

Simplification of Abstract Machine for Functional

Language and Its Theoretical Investigation

Shin-Ya Nishizaki*, Kensuke Narita, Tomoyuki Ueda

Department of Computer Science, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, Japan.

* Corresponding author. Tel.: +81-3-5734-2772; email: nisizaki@cs.titech.ac.jp
Manuscript submitted February 18, 2015; accepted March 4, 2015.
doi: 10.17706/jsw.10.10.1148-1159

Abstract: Many researchers have studied abstract machines in order to give operational semantics to

various kinds of programming languages. For example, Landin's SECD machine and Curien's Categorical

Abstract Machine are proposed for functional programming languages and useful not only for theoretical

studies but also implementation of practical language processors. We study simplification of SECD machine

and design a new abstract machine, called Simple Abstract Machine. We achieve the simplification of SECD

machine by abstracting substitutions for variables. In Simple Abstract Machine, we can formalize first-class

continuations more simply and intelligibly than SECD machine.

Key words: Programming language theory, lambda calculus, first-class continuation, abstract machine.

1. Introduction

Many researchers have proposed abstract machines in order to give operational semantics to various

kinds of programming languages, such as Landin's SECD machine [1], [2] and Curien's Categorical Abstract

machine [3], [4]. From the theoretical viewpoint, there are many kinds of researches of abstract machines.

Graham formalized and verified implementation of SECD machine using the HOL prover [5]. Hardin et al.

formulated abstract machines for functional languages in the framework of explicit substitutes [6]. Ohori

studied abstract machines from the proof-theoretic approach [7]. Curien et al. investigated Curry-Howard

isomorphism with respect to jump instructions in abstract machines [8].

We study simplification of SECD machine in order to clarify the continuation in the framework of abstract

machine. The traditional abstract machines, such as SECD machine, consist of complicated internal

configurations. SECD machine has four data sequences: Stack, Environment, Code, and Dump. It is not

unclear which components correspond to the continuation. Simplifying SECD machine, we obtain a clear

formalization of continuation in the framework of abstract machine. We call it the Simplified Abstract

Machine (SAM).

2. Simple Abstract Machine

In this section, we define an abstract machine based on a call-by-value evaluation strategy, called, the

Simple Abstract Machine (SAM). We can regard SAM as a simplified version of the SECD machine, which is

explained in a later section.

The three kinds of atomic symbols, primitive functions, numerals, and variables, are given in advance of

1148 Volume 10, Number 10, October 2015

Journal of Software

the definition of instructions and codes. Numerals represents integers such as 0,1,2,3,…,-1,-2,-3,... We

represent numerals by n, n’, …, and variables by x, y, z,…, respectively. In this paper, we consider only the

successor function on numerals, s, for simplicity's sake.

Definition 1 (Instructions and Codes of SAM) Instructions and Codes of SAM are defined inductively by

the following grammar.

The expression lam (x, C) is called a lambda abstraction and app an application. To simplify the

instruction set, we postulate that the primitive functions are unary. We use I, I’, I1, I2,… for instructions and

C, C’, C1, C2,… for codes.

Definition 2 (Instructions and Codes of SAM) A set of Values is a subset of the set of instructions,

defined by the following grammar. Each element of Values is called a value.

Definition 2 (Transition of SAM) A configuration of SAM is represented as a pair (S, C) of a stack S,

which is a sequence of value, and a code C. Computation of SAM is formulated as transition between

configurations defined by the following rules.

num

prim

app-lam

app-prim

where

The rules num, prim, and lam intend that a value on the code component is pushed to the stack

component as an actual parameter which will be bound later.

The rule lam means that if you find an application instruction app at the head of the code component,

then the actual parameter V is bound to the formal parameter x and the body of the function C'[x: = V] is

evaluated.

We show an example of translation sequence of SAM.

Example 1 (Transition Sequence of SAM) Consider a code

The following is a transition sequence starting with a configuration of an empty stack and the code. We

write the empty sequence as { }.

 (lam)

 (num)

 (app)

 (prim)

 (num)

1149 Volume 10, Number 10, October 2015

Journal of Software

 (app-prim)

 (app-prim)

 5 (app-prim)

Next, we give a translation of SAM into the call-by-value lambda calculus. Before giving the definition of

the translation, we introduce the call-by-value lambda calculus.

3. The Call-by-Value Lambda Calculus

In this section, we present the call-by-value lambda calculus.

Definition 4 (Terms) Terms of the lambda calculus are defined inductively by the following grammar:

Definition 5 (Values) Values are defined inductively by the following grammar:

The set of values is a subset of the set of term. The values defined above are the terms that cannot be

reduced by the call-by-value reduction introduced below.

Definition 6 (Evaluation context) A context is a term with a hole []. Evaluation contexts for

call-by-value evaluation are contexts defined inductively by the following grammar:

The following property on evaluation contexts is trivially derived.

Proposition 1. For every term M, there exists an evaluation context E[] and a value V satisfying that

Definition 7 (Call-by-value reduction) The call-by-value reduction is a binary relation between terms

defined inductively by the following rules.

beta-cbv

In this paper, we assume the successor function on natural numbers as primitive.

prim where

For example, a function symbol s which means successor function, it is defined as

Since the left-hand side of the reduction rules are not overlapped each other, we have the uniqueness of

the call-by-value reduction.

We finish this section with an example of reduction sequence of the call-by-value lambda calculus.

Example 2 (Reduction Sequence) We show a reduction sequence of a term .

1150 Volume 10, Number 10, October 2015

Journal of Software

 (beta-cbv)

 (prim)

 5 (prim)

4. Translation of Call-by-Value Lambda Calculus into SAM

The code components of SAM are assumed to be given as results of the following translation of lambda

terms.

Definition 8 (Translation of lambda terms to codes)

A translation mapping [| M |] of lambda terms M can be given as

Example 3 (Translation of Terms into Codes) Consider a lambda term , where s is a

unary primitive function and 3 is a constant. The term is translated as follows.

 .

The translation maps a value of the call-by-value lambda calculus to a value of SAM.

Proposition 2. For a value V of the call-by-value lambda calculus, [| V |] is a value of SAM.

Definition 9 (Translation of Terms into Configurations) For a term M, a sequence of values V1,…, Vm,

and a sequence of terms L1,…,Ln, we define a mapping

to a configuration inductively by the following rules.

We can extend the translation on the evaluation contexts by adding the rule for the hole:

1151 Volume 10, Number 10, October 2015

Journal of Software

Example 4 (Translation of Terms into Configurations) A term ((λx. (s (s x))) 3) is translated to a

configuration as follows.

Another example of the translation is as follows.

This translation maps evaluation contexts to a pair of stack's and code's subsequences. The following

proposition is straight-forwardly proved by induction on context E[].

Proposition 3. For an evaluation context and a value, there exist

 and ,

Proposition 4.

Proof. We prove this proposition on the structure on the evaluation context E [].

Case of empty context [].

Case of (W E[]), where W is a value.

because of the induction hypothesis. On the other hand,

Hence,

Case of (E[] M),

 because

of the induction hypothesis,

1152 Volume 10, Number 10, October 2015

Journal of Software

End of Proof.

Theorem 1 (Soundness of Translation) For any term M, L’1:⋯:L’n’, and values V’1:⋯:V’m’ , if M → M’,

then it holds that

 .

Proof. M → M’ is derived from reduction rule beta-cbv or prim.

Case of beta-cbv:

This is derived as follows. We abbreviate L’1:⋯:L’n’ as L’n’ .

 = since Proposition

3,

 : :) (: , :) since Proposition 4= [] , .

Case of prim:

 where

This is derived as follows.

 where

End of Proof.

5. Simple Type System for SAM

In this section, we give a simple type system to SAM. The point of the simple type system is that functions

can be typed of function type. For example, a function of numbers to numbers is of type (num → num) and

a function of such kind of functions to numbers of type ((num → num) → num).

Definition 10 (Types of SAM) Types of SAM are defined inductively by the following grammar.

Type num is a primitive type which represents the set of non-negative integers. Type (A → B) represents

the set of functions whose domain is A and codomain B.

Definition 11 (Typing of Codes) Type judgment Γ ⊢ C : A is defined inductively by the following rules,

which means that C is of type A under type assignment Γ.

A type assignment Γ is a mapping whose domain is a finite set of variables and codomain is the set of

types. If a type assignment maps x1,…, xn to A1,…, An respectively, then we write it as {x1: A1}⋯{xn : An}.

1153 Volume 10, Number 10, October 2015

Journal of Software

 , ,

,

where C1 : C2 is a concatenation of code sequences C1 and C2.

Example 5. In Fig. 1 shows a typing derivation tree for the term lam(x, s : s : x : app : app) : 3 : app which

appears in Example 1.

Fig. 1. Typing derivation tree.

Definition 12 (Typing of SAM’s configurations) Typing of SAM's configurations is defined inductively

by the following rules. A typing judgment for configurations is written as

which is read as “configuration (S , C) is of type A.”

where rev(S) means the reversed sequence of S.

Reduction on SAM configurations preserves their typing during computation, which is called Subject

Reduction Theorem. The following lemma is required in order to prove the subject reduction theorem:

 If {x : A} Γ ⊢C : B and Γ ⊢ C’ : A, then it holds that Γ ⊢C[x := C’] : B.

Proof. We prove this lemma by induction on structure on derivation of {x : A} Γ ⊢ C : B.

Case C = n. Suppose that {x : A} Γ ⊢ C : B and Γ ⊢ C’ : A.

By the typing rule, we have Γ ⊢ n : num, that is, Γ ⊢ C[x ≔ C’] : B. Case C = x. Suppose that { x : A } ⊢ x : A

and Γ’ ⊢ C’ : A.

From the assumption, it holds that Γ ⊢ C [x ≔ C’] : A.

Case C = (C1 : C2 : app). Suppose that

 and

From the former assumption,

 and

1154 Volume 10, Number 10, October 2015

Journal of Software

Lemma 1 (Substitution Lemma)

By the induction hypothesis,

 and

Therefore,

Case C = lam(y, D). We may assume that y does not equal to x, because of bound variable convention.

Suppose that

 and

From the former assumption,

By the induction hypothesis,

and by the typing rule, it is derived that

Since

we have

End of Proof.

Theorem 2 (Subject Reduction Theorem) If (S, C) → (S’, C’) and ⊢ (S, C) : A, then it holds that ⊢(S’,

C’) : A.

Proof. This theorem is proved by structural induction on transition.

Case of rule num. Suppose that (S, n : C) → (n : S, C) and ⊢ (S, n : C) : A. Since ⊢ (S, n : C) : A, we have

⊢ (rev(S):n : C) : A. Since rev(S) : n : C = rev(n : S) : C, we know ⊢ (rev(n : S) : C) : A. Hence, ⊢ (rev(n : S),

C) : A.

Case of rules prim and lam. We can prove these cases, similarly to the case of num, since we have

Case of rule app-lam. Suppose that

1155 Volume 10, Number 10, October 2015

Journal of Software

By typing rules, we know that code lam(x, C’) : V : app is typable. Therefore, there is some type B

satisfying that

 and

On the other hand, by using Lemma 1, we know that ⊢ C’ [x ≔ V] : D. Then, replacing lam(x, C’) : V : app

with this code, we obtain that

Case of rule app-prim is similar to this case.

End of Proof.

6. Extension of First-Class Continuations to SAM

In this section, we formulate first-class continuations in the framework of SAM. Continuations have been

understood as evaluation contexts in the call-by-value lambda calculus. In SAM, the evaluation contexts are

equivalent to the configurations of SAM. In the terminology of reflective programming, the following two

notions are fundamental. In order to introduce mechanism of first-class continuation into SAM, we should

give them to SAM.

Reification: lowering abstract machine's configuration down to object-level,

Reflection: raising reified abstract machine's configuration upto meta-level.

Programming language Scheme provides reification and reflection through

call-with-current-continuation

(abbrev. call/cc) and procedure call, respectively. If we remember that evaluation contexts are equivalent

to continuations in the call-by-value lambda calculus, we can introduce call/cc into SAM as follows.

Definition 13 (SAM with First-class Continuations) We define Simple Abstract Machine with

First-class Continuations, SAMcall/cc by the following rules.

abort

callcc

The former primitive, abort, represents a global exit, like Unix's exit, which is required for eliminating the

current continuation.

Definition 14 (Typing Rules for SAM callcc) We define typing for SAM callcc by the typing rules of SAM

and the following typing rules for callcc and abort.

where ϕ is the top-level type, that is, the type of the whole code which SAM executes. This technique is also

found in the lambda calculus with first-class continuations [9].

7. Comparison between SAM and SECD Machine

In this section, we attempt a comparison between SAM and SECD machine. A configuration of SECD

1156 Volume 10, Number 10, October 2015

Journal of Software

machine is represented as a quadruple of four sequences: Stack, Environment, Code, and Dump, which is

the origin of the word “SECD.” Computation of SECD machine is formulated as transition between

configurations by the following rules.

num

prim ,

ret

var ,

lam

app-lam

app-prim

There are minor difference among the literatures [1][2][5][6][10]. In this paper, we follow the papers [1],

[10] and use theirs terminology. Although N is firstly evaluated and then M is secondly done, in evaluation of

(M N) in many literatures, we assume that M is firstly evaluated, then N is secondly done, and finally the

value of N is bound to the formal parameter of M.

There is a crucial difference about variable reference between SAM and SECD machine. In SAM, you

formalize variable reference as substitutions. On the other hand, in SECD machine, you formulated it as the

second component “Environment” of its configuration. Access of a variable to Environment E is provided by

lookup(x, E) and update of binding of x to v by [x ↦ v] E.

We can regard an environment in an evaluator of functional languages including SAM as a substitution

whose application is delayed. In transition rule app-lam,

Body C’ of function closure lam(x, C)[E’] is evaluated under environment (x ↦ v):E’. Since the rest of

Code C should be evaluated under stack S and environment E, the triple of S, E and C is stored in the dump.

The purpose of environments in SECD is to make rewriting of code sequences needless. If you observe

code sequences in SECD's transition rules, we know that codes are truncated or replaced entirely. In other

words, codes appearing in SECD are subsequences which shares the tail part of the code sequence given

initially. You can represent such tail subsequence as its starting index. Therefore, the third component C

of each SECD configuration is not actually required to be represented as a sequence but an index, which is

an important optimization in its implementation.

8. Conclusion

In this paper, we proposed the Simple Abstract Machine in which call-by-value evaluation strategy is

incorporated, and give the simple type system to it. Further, we showed an extension of SAM by adding

first-class continuations. In a previous version of this paper, SAM was proposed and presented the

extension of adding first-class continuation. This paper is a further improved version. In this paper, we

develop the fundamental mathematical properties such as soundness of the translation of the lambda

calculus into SAM, which was not established in the paper.

9. Future Works

We present several future directions of our work.

In this paper, we gave an informal explanation of how to simplify SECD machine to get SAM. We apply

1157 Volume 10, Number 10, October 2015

Journal of Software

such simplification more formally to the other kinds of abstract machine, like FAM [12] and LAM [7].

SAM is based on call-by-value evaluation strategy. On the other hand, Krivine machine [13] is known as

an abstract machine based on call-by-name evaluation strategy.

 where

In Krivine machine, a variable environment provides variable reference. If you use substitution in the

SECD machine similarly to SAM, then we can simplify it as

A major difference between SAM and the simplified Krivine machine is that you formulate the former

code as a sequence, however the latter as a tree structure. We may say that the Simple Abstract Machine is

much nearer to abstract machine implementation than the Krivine machine.

Many researchers [9], [14]–[17] have studied the duality between call-by-value and call-by-name

evaluation strategies. A dual version of call-by-value SAM is also to be studied in future.

Acknowledgment

This paper is based on a previous version [11]. This work was supported by Grants-in-Aid for Scientific

Research (C) (23400009).

References

[1] Landin, P. J. (1964). The mechanical evaluation of expressions. The Computer Journal, 6(4), 308– 320.

[2] Henderson, P. (1980). Functional Programming: Applications and Implementation. Prentice Hall, 1980.

[3] Cousineau, G., Curien, P. L., & M. Mauny. (1987). The categorical abstract machine. Science of Computer

Programming, 8(12), 173–202.

[4] Leroy, X. From Krivine’s machine to the CAML implementations. Retrieved 2005, from

http://gallium.inria.fr/ ~xleroy/talks/zam-kazam05.pdf

[5] Graham, B. T. (1992). The SECD Microprocessor: A Verification Case Study. Kluwer Academic Publishers.

[6] Hardin, T., Maranget, L., & Pagano, B. (1996). Functional back-ends within the lambda-sigma calculus.

Proceedings of the 1996 International Conference on Functional Programming (pp. 25–33).

[7] Ohori, A. (1999). The logical abstract machine: A curry-howard isomorphism for machine code.

Proceedings of the Fuji International Symposium on Functional and Logic Programming.

[8] Curien, P. L. (2000). Abstract machines, control and sequents. Lecture Notes in Computer Science.

[9] Griffin, T. G. (1990). A formulae-as-types notion of control. Proceedings of the Conference Record of the

Seventeenth Annual ACM Symposium on Principles of Programming Languages (pp. 47-57).

[10] Field, A. J., & Harrison, P. G. (1988). Functional programming. International Computer Science Series.

[11] Narita, K., & Nishizaki, S. (2010). A simple abstract machine for functional first-class continuations.

Proceedings of International Symposium on Communication and Information Technologies (pp.

111–114)

[12] Cardelli, L. (1984). Compiling a functional language. Proceedings of the Symposium on LISP and a

Functional Programming (pp. 208–217).

1158 Volume 10, Number 10, October 2015

Journal of Software

[13] Amadio. R. M., & Curien, P. L. (1998). Domains and Lambda-Calculi. Cambridge University Press.

[14] Filinski, A. (1989) Declarative continuations: An investigation of duality in programming language

semantics. Category Theory and Computer Science.

[15] Curien, P. L., & Herbelin, H. (2000). The duality of computation. Proceedings of the 5th ACM SIGPLAN

International Conference on Functional Programming (pp. 233–243). ACM.

[16] Kakutani, Y. (2002) Duality between call-by-name recursion and call-by-value iteration. Proceedings of

CSL 2002.

[17] Wadler, P. (2003). Call-by-value is dual to call-by-name. Proceedings of the 8th ACM SIGPLAN

International Conference on Functional Programming. ACM.

Shin-Ya Nishizaki is an associate professor of computer science at Tokyo Institute of Technology, Japan, where

he leads a research group on formal theory on software systems. He received his bachelor's, master’s and

doctorate degrees from Kyoto University, in mathematical science. Before joining Tokyo Institute of Technology

in 1998, Dr. Nishizaki held appointments in computer science as an associate professor at Chiba University for 2

years and an assistant professor at Okayama University for 2 years.

Kensuke Narita received his bachelor’s and master’s degrees from Tokyo Institute of Technology in 2009 and

2011, respectively. He now is working in Hitachi, Ltd.

Tomoyuki Ueda received his bachelor’s and master’s degrees from Tokyo Institute of Technology in 2001 and

2003, respectively. He now is working in Sanden Shoji, Co. Ltd.

1159 Volume 10, Number 10, October 2015

Journal of Software

