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Abstract: In the last years, that amount of data stored in databases has increased extremely with the 

widespread use of databases and the rapid adoption of information systems and data warehouse 

technologies. It is a challenge to store and recover this increased data in an efficient method. This challenge 

will potentially appeal in database systems for two causes: storage cost reduction and performance 

improvement. Lossy compression in databases can return better compression ratios than lossless 

compression in general, but is rarely used due to the concern of losing data. For relational databases, using 

standard compression techniques like Gzip or Zip don't take advantage of the relational properties; since 

these techniques don't look at the nature of the data. In this paper, we propose a database compression 

system that takes advantage of attributes semantics and data-mining models to find frequent attribute 

pattern with maximum gain to perform compression of massive table's data. Furthermore, the suggested 

system relies on augmented vector quantization (AVQ) algorithm to achieve lossless compression version 

without losing any information. Extensive experiments were conducted and the results indicate the 

superiority of the system with respect to previously known techniques.   
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1. Introduction 

With the widespread use of databases and data warehousing technologies, the amount of data stored in 

databases has increased tremendously. It becomes attractive to compress data in database systems. 

Relational data is quite different from the text and multimedia data, because many semantic structures (e.g., 

data dependencies and correlations) exist within relational data. Database compression techniques can 

have a positive cost effect not only on the storage and transfer of data, but also in the areas of database 

security, backup and recovery procedures, as well as enhancing database performance. Yet, database 

compression introduces several problems such as data property disruption, portability, and system 

complexity. Database compression adds a layer of complexity to the design, implementation, and operation 

of a database system. Designers are reluctant to accept the additional complexity [1], [2]. 

As with any compression technique, the effectiveness of compressing the data not only depends on the 

system, but also depends on the characteristics of the data in the system. The following data characteristics 

offer a brilliant environment for the application of database compression techniques [1]: 1) Sparseness, in 

sparsity database fields tend to have large clusters of zeros, blanks, or missing data indicators. Sparseness is 
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the most important property in determining the overall compression percentage that could be achieved in 

the database. 2) Frequency, in large textual databases characters with alphanumeric attributes don't occur 

with the same frequency. This can be taken advantage of redundancy codes. In general, effective table 

compression techniques that are semantic in nature exploits both 1) the meanings and dynamic ranges of 

individual attributes (e.g., by taking advantage of the specified error tolerances); and, 2) existing data 

dependencies and correlations between attributes in the table [3].  

Data redundancy occurs when strings of data patterns are predictable, and therefore carry little or no 

new information. Finding and exploiting this redundancy in databases is the basis for any data compression 

technique. There are four basic types of redundancy present in databases that include: character 

distribution, character repetition, high-usage patterns, and positional redundancy; with some databases 

having a mixture of types; see [1] for more details. To apply data compression to databases, the 

compression scheme must satisfy the following requirements: 1) lossless compression, as the exact 

information must be preserved; 2) fast compression/decompression for databases in active uses [2]. Our 

proposed compression system relies on the data mining approach to extract high-usage patterns in the 

table; so patterns that will appear with relatively high frequency can be represented (coded) with fewer 

bits. 

Traditional "syntactic" database compression methods, such as Lempel-Ziv, simply treat the table as a 

large byte string and operate at the byte level. Thus, they fail to exploit the semantic structures in the 

relation (table) [2], [4]. The tradeoff in such case is usually between the ease of retrieval (the ease with 

which one can retrieve a single tuple or attribute value without decompressing a much larger unit) and the 

effectiveness of the compression. Typically, compressing a database in this fashion can produce a 

compression factor between 2 and 4, i.e. the compressed database is one-half to one-quarter its original size 

[5]. The use of semantic compression has generated considerable interest and motivated certain recent 

works. 

Semantic compression uses relationships within the data to compress it rather than regarding the table 

as a file. Semantic compression can be done in a row-based manner, which involves clustering rows 

together with a certain amount of variation, or a column based manner, which involves removing columns 

that can be predicted using other columns and storing any exceptions that exceed a certain error bound 

separately [4]. While row-wise semantic compression in general shows better compression ratios, 

column-wise compression has its own advantages. Semantic compression can be divided into two separate 

techniques: semantic independent and semantic dependent. Semantic independent techniques can be used 

for any data type, with varying degrees of effectiveness, and don't use any information regarding the 

content of the data. Semantic dependent techniques depend, and are based, on the context and semantics of 

the data. Most the data compression techniques discussed in the literature of this latter type [1], [6]. 

1.1. Our Contribution   

In this paper, we describe the architecture of a new system that takes advantage of attributes' semantic to 

perform lossless compression, most commonly chosen type of compression for the sake of not losing data, 

of massive data tables. We base our compression technique on the observation that sets of some attribute 

values occur frequently in a relational table. The proposed semantic independent compression system is 

based on a novel idea of exploiting data correlations for individual attributes using data mining to discover 

or learn redundancy of high-usage patterns inside table for achieving a higher compression ratio. 

This work primarily focuses on the underneath component of the compression framework, that is to 

efficiently find dependency patterns in relational data to optimize the compression ratio through utilizing 

the concept of compression gain. Our system is similar to clustering, with each considered representative 

pattern like a cluster representative. The proposed system uses a lossless version of vector quantization 
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called augmented vector quantization (AVQ) that is appropriate for database compression to reduce 

database space storage requirements and improve disk I/O bandwidth. One advantage of this approach is 

that compression/decompression is performed at the table-level, which is desirable for increasing the 

compression ratio and security.  

The outline of remainder of this paper is as follows. Section 2 presents a summary of the state-of-the-art 

semantic database compression approaches. Section 3 describes the proposed data-mining-based semantic 

compression system. The test results and discussion of the meaning are shown in Section 4. A short 

summary of this paper and outlook of future work is given in Section 5. 

2. Background and Literature Survey 

Compression can be applied to databases at relation level, page level and tuple or attribute level [7], [8]. 

In tuple level, storing data in column presents a number of opportunities to improve performance for 

compression algorithms when compared to row-oriented architectures. In a column-oriented database, 

compression schemes that encode multiple values at once are natural. In a row-oriented database, such 

schemes do not work as well because an attribute is stored as a part of an entire tuple, so combining the 

same attribute from different tuples together into one value would require some way to mix tuples. In page 

level (Block-oriented) compression methods, the compressed representation of the database is a set of 

compressed tuples. When access to a tuple is required, the corresponding page is transferred to the 

memory and the only decompression is done to obtain the decompressed tuple.  

In the literature, there are three types of block-oriented database compression techniques [6], [9]: 1) Bit 

compression (BIT), 2) Adaptive Text Substitution (ATS), and 3) Tuple Differential Coding (TDC). Two of 

them, BIT and ATS, are adaptations of conventional data compression techniques. The third one exploits the 

redundancy among tuples differently to achieve compression. This allows decompression at the field level; 

this technique is only useful for records with low-cardinality fields. The original work describing TDC 

discussed practical details such as how to handle textual attributes in TDC [9]. It demonstrated that TDC is 

superior to other database compression methods currently in use, and provides both better compression 

ratios as well as faster query response times. 

Although semantic compression that operates on both relation and block level has several advantages 

over syntactic compression, the two types of compression are not mutually exclusive. In fact, it has been 

stated in [4] that applying semantic compression before syntactic compression results in better 

compression performance than from either syntactic compression or semantic compression. Still, syntactic 

compression used in the second phase will invalidate the fast retrieval benefit discussed earlier for 

semantic compression. 

Now, we present a brief sketch in the previously known semantic compression algorithms that are related 

to our work. The fascicles algorithm presented in [10] is the first semantic compression algorithm 

developed for tables. Given a table of m columns and a user-specified value of u ( mu  ), the algorithm 

extracts a model M consisting of w fascicles, each of which is represented by a u-tuple. The u columns are 

called compact attributes because these are columns with very similar values (i.e., values within the error 

tolerance) for all the rows assigned to the fascicle. While the fascicles algorithm determines the u compact 

columns locally on a per fascicle basis, SPARTAN [3] tries to separate the m columns into a set of predictor 

attributes and a set of predicted attributes globally for the entire relation. The model M, in this case, is 

simply the set of the predictor attributes. SPARTAN identifies the predictor columns by constructing 

Bayesian Network and CaRTs (classification and regression trees). As seen in the fascicle algorithm and 

SPARTAN, the key aspects that differentiate one semantic compression algorithm from another are the exact 
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definition of the model M used to compress the database and how it is constructed. SPARTAN was shown to 

achieve better compression ratios than gzip and fascicles on selected datasets. 

In column-wise semantic database compression, columns are compressed based on their associations 

with other columns by using predictive models [11], [12]. These predictive models could be used for more 

than just bulk decompression. ItCompress [4] employed the approach of Fascicles but improved the 

algorithm by applying the row-wise compression algorithm iteratively that achieves better compression 

ratios than even SPARTAN. While ItCompress achieved a better compression ratio than Spartan, Spartan’s 

usage of compression in a more transparent manner makes it a more attractive choice for integration into a 

widely used DBMS. This transparency can be useful, as the query engine can take these into account when 

running queries, and using these cleverly could yield significant performance improvements. 

In the literature, many lossless semantic compression algorithms for relational databases are suggested. 

For example, researchers in [2] proposed a semantic compression technique that exploits frequent 

dependency patterns embedded in the table.  One advantage of this approach is that 

compression/decompression is performed at the tuple-level, which is desirable for integrating the 

compression technique into database systems. The key algorithmic problem is to compute an optimal set of 

frequent patterns in the input relational table such that the overall storage of the compressed table is 

minimized. They showed that it is hard to compute an optimal compression solution. Therefore, an iterative 

greedy compression framework is offered to solve this problem.  

With the purpose of improving the efficiency of lossless compression methods on a column-by-column 

basis, some authors employed methods such as dictionary encoding and run-length encoding. However, 

these methods were implemented in C-Store, which is a column-oriented DBMS [13]-[15]. While using a 

system such as C-Store could certainly make column-wise semantic compression easier to use, the methods 

described there do not adapt easily to row-oriented DBMS as well (run-length encoding, for example) [12]. 

In addition, the authors in [13] have made the case for integrating lossless compression into DBMS products 

as a means of improving price performance. Tradeoffs were made to solve numerously architectural 

problems encountered during this integration. They chose the row as a unit of compression. The selected 

compression algorithm is a non-adaptive variant of the Ziv-Lempel algorithm using extension symbols. The 

Ziv-Lempel parse tree is determined by building a large parse tree with sampled rows and trimming it to 

the desired number of nodes.  

In [16] a method was described to allow the encoding and compression of one or more tables of data by 

splitting each table into two or more sub-tables, followed by permutation of the sub-tables. Here, the basic 

idea in semantic encoding is to store some projections of a table, rather than the table itself. W. Ng et al. [17] 

designed and implemented a novel database compression method based on augmented vector quantization 

(AVQ) that does not incur any of the computational overheads of conventional VQ. The output vectors 

computed without resorting to any codebook computation algorithms. There is no need for code words as 

the each vector is associated with a disk block, and no searching of the codebook is necessary. These 

features make AVQ more computationally efficient than the conventional VQ in terms of coding and 

decoding. However, this scheme is only applicable to discrete finite domains where the attribute values 

known in advance, and the cardinality of each domain is small. 

The work suggested in [18] reports a lossless compression technique called non-differential augmented 

vector quantization. The technique maps a database relation into a static bitmap index cached access 

structure. Consequently, anyone was able to achieve substantial savings in space by storing each tuple as a 

bit value in the computer memory. Important distinguishing characteristics of their technique are that 

tuples can be compressed and decompressed individually rather than a full page or entire relation at a time. 

Furthermore, the information needed for tuple compression and decompression can reside in the memory. 
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The algorithm supports standard database operations, permits very fast random access and atomic 

decompression of tuples in a large collection of data with low decompression cost. For a short survey of 

database compression techniques for column oriented database, readers can refer to [11]. 

Following this recent development, this paper presents a new approach for lossless semantic database 

compression based on a modified version of AVQ that exploits semantic structures in a table. The proposed 

system utilizes data mining technique to extract frequent pattern with maximum gain embedded in table to 

be used as a representative tuple. The system relies on the semantic independent concept and employs 

predictive data correlations for individual attributes to construct concise and accurate compression model. 

For evaluation purposes, we compare our scheme to traditional lossless–semantic compression suggested 

by H. Huang [2], and find that our scheme reduces the database size by a greater extent in most cases. 

3. Proposed Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed lossless semantic database compression. 

 

Semantic encoding simultaneously compresses a table by transforming it into a collection of components 

that can be reassembled in an extremely large number of meaningful ways. This transformation can 

compress the table by a much larger factor than can be achieved by syntactic compression methods [19]. 

Here, the compression achieved by semantic encoding result from the fact that when a table is projected, 

many repeated entries are eliminated. Fig.1 shows the general data flow diagram of the proposed lossless 

semantic compression system for relational database based on augmented vector quantization, which 

evolved with better compression ratio and performance.  
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The system tries to derive a descriptive model of the database by taking into account the semantics of the 

attributes. The key of the proposed method is to compress a large table based on an Apriori data mining 

algorithm to find frequent patterns that take the semantics of the table into consideration during 

compression. So, complex correlation and data dependency between the data attributes can be exploited. 

Note that this is not supported in case of syntactic compression methods since the database is viewed as a 

large byte string in such methods. The system consists of five steps: 1) attribute encoding, 2) tuple 

re-ordering, 3) block partitioning, 4) semantic patterns extraction, 5) compression gain calculation and 6) 

block coding. 

3.1. Attribute Encoding 

The first pre-processing step in the suggested system encodes each attribute value to a number. For 

discrete finite domains where all the attribute values are known in advance, each attribute value is mapped 

to its ordinal position in the domain. For other domain types, more work is needed. For alphanumeric 

strings, we may construct a table containing the set of these strings and replace each attribute by an index 

into the table. Other schemes may be used. Observe that this step by itself achieves compression (first level) 

because an attribute value that consists of a long string of ASCII characters is mapped to a short number. 

3.2. Tuple Re-ordering   

The next pre-processing step is to re-order the tuples by an ordering rule  NR: defined as [17]:  

 

1 1 1( , ..., ) ,
n i

nn
i j i ja a a A     ( )                                (1) 

 

 is an n-dimensional to 1-dimensional mapping that maps a tuple Rt uniquely into its ordinal 

position in the space. A relation  nA,...,2A,1AR is a subset of  and corresponds to the set of 

input vectors to be coded. t is an n-dimensional vector.  1,...,1,0 N be a set of integers that 

correspond to space, where  
 n

1i iA  is the size of the space. In our case, na...,,2a,1a is 

randomly chosen based on the number of attribute. The role of N  is to lexicographically reorder the 

tuples based on all attributes jA taking into account the correlation between them.  

3.3. Block Partitioning 

In this step, we partition the re-ordered table into k disjoint subsets of tuples kii B...,,B,B , so that coding 

and decoding is performed at the granularity of data objects (block level). In our case, the user determines 

the partition size depending on the number of tuples in the table. Other schemes may utilize the size of a 

memory page or disk sector as the partition size as it is the unit of I/O transfer. This step simplifies the 

compression because coding and decoding is localized, i.e. if tuples in the block are coded, then decoding 

need only be performed on the block. Furthermore, after tuple reordering and block partitioning, tuples in a 

block form a cluster. 

3.4. Semantic Patterns Extraction 

When correlations exist between the attribute domains in R the entropy of the database is lower; so that 

compression methods tend to perform better in such cases [6]. Our algorithm extracts frequent patterns 

from the relational data by employing data mining techniques, and uses such knowledge to extract the 

representative row to minimize storage requirements through tuple difference coding. Successive tuples are 
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differenced, and the differences are stored instead of the original tuples themselves.  

Given , 1B i toki  where there are m tuples with n attributes. A tuple t can be viewed as a set of               

<attribute, attribute-value> pairs. A subset 
iBP is called an itemset. The support or support count of an 

itemset iB , denoted as Sup(P), is the number of tuples in the block B where P occurs as a subset. If the 

support of an itemset is greater than or equal to a user-specified support threshold min_sup, the itemset is 

called a frequent itemset. A frequent itemset is also called a frequent pattern. We refer to the number of 

items in a pattern P as the width of pattern P, denoted as |P|. The proposed system employs Apriori 

algorithm as a pioneer association rules mining method to extract large itemset from iB  for its simplicity 

[2].  

3.5. Pattern Compression Gain 

The key algorithmic problem is to compute an optimal set of frequent patterns for the input  such that 

the overall storage of the compressed table is minimized. This is a challenging problem because, not only is 

finding frequent patterns in the relational data a computation-intensive task, but also is selecting a subset of 

frequent patterns for optimal compression NP-hard. Here, we utilize the compression gain concept to solve 

the problem of selecting an optimal frequent pattern. The compression gain of a pattern P is defined as[2]:  

                        

         


.Sup ( ) if >1, and Sup ( ) >1
gain ( ) = ,

0 if =1, or Sup ( )=1

P P P P
p

P P
                                         (2) 

 
Essentially, the idea of using compression gain is to measure the contribution of a pattern to the storage 

saving by its coverage over the block; because patterns that ‘cover’ larger area in the block will lead to 

better compression [2]. Consider the three patterns show in Table 1, while the support decreases 

monotonically with the increasing width, the gain can either increase or decrease, depending on the actual 

value of |P| and Sup(P). The width of a pattern is bounded by the maximum number of items in a record, (i.e. 

the total number of attributes in the table). Given number of frequent patterns, the output of this step is the 

highest gain pattern that is used as a representative pattern p̂ . 
 

Table 1. Non-monotonic Behavior of Pattern Gain Computation 

Itemset 1,2 1,2,3 96,4,97,6 

Width 2 3 4 

Support 70 60 50 

Gain 140 180 200 

 

A block kB    now consists of a set of ordered tuples Rt),t...,,t,t(B i,ki,k2,k1,kk   with

jifortt j,ki,k  . The first tuple of the representative pattern in each block Bk is chosen as the 

representative tuple t̂  of the block (has the same values of the remaining tuples in p̂ ). Thus, every tuple 

ki,k Bt  is mapped to kt̂ such that the total distortion  


m

1i
i,k )t()t(   is minimized and the block 

is sparse, so that it contains zeros as much as possible. Here, a new semantic compression scheme based on 

the selection of representative tuple of each block is utilized. 

3.6. Block Encoding   

The idea of redundancy (repetition) of values within a column in a relational table can also be extended 
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between columns; this constitutes stage two of our compression algorithm. Using the first tuple in 

representative pattern of each block as a reference, each tuple in the block is replaced by its difference with 

respect to its reference tuple. So that attribute values are defaulted to be zero if it is the same with the 

reference unless the actual value differs from the reference value. In such cases, outlying values are 

specifically stored for the row without any change. Formally, for each block iB  given two tuples jt,t̂ , where 

t̂ is the representative tuple and m to j,t j 1  is any tuple inside block such that jtt̂  , the difference 

between them may be defined as: 

 

                       (3) 

 
For coding, the concept of vector quantization (VQ) with lossless capability is employed [17]. The 

quantizer Q can be seen as a combination of two functions: a coder and a decoder. The coder   is a 

mapping of n
  into the index or codeword set },...,2,1{


mj  and the decoder is a mapping of j into 

the output set Y.  The optimal quantizer Q is the one that minimizes ),ˆ(1 j
m
j B ttd  for all input vectors 

(tuples). A direct application of VQ to encode table would be to replace each tuple in iB  with a codeword or 

index that indicates the representative tuple t̂ . Unfortunately, this method of coding is lossy; the original 

tuples are no longer completely recoverable. To deal with lossless compression, augmented VQ is used. 

Instead of replacing each tuple in a block only by its codeword as VQ does, it includes the difference 

between the tuple and its representative tuple [17]. 

In formal, AVQ encodes a tuple Bt   by the pair )ˆ(),,ˆ(( tiAttBd ji , where   is the coder (run length 

encoder RLE in our case) that produces the codeword (or index into the codebook). The compression 

efficiency of AVQ depends on the choice of the codebook (representative tuple in our case). If the codebook 

is properly designed, the average difference between a tuple and its representative tuple will be small 

enough that it takes fewer bits to encode than the original tuple. Run-length encoding is very effective in 

databases where there are long sequences of repeated zeros or missing values [20]. Simply, run-length 

encoding replaces sequences of identical values by a count field, followed by an identifier for the repeated 

value. The count field must be flagged so that it can be recognized from the other data values, and the 

selected sequence must have enough repeated values to warrant its replacement by the count and character 

fields [1]. Procedure RLE illustrates the steps of encoding
BD  (difference) array that accumulates ),ˆ( jiB ttd

for all tuples inside block. The coding is completed when these encoded tuples of each block are 

concatenated as a single stream of data, along with the metadata that includes representative tuple t̂ , 

location of t̂ inside block, number of tuples m, and number of attribute n for each iB  that are being placed 

in the front of the data steam. An example of the stream S1 for the block B1 is as follows:  

 

S1= {10, 1,2,3,4, - , #, 8, 10, 20, 30, 41, 58, 79, 83, 90, 9/0, 9, 14, 21, 35, 44, 61, 82, 86, 93, 9/0} 

 

 

Procedure RLE )( k...,1j,n,...1i,DA j,Bi,Db
  

Start on the first element of input mttA iDb
,...1],[,   





 ==

=
ntoijtiAtiA

otherwisejtAttd jiB

1 )()ˆ(0

)(),ˆ(
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// coding column-by-column 
Examine next value 

If same as previous value 
Keep a counter of consecutive values 

Keep examining the next value until a different value or 
End of input then output the value followed by the counter. 

Repeat 
If not same as previous value 

Output the previous value followed by ‘1’ (run length) 
Repeat. 

 
In encoding phase, each block is coded into a stream Si that consists of numbers and signs. The first value 

in the stream reflects the number of tuples m. The next set of values signify the representative tuple t̂ that 

is displayed between the first value in the stream and the symbol '-'; the count of these values represent the 

number of attribute (i.e. the stream contains all values belongs to t̂ ). Excluding the value

ntoi,t̂tA i,Db
1][  in the encoded column that is represented in the stream as '#' symbol, the remaining 

coding is as follows: if the value ][, tA iDb
is not repeated, it will be shown in the stream as it else the RLE is 

employed to represent the repeated values in the form a/b where a denotes the counter of the repetition 

and b symbols the value itself. After finishing encoding the first column, the same coding style is utilized for 

the residual columns in the block. 

3.7. Decompression Step 

For decompression, the decoder follows a slightly different algorithm than the encoder. Given the 

compressed vector for each block Sl; the decompression process mainly divided into four levels: in the first 

level run length decoding is engaged to extract a/b pattern; repeating the b's value a times. The second level 

includes building the block's matrix through putting the stream values ][, tA iDb
after '-' symbol to the 

matrix column by column according to the first value in Si. Regarding '#' symbol, the decoder replaces the 

location of '#' symbol with representative tuple t̂ in a row manner. In the third level the values of zero in the 

matrix are replaced with their equivalent in the representative tuple t̂ . Finally, in the fourth level, the 

obtained values in the matrix are decoded according to the first step in the coding process (attribute 

encoding).     

 

)1,(Decoder  Procedure kiSi to  

m = Si {1}, t̂ = substring from Si {2} to Si {index of symbol '-' -1} 

RLES = substring from Si beginning from '-' to end of the stream 

n = number of t̂ values , 
nmM 

 = block matrix of zeros, id= Index of '#' symbol inside RLES  

Start on the first value of 
RLES  

1- Extract a/b pattern; repeating the b's value a times. 

2- nidM ,
ttA iDb

ˆ][,    // put representative tuple inside M in row manner 

3- For each consecutive m values of
RLES  ( ntoimS im 1,,1 

 ) not include '#' symbol.  

4- idimtojjmSM iji  ,1],,1[,
  // put 

immS ,1
inside M in column manner 

5- Decode 
jiM ,
values according to attribute encoding step 

4. Performance Analysis and Results 

In this section, we present performance study for our algorithm. The performance study consists of two 

parts. First, a substantial storage saving can be achieved by using the proposed semantic compression 
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algorithm. The compression performance is compared with state-of-the–art semantic lossless compression 

algorithm (SPACK) suggested by H. Huang [2] on three real life datasets, which are summarized in Table 2. 

Second, we report the efficiency of the algorithm.  

 

Table 2. Datasets Characteristics 

Dataset Records Attributes 

Census 99,762 41 

Connect4 67,557 43 

Retail 260,000 28 

 
All the experiments are performed on an Intel(R)Processor Core(TM) i3-2330M CPU @ 2.20GHz (4 CPUs), 

2.2GHz with 4 GB of main memory, running Microsoft Windows 8. The algorithms are coded in PHP and 

MySQL. Our work focuses primarily on optimizing the compression ratio that achieves the maximum 

possible reduction in the size of the data. The larger the compression ratio, the more effective the 

compression. The most popular method of measuring the performance of a compression technique is the 

compression ratio, CR [1]: 

 

                                 
,% 

c
T

o
T

CR













 1                                                                  (4) 

 

where o
T  symbols original table size and c

T is the compressed table size. Fig. 2 shows the compression 

ratios for the proposed system and SPACK system on the three real datasets. The figure clearly indicates that 

our system outperformed SPACK on all datasets. We can explain these results on the basis that the proposed 

system uses Apriori algorithm to extract frequent pattern having the maximum gain and employs two level 

of coding (attribute encoding and run length coding) to increase CR. In contrast, SPACK algorithm iteratively 

compresses the data with the pattern having the maximum gain through utilizing FP growth algorithm. 

Both approaches are effective for handling the large datasets that has many attributes. 

  

 
Fig. 2. Comparative results. 

 
Having compared our system to another compression algorithm, we will next investigate the effect that 

different parameter settings have on our system, which includes both numbers of blocks Nb and min_sup. To 

keep the number of parameter setting combinations small, we will only vary the setting for one parameter 

at a time while keeping the setting for another parameter to its default value. In Fig. 3 (a), we vary Nb from 

100 to 500 and look at the compression ratio achieved by our system on the Census dataset. From the graph, 

we can see that increasing Nb will diminish the compression ratio. This decreasing is negligible. This 

lessening is due to the fact that higher number of blocks leads to reduce the number of tuples in each block 
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and thus reduces the chances of repeating tuples used to mark the frequent patterns. However, we also note 

that the storage for representative rows will increase with Nb. Thus if Nb is subsequently increased to an 

extreme value where the reduction in outlying values is not enough to offset the additional storage need for 

the representative rows, then the compression ratio will decrease instead. Fig. 3 (b) shows the effect of 

increasing min_sup ratio on compression ratio; as we can see their exit an inverse relationship. 

 

 
(a)                                   (b) 

Fig. 3. (a) Effect of Nb on compression ratio. (b) Effect of min_sup on compression ratio for census dataset. 

 
(a)                                   (b) 

Fig. 4. (a) Effect of Nb on compression run time. (b) Effect of min_sup on compression run time for censzzus 

table under 100 blocks. 

 

Having seen how the parameter settings affected the compression ratio of the system, we will examine 

the effect of parameter settings on the compression running time. Here, all running times are obtained from 

the same set of experiments. Fig. 4 (a) shows the effect of changing the number of blocks Nb on the time 

used for compression in the case of min_sup =20%. We note that the time required for the compression 

decreases with increasing the number of blocks. This is because, increasing the number of blocks resulting 

in a small number of tuples within the block and therefore less processing is required. But there is no 

noticeable effect on the compression time in the case of min_sup percentage change, as shown in Fig. 4(b), 

this is because the number of frequent patterns within each block are small and converged in time that are 

needed for the extraction process. In general, the required time for compression is reasonable for online 

applications. 

5. Conclusions and Discussions 

Semantic encoding is a new, patented technology that greatly increases the compression ratio of database. 

This technology utilizes frequent dependency patterns embedded in the relational table to reduce storage 

requirements. In this paper we have described a novel database compression system that exploits attribute 
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semantics and data-mining model to effectively compress massive data tables. In order to apply frequent 

patterns effectively on the semantic compression, the compression gain of a frequent pattern is defined as 

the coverage of the pattern over the table, and is used for pattern selection in the compression framework. 

To increase compression ratio, this paper reports a lossless compression technique based on augmented 

vector quantization (AVQ). VQ is a data compression technique with wide applicability in speech and image 

coding, but it is not directly suitable for databases because it is lossy. We show how anyone may use a 

lossless version of vector quantization to reduce database space storage requirements and improve disk I/O 

bandwidth. The new design does not impose any changes on the tables in the database structure. The 

primary benefits of the proposed system are: (1) the system performs compression/decompression on the 

block-level. For this reason, compression can be easily integrated into database systems. (2) The system 

provides significant compression ratio so that making it a cost-effective compression technique. (3) The 

compression efficiency of the proposed system not depends on the choice of the codebook. (4) The system 

decreases the time overhead for both compression and decompression for large tables. 

The proposed system achieves a better result than others lossless semantic compression in the literature. 

However, semantic compression is limited by the dataset being compressed, as some datasets may not show 

relationships between columns, although this tends to be the exception rather than the common case. There 

are some interesting research issues related to integrate the compression technique proposed herein into 

database systems, including the incremental updates, the design of the physical layout of the data page of 

the compression data, and the indexing structure on the compressed table.  
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