   is the positive shape parameter.  Solving the equation (2) MVF can be obtained 

as: 
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The failure intensity function ( )t  can be obtained by differentiating ( )m t w.r.t. t, i.e.,     
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The conditional reliability of the proposed SRGM can be obtained using the following equation 

 

                 [ ( )- ( )]( | ) m t x m tR x t e                                                                                  (5) 

                                                                                                                         
3.2.  Proposed Model with Change Point  

Due to change in testing strategy, testing environment, testing effort, defect density, etc., change points 

can occur in testing coverage factor and fault detection probability. Therefore, coverage factor and the fault 

detection can be defined with multiple change point as follows: 
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where  i is the change point and i  is the shape parameter for 1,2... .i n  
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where  i is the change point and ib  is the parameters reflecting the quality of testing for 1, 2 . . . .i n Here, 

single change point has been considered to reduce the computational complexity. 
MVF of the proposed model with single change point   can be obtained from the following expression:  

 
                                       ( ) (0, ] ( , ]m t m m t                                                                             (8) 

Using equation (2) and (8) MVF can be written as: 
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Solving the above expression with (0) 0id  and (0) 0ic for 1,2,i MVF of the proposed model can be 

obtained as follows: 
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Failure intensity and conditional reliability of the proposed model can be obtained from equation (4) and 

(5). 

4. Parameter Estimation and Comparison Criteria 

In this section parameter estimation technique of the proposed model and different comparison criteria 

has been discussed.  

4.1.  Parameter Estimation 

The unknown parameters of the models has been estimated with least square technique using SPSS [1].  

The position of change point has been obtained using ‘changepoint’ package in ‘R’ software [24].  

4.2. Comparison Criteria  

The following comparison criterion have been used to evaluate the performance of the proposed model.  

4.2.1. Mean square error (MSE)  

It is defined as [7]: 

 

                  MSE

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                                                                     (11) 

where 
i

y  and 
i

ŷ  are the observed and predicted faults respectively, n is the total number of observations. 

4.2.2. Bias 

It is defined as the sum of the deviation of the estimated curve from the actual data, defined as [1]: 
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smaller value of bias is better goodness of fit. 

4.2.3. Variance 

It is defined as follows [1]: 

 

             Variance = 

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
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smaller value of variance is better goodness of fit 
 

4.2.4. The 100p% upper and lower limit for m(t) 
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It has been given by [25] and defined as follows: 

 

ˆ ˆ( ) ( )pm t m t   and  ˆ ˆ( ) ( )pm t m t  

 

 The bounds of m(t) approximatlely as follows: 

 

    ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )p pm t m t m t m t m t  

 

where ˆ ( )m t  is the estimate of ( )m t  and p  is the 


(1 )
100

2

p  percent point of the standard 

5. Model Validation and Performance Analysis 

In this section a numerical example has been shown to evaluate the performance of the proposed model. 

For this purpose a real software failure data set has been taken which is published in [26] as first data set. 

This data set contains 481 cumulative number of faults during 111 days test period. The estimated 

parameters of the proposed model has been given in Table. 2. Change point for this data set is found at 

position 48.  

 

Table 1. SRGMs with Coverage Factor 
Model 
 

Mean Value Function 
 

Proposed model (M1) Equation (3) 

Proposed model with change point (M2)  Equation (10) 

Exponential coverage model (M3) [17]    ( ) (1 exp( ))m t a bt  

Weibull coverage model (M4) [17]   ( ) (1 exp( ))km t a bt  

S-shaped coverage model (M5) [17]    ( ) (1 (1 )exp( ))m t a bt bt  

                                         

Table 2. Estimated Parameters and Different Comparison Criteria. 
 
Model 

Estimated Parameters Comparison Criteria  
a b1 β1 b2 β2 k MSE Bias Variance R2 

M1 488.164 0.066 6.315 -- -- -- 326.4452 -1.2998 18.2901 0.9854 

M2 481.00 0.068 1.680 0.065 5.251 -- 320.2596 -0.1070 17.9779 0.9856 

M3 538.070 0.026 -- -- -- -- 791.9191 5.5716 27.7091 0.9645 

M4 483.994 0.005 -- -- -- 1.501 356.1546 -6.7148 22.2685 0.9840 

M5 489.112 0.065 -- -- -- -- 332.5846 -2.5593 18.8530 0.9851 

 
   From the Table 2, it is clear that the estimated total number of faults by proposed model without 

change point is 488.164 488 which is very close to the actual number of faults, i.e., 481. It means 7 faults 

are still present in the software at the end of the testing. Besides the estimated number of faults by 

proposed model with change point is 481.00 which is exactly equal to the actual number of faults present in 

the software. It means no faults are present in the software at end of the testing.  As shown in Table 2, 

testing coverage and fault detection probability increases after change point. This shows the realistic 

behaviour of testing coverage and fault detection probability. 
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            Fig. 1. Estimation of cumulative faults without         Fig. 2. Estimated cumulative number of faults   
                             change point using proposed model.                            with 95% confidence bound.    
 

From Table 2, it is clear that MSE, Bias, Variance and R2 of the proposed models is lowest in comparison 

to the other models mentioned in Table 1, which shows that the proposed models are better in compare to 

the other models. While the proposed model with change point is producing lower value of MSE, Bias, 

Variance and R2 than the proposed model without change point. It means change point plays a significance 

role to improve the performance of the proposed model. Graphical representation of faults estimated by the 

proposed model without and with change point has been shown in Fig. 1 and Fig. 3 respectively. 95% 

confidence bound of the estimated faults by proposed model without change point and with change point 

has been shown in Fig. 2 and Fig. 4 respectively. From these figures it is clear that the pattern of the 

estimated faults are very close to the actual faults. Hence, proposed model is better fit for given data set.  

 

                  
                       Fig. 3. Estimation of cumulative faults with        Fig. 4. Estimated cumulative number of faults   
                                   change point using proposed model.                           with 95% confidence bound.    
 

6. Conclusion  

In this paper, a SRGM has been proposed with fault coverage and change point introducing the time 

variant fault detection probability. S-shaped testing coverage function and exponential fault detection 

probability has been considered in the proposed model. Real software failure data set has been used to 

validate the proposed model. Experimental results established the fact that the proposed model is better 

than the other models. Also, the proposed model is more flexible and realistic. Hence, the proposed models 

can be very helpful for industry and software professionals to improve the quality of software. 
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