

A Stepwise Self-adaptive Model for Improving Cloud
Efficiency Based on Multi-Agent Features

Amr Tolba1, 3*, Ahmed Ghoneim2, 3
1 Riyadh Community College, King Saud University, Saudi Arabia.
2 College of Computers and Information Sciences, King Saud University, Saudi Arabia.
3 Mathematics and Computer Science Department , Faculty of Science, Menoufia University, Shebin El-Kom,
Egypt.

* Corresponding author. Tel : +966506511223; email: atolba@ksu.edu.sa.
Manuscript submitted January 10, 2015; accepted June 8, 2015.
doi: 10.17706/jsw.10.8.1037-1044

Abstract: Today, the multi-agent systems are the most common systems that have intelligent behavior and

able to adapt features based on the environmental changes. On the other side, cloud applications enable the

stakeholders to customize their resources and software they need based on the requested domain. These

applications face many challenges such as how to handle the changes of the stakeholder requirements at

run-time, how to reconfigure the constituted architecture dynamically to be in consistency with the new

services, and how to cope with the highly inherent expensive cost. To deal with these challenges, we

proposed a new model that uses basic agent features for enhancing the cloud infrastructure functionalities

by reconfiguring their allocated resources and software at run-time. The proposed model is composed of

three levels. The first level is the cloud level which via its functionalities the consistent image that maps the

user’s requests through its manual components can be created & established. The second level is the

intermediate level, which is responsible for two issues: playing the role of connector between the cloud

level and the multi-agent level, and verifying the consistent of outputs for both of the upper and lower

levels. The third level is the multi-agent, which is responsible for improving the quality of the constituted

cloud images by co-operating the information, reasoning, learning and mobile agents. Finally, the urban

transportation system is used to proof the applicability and usage of the proposed model.

Key words: Cloud computing, multi-agent system (MAS), resource allocation.

1. Introduction

Technologies such as grid computing, cluster computing, and cloud computing, are designed to allow

access to large amounts of computing in the power of entire virtual manner through the pooling of

resources and providing a single-vision system. It is worth mentioning that providing computing as a

service is considered one of the most important goals of using the said technologies. Cloud is a large group

of virtual resources which are characterized by its practical usability & easy accessibility (such as hardware,

software development and / or services). These resources dynamically reconfigured to adapt its scale, and

to get the optimal use of their structure and behavior.

Amongst the most demanding difficulties that the merging cloud computing environments & multi- agent

systems have to deal with are the intelligent resources, the independent & dynamic adaptation, the

condition changes and the effective visualization. The cloud computing is considered a highly favorable

Journal of Software

1037 Volume 10, Number 8, August 2015

active trend in the world of today because of its edges as regards trustworthiness, anticipation and

susceptibility of expansion of computing infrastructure which is required for establishing & finalizing the

agent-based systems. In addition to that the software agents help cloud computing systems to be more

accommodated, manageable and autonomous in resource management, service provisioning and in

operating huge applications and programs [1].

The software agent is defined as a computer entity that is equipped with miscellaneous distinguished

traits such as intelligence, dynamics, reasoning, autonomous and dependability which help together at

enhancement of inter-cooperation among other agents and carrying out its own targets by itself. The idea of

the cloud computing relies on sharing the services and information among network nodes. The primary

objective behind using the concept of cloud environment is to set and combine together the whole

requested services in one single place (the cloud) with a view to enabling the users/nodes to come together

into one access that they can approach at any time or at any place [2], [3].

The rapid growth of technologies as well as the increasing number of users enforce cloud computing

systems to provide large-scale infrastructures for high performance computing that can adapt to user and

application needs. This cloud infrastructure can be integrated with software agents that have intelligence,

dynamics, reasoning, and autonomous features, and make these agents take a proper decision at run time in

an automatic way. Therefore, adding software agents to cloud computing environment will increase the

cloud performance and making them more robust, flexible and autonomic.

In this paper, we have proposed a new cloud framework by employing the self-governing & learning

traits of the software agents to enable the reconfiguration of the behavior of both allocated resources and

software at run-time. The output of the proposed framework was fully coherent resources and software

image.

The rest of the paper is organized as follows: Section 2 describes the proposed approach in details.

Section 3 illustrates the Urban Transportation system as a case study. Section 4 presents and discusses

related works. Finally, Section 5 concludes the paper.

2. Proposed Approach

In this section, we introduced our proposed model that improves the quality of the cloud infrastructure

using multi-agents system. The model is composed of three levels as shown in Fig. 1.

The first level named cloud level; is about the operational level of the model, which has direct connection

with the group of users through its representative agent (user agent). Cloud infrastructure enables the

user to choose his required resources and software, after that constitute the matched image, then pass the

execution to the view controller who can use the agent feature to dynamically adapt both the structure and

behavior of the generated image based on the agent capability and the run-time changes (user changes or

environmental changes). The functionality of the cloud level has been fulfilled by using the following

components: First, the cloud user service GUI is directly in contact with the user agent for detecting and

extracting the user's request or views. Second, the message adapter is responsible for parsing the received

requests and generates XML-based message that covers the original requests. Third, allocate/reallocate

resources component is responsible for identifying the suitable resources that match user requirements

after that allocate/reallocate software component is responsible for detecting required software to match

the user’s software requirements. Fourth, establish and reestablish the communication between the

resources and software. Finally constitute a consistent image that includes the match resources and

software. The constituted image generated by the component Generated User views. Note that the allocate

function of the resources and software is used for the normal flow for preparing the image, and the

reallocate function is used to enhance the image based on the reflective feedback for the multi-agent level.

Journal of Software

1038 Volume 10, Number 8, August 2015

The second level named intermediate and control level. Its main functionality, which is recognized in the

shape of a middleware layer component, is to guarantee the connection between the upper & higher levels

and the user agent. It consists of two components (agent interface and view controller). Agent interface has

direct connection with the following: multi-agent level through its agent bus, the user agent, the view

control component and cloud level. This agent is responsible also for creating the higher message with the

same format for multi-agent level. The view controller component starts its process by checking the

usability and consistency of this view. In addition, it checks the satisfactory level of these views. The output

after processing these components is a request for changes that includes both the user feedbacks and the

inconsistency issues. Moreover, it reconfigures both the constituted image and views based on the

generated request of changes and facing environmental changes.

The third level named multi-agent level. This level is responsible for improving the performance of the

cloud image using the agent features. The main interface of this level is the agent bus interface that

integrates with all the other components in this level. The level has four components. The reasoning agent

used for applying the reasoning techniques for software image comprehension. The information agent is

responsible for extracting the inconsistent paths within the image and collecting the suitable alternative

information using the functionality of the reasoning agent. Learning agent is responsible for representing

the rule engine for this level based on the best practice of the experience of dealing with the set of similar

software images. Mobile agent is responsible for searching to identify different solutions within different

applications outside or within the domain by using its mobility features. The control flow that illustrates

the core model components functionalities is shown in Table 1.

Table 1: Pseudo Code: Procedure Flow of the Proposed Model

Inputs: User request, User profile.
Out puts: Cloud Image
BEGIN- Main

 USER_GUI (user_login);
 USER_Agent (select (HW, SW));
 Message_adapter(extract, HW-Specifications);
 Message_adapter(extract, SW-Specifications);

 Call Cloud_Bus (HW-Specifications, SW- Specifications, OutPut: Cloud Image)
 For Each Cloud Image Component

 Generated_User_View (GUV. generates (stractural_view);
 Generated_User_View (GUV. generates (behavioral_view);
 EndFor
 For Each View
 View_Controller (VC.generate(request_of_changes, Inconsistency));
 View_Controller (VC.generate(request_of_changes, user_statisfactory_level));
 Merge_request_of_changes(Inconsistency, User_satisfactory_level); // for each view
 EndFor
 While request_of_changes exists Do
 Agent_interface (request_of_changes, current image, OutPut: Up-to-date Cloud Image);
 End Do
 For Each changes
 Reasoning_Agent(request_of_changes, current image; Apply(AI_reasoning

 techniques));
 information_Agent(request_of_changes, current image; Extract(bad smile parts));
 Learning_Agent(request_of_changes, current image; Add (new rules, rule engine of

 this level));
 Mobile_Agent(request_of_changes, current image; Search (? Solution, mobile

 featues(imagration)));
 END For

END- Main
Subroutine Cloud_Bus(HW, SW, OutPut: Cloud_Image)

BEGIN- subroutine
 Allocate_HW(HW, consistent_HW);
 Allocate_SW(SW, consistent_SW);
 Constitute_Image(consistent_HW, consistent_SW, OutPut: Cloud_Image);
END- subroutine

Journal of Software

1039 Volume 10, Number 8, August 2015

The structural components of the proposed MAS-Cloud model are shown in Fig. 2. This figure represents

the core model classes such as UserAgent, CloudGUI, CImageAllocator, CImageGenerator, ViewHundler,

ViewController, AgentDispather, MobileAgent, LearningAgent, ReasoningAgent, and InformationAgent. All

these classes operate together to create the image that match the user request. Moreover, the Agent

dispatcher and its related agents are responsible for adapting the created image to face the environmental

changes.

Fig. 1. Proposed MAS-cloud model.

3. Case Study: An Urban Cloud for Transportation System

In this section, we introduce the capability and the usage of the proposed model using urban

transportation system as an agent system works on cloud environment. The user uses its mobile

application to select his destination. This urban cloud simulator is running into Google Application Engine

(GAE) [4], [5], which builds the blackboard for all client requests and uses Java Network Launch Protocol

(JNLP) Link to launch the current location for each client and all necessary java applications within the GAE.

In Fig. 3, a part of the static functions of the model is presented as use cases. This diagram includes six

use cases and four actors. The data flow of this diagram starts with the actor named “urban users” which

able to register and add destination, then the system creates an urban image based on the user request by

adding software and resources into this urban image. The constituted image can use the external resources

and the external software to fulfill the user requirements. The last use case is named “adaptedCloudImage”

that is responsible for adapting the image to face runtime change through the actor named environment

sensor. This actor is able to cover all unusual events and pass them to this use case.

In the following we will illustrate overall scenario for the proposed model. The scenario starts by

allowing the user agents to register, after valid registration the users have the ability to select or write their

destinations as shown in Fig. 4. The cloud level within the model automatically builds urban cloud for user

(UID-a203), by allocating all the necessary information related to resources and software's. The allocated

resources and software’s are used to generate the path from the source to destination. The next step is to

check the consistency of the allocated parts whether they are communicated by checking the Extensible

Messaging and Presence Protocol (XMPP) messages between them. The generated path includes

Journal of Software

1040 Volume 10, Number 8, August 2015

information’s getting from google earth system, tourist guide system, restaurant guide system and hospital

system. The impact of the third level of the model for this case is to implement the rerouting algorithm to

provide intelligent path. Moreover, the Multi agent level is using reasoning agents to dynamically recognize

the best resources and software’s to communicate with based on the change of resources and software

status and the user changes his destination or asks for providing information about the historical places

during the generated path. Finally, the urban user gets the created urban cloud. The created urban cloud

dynamically reshaped based on the changes on the environment.

Fig. 2. Main components of the model — class diagram.

Fig. 3. UCTS use cases.

Journal of Software

1041 Volume 10, Number 8, August 2015

Fig. 4. Scenario for creating urban cloud.

4. Related Work

In the following, we will illustrate some related works that focus on embedding software agent into cloud

computing environment. In our previous work [6], we proposed a cloud framework in which the

autonomous and learning features of software agents were used to able to reconfigure the behavior of both

allocated resources and software at run-time (IABCF Smarter). This Cloud framework composed of four

main components: cloud infrastructure, agent features, view controller and agent adapter. In this paper we

tried to couple agent features in the field of cloud computing to improve the behavioral attitude of the cloud.

Vishal Jain et al. [7] proposed a model for the information retrieval using Multi-Agent System with Data

Mining technique in a Cloud Computing environment. The multi software agent is used in a cloud

environment to allow the users to retrieve information from virtual resources easily and with less

infrastructure and storage cost. Uchibayashi, Toshihiro et al. [8] introduced a framework of an agent-based

support system for discovering services in a public cloud. They use agents implemented by JADE only to

measure network usage against user requirements information. Yue-Shan et al [9] proposed an

ontology-based agent generation framework that allows users submit a request to the cloud and retrieve

information from it. Messina, Fabrizio, et al. [10] proposed a protocol for supporting the SLA negotiation

process, involving semantic issues which do not require the use of a common global agent ontology sharing

knowledge in advance. In detail, this protocol considers that each agent is able to partition the

other agents based on both their expertise in cloud services and similarity with their own ontologies.

 Domenico Talia et al. [11] discussed some kind of coupling between software agents and clouds to

produce high performance intelligent cloud service. Also, they discussed how to improve features for both

cloud and agent, by making clouds more flexible and providing software agent a reliable environment to

execute a large application. Myougnjin Kim, et al. [12] introduced another kind of direct relationship

between software agents and cloud. They proposed an intelligent multi- agent model for resource

Virtualization (IMAV) that automatically allocates suitable services to mobile node. Ignacio

Lopez-Rodriguez, et al [13] introduced a framework where agents portrayed as a new cloud computing

Journal of Software

1042 Volume 10, Number 8, August 2015

services that will represent clients in a virtual environment. On the other hand our previous work [14]

introduced an ontology-based cloud framework for discovering their external agent’s interoperability

(COBE framework). This framework designed based on blackboard design style and employs software

agents to enhance the dynamic behavior of cloud computing environment.

Aarti S, et al [15], introduced a kind of coupling between software agent and cloud infrastructure for

increasing scalability in cloud environment, the proposed model is supported by a set of algorithms that

enable the system to search for resources and software in another cloud, inside or outside the domain,

when the local cloud becomes overloaded or unavailable. Taekgyeong H. et al [16], proposed other kind of

agent-based Cloud Service Discovery System (CSDS) that can be used to consult an ontology when

gathering information about cloud services. A Cloud Service Reasoning Agent (CSRA) and Cloud Ontology

(CO) are presented as new components that able to drive reasoning about the relations of cloud services

using reasoning methods and rate the search results. The authors attempted to prove that CO makes the

CSDS more successful in finding cloud services that meet users’ requirements.

Based on the above related works, we can conclude that most of the above models and frameworks are

implicitly structured and lack some components to control the constituted cloud environment. In addition

to that, most of them lack of a method for facing and applying the runtime changes; this case implies us to

adapt both the structure and behavior of the constituted cloud images.

5. Conclusion and Future Work

In this paper, we introduced the new model for improving the quality of the cloud image using the

multi-agent features. The proposed model has three levels. The following summarizes the functions of the

model: First constituting the cloud image to meet the user’s request; then checking the image’s consistency

and linking the level and finally modifying the current image based on the multi-agent capabilities. The

main component of the implemented classes is shown in the designed class diagram. In the future works

we are planning to use the graph theory aspects to optimize the framework execution as we can improve

the functionality of the multi-agent level by adding new agents and using refactoring techniques to improve

the updated design of the cloud image within this level.

References

[1] Cao, B. Q., Li, B., & Xia, Q, M. (2009). A service-oriented qos-assured and multi-agent cloud computing

architecture. Cloud Computing. Heidelberg, Berlin: Springer.

[2] Zhang, Q., Lu, C., & Raouf, B. (2010). Cloud computing: state- of-the-art and research challenges. Journal

of Internet Services and Applications, 1(1), 7-18.

[3] Michael, A., Armando, F., Rean, G., A, D. J., Randy, K., Andy, K., Gunho, L., David, P., Ariel, R., Ion, S., &

Matei, Z. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58.

[4] Google Apps for Work. Retrieved, from https://cloud.google.com/appengine/

[5] Li, Z. J., Cheng, C., & Kai, W. (2011). Cloud computing for agent-based urban transportation

systems. Intelligent Systems, 73-79.

[6] Amr, T., & Ahmed, G. (2012). IABCF smarter: An intelligent agent-based cloud framework. International

Journal of Computer Science and Telecommunications, 3(40).

[7] Vishal, J., Mahesh, & Kumar, M. (2012). Information retrieval through multi-agent system with data

mining in cloud computing. International Journal of Computer Technology and Applications, 3(1), 62-66.

[8] Uchibayashi, T., Bernady, O. A., & Norio, S. (2013). A framework of an agent-based support system for

IaaS service discovery. Proceedings of the 13th International Conference on Computational Science and

Its Applications.

Journal of Software

1043 Volume 10, Number 8, August 2015

[9] Chang, Y. S., Yang, C. T., & Luo, Y. C. (2011). An ontology based agent generation for information

retrieval on cloud environment. Journal of Universal Computer Science, 17(8).

[10] Messina, F., Giuseppe, P., Corrado, S., Domenico, R., & Giuseppe, M. L. S. (2014). An agent based

negotiation protocol for cloud service level agreements. Proceedings of the 3rd International Conference

on Enabling Technologies: Infrastructures for Collaborative Enterprises.

[11] Domenico, T. (2012). Clouds meet agents: Toward intelligent cloud services. Internet Computing,

6(12).

[12] Myougnjin, K., Hanku, L., Hyogun, Y., Jee, I. K., & Hyung, S. K. (2011). IMAV: An intelligent multi- agent

based on cloud computing for resource Virtualization.

[13] Ignacio, L. R., & Mario, H. T. (2011). Software agents as cloud computing services. Advances in

Intelligent and Soft Computing, 271-276.

[14] Ahmed, G., & Amr, T. (2014). COBE framework: Cloud ontology blackboard environment for enhancing

discovery behavior. International Journal on Cloud Computing: Services and Architecture, 4(5).

[15] Singh, A., & Manisha, M. (2012). Agent based framework for scalability in cloud

computing. International Journal of Computer Science & Engineering Technology, 3(4).

[16] Han, T., and Kwang Mong Sim. "An agent-based cloud service discovery system that consults a cloud

ontology. Intelligent Control and Computer Engineering(pp. 203-216) . Springer Netherlands.

Amr M. Tolba received his M.Sc. and Ph.D. degrees in computer science from Menoufia

University, Egypt, in the area of databases and multi-agent systems, in 2002 and 2006

respectively. He joined King Saud University (KSU) in August 2006 as an assistant

professor at the Department of Computer Science. His research interests include internet

of things, intelligent systems, mobile social networks, recommender systems, e-learning,

and cloud computing.

Ahmed Ghoneim received his M.Sc. degree in software modeling from University of

Menoufia, Egypt, and the Ph.D. degree from the University of Magdeburg (Germany) in the

area of software engineering, in 1999 and 2007 respectively. He is currently an assistant

professor at the Department of Software Engineering, King Saud University. His research

activities address software evolution; service oriented engineering, software

development methodologies, scripting languages.

Journal of Software

1044 Volume 10, Number 8, August 2015

