

Project Schedule Simulation: Incorporating Human
Factors’ Uncertainty and Features’ Priority in Task

Modeling

Rabeb Mizouni1*, Sanja Lazarova-Molnar2
1Department of Electrical and Computer Engineering, Khalifa University, UAE.
2Centre for Smart Energy Solutions, University of Southern Denmark, Denmark.

* Corresponding author. Email: rabeb.mizouni@kustar.ac.ae
Manuscript submitted November 27, 2014; accepted June 25, 2015.
doi: 10.17706/jsw.10.8.939-960

Abstract: Despite several attempts to accurately predict duration and cost of software projects, initial plans

still do not reflect real-life situations. Since commitments with customers are usually decided based on

these initial plans, software companies frequently fail to deliver on time and many projects overrun both

their budget and time. To improve the quality of initial project plans, we show in this paper the importance

of (1) reflecting features’ priorities/risk in task schedules and (2) considering uncertainties related to

human factors in plan schedules.

 To make simulation tasks reflect features’ priority as well as multimodal team allocation, enhanced

project schedules (EPS), where remedial actions scenarios (RAS) are added, were introduced. They reflect

potential schedule modifications in case of uncertainties and promote a dynamic sequencing of involved

tasks rather than the static conventional way of modeling schedules. This paper describes a methodology to

introduce EPS models in the development of project plans. Our case study findings show clearly the ability

of the EPS model to anticipate delays due to human factors and to predict remedial scenarios to adjust to

such delays. By comparing EPS to classical schedules, EPS simulation provides more accurate results with

regards to project goals.

 These instructions give you guidelines for preparing papers for Journal of Software (JSW). Use this

document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an

instruction set. The electronic file of your paper will be formatted further at Journal of Software. Define all

symbols used in the abstract. Do not cite references in the abstract. Do not delete the blank line immediately

above the abstract; it sets the footnote at the bottom of this column.

Key words: Human resources allocation uncertainty, feature priority/risk, dynamic project schedule,
simulation.

1. Introduction

Project management is the discipline of planning, organizing, and managing resources to achieve specific

project goals and objectives. It is the process that uses schedules to plan and subsequently report progress

within project’s environment. With the increasing size of today’s software project, it is well recognized

that the success of these fairly large projects is directly related to their management [1]. Not surprisingly,

many researchers have identified poor planning as one of the primary causes for failure of software projects

[2]-[4]. A common practice in software development is to first establish an initial software project plan. It is

Journal of Software

939 Volume 10, Number 8, August 2015

usually concerned with defining project mission, developing project schedule plans, client consultation and

client acceptance [3]. Moreover, it is used as a basis on which to make delivery commitments to clients;

hence the importance of constructing a credible plan that provides an accurate estimation of completion

dates.

Even though planning is an important step in most of the software development processes, and even

though it is performed in most of the large software projects, an effective planning is rarely accomplished

because many interrelated factors increase the uncertainty that a project is surrounded by. These factors

include task durations and resources sharing. Very often an activity in real industrial software project takes

more than the originally estimated duration, leading to a delay in the remaining activities due to resource

unavailability [5]. Consequently, many projects overrun their budget and time.

Recently, the focus was shifted to the quality of initial project plans. Many attempts have been conducted

to improve the design of initial project schedules [6]-[10]. On one hand, they endeavor to calculate an

optimized schedule for a given project, but on the other hand many of them use over-simplified models that

underestimate the interrelated nature of many project factors, affecting badly the accuracy of the resulting

plan. Uncertainty in human resource allocation and availability is typically one of the factors that is

frequently over-simplified and overlooked. While it has been defined over and over (Refer to [11]),

uncertainty can be seen as any issue (aspect) in a project and its environment that can arise during its

execution and may require a fast and rapid adaption of the plan to cope with it. Uncertainty can affect many

other project factors such as task durations, feature modifications, and resources’ unavailability. In this

paper we are concerned with human resources allocation uncertainty and its effective modeling within a

project plan to improve the schedule’s quality.

1.1. Problem Statement

As in any project, software project managers deal with people, machines, and materials. These resources

usually have limited availability. A common practice is to define an initial plan where efficient allocation of

the available resources to the various project activities is considered. Despite this initial allocation, software

project plans are frequently prone to changes. Unexpected human-related factors may eventually emerge

during the project execution such as illness of team members, unforeseen implementation problems that

requires more human resources on the activity, a team member turnover, etc... As a result, an activity in a

real-life industrial project can take more than its original duration estimate, leading to a delay in the rest of

the activities due to human-resources’ unavailability and/or reallocation. In such situation, the initial

project plan is re-examined to optimize resources usage and answer these new features to avoid any delay

in the product delivery date. Intuitively, we can think that reallocating teams will improve the project plan.

However, this is not as simple as it looks. Let us analyze this situation more comprehensively.

In a classic scenario, during project run, a manager may face a situation where a team that was originally

assigned to the implementation of a feature is unavailable while at the same time another team is available.

In such situation, the manager has three choices:

1) Either to assign the activity “in hold” to the available team: As we may expect, teams have different

levels of expertise, a fact that will in turn affect task’s duration. The available team may need longer

time to achieve the task than the initially assigned team. In addition, the manager needs to make a

decision concerning the team that was originally assigned to the task. Once the team becomes available,

it can start the next assigned task, it can consider working on a task that was not initially part of its

responsibility, or it can simply wait. Re-scheduling of tasks, as well as re-allocation of human resources,

is possibly required in this case.

2) To stick to the initial plan and wait for the assigned team: The waiting time of teams will increase and

any delay in the execution of a task will potentially cause the delay of the whole project delivery. With

Journal of Software

940 Volume 10, Number 8, August 2015

nowadays-evident pressure of time-to-market, this solution cannot be adopted at all times.

3) Cancel the implementation of the task: In an extreme case, the project manager can decide to cancel

the implementation of the delayed task if he thinks that it will not affect the customer satisfaction or

because of an extreme delivery pressure. Again, this solution can only be adopted in certain situations.

To cope with these types of scenarios, it is important to provide managers with simulation approaches

and tools that are flexible enough to handle resources’ uncertainty that surrounds software projects. These

approaches are supposed to explore various possible scenarios that manager’s decisions may cause and

improve the decisions about task’s rescheduling and its subsequent resources’ reallocations.

1.2. Proposed Solution

In a software project, once the features are defined and selected, they are assigned a priority level ranging

from “must-have” (MH) to “nice-to–have” (NTH). This prioritization helps the project manager to resolve

conflicts and, more importantly, to perform trade-offs throughout the development lifecycle [12]. Usually, a

common practice in case of resources insufficiency is to first implement the features that have higher levels

of priority. The implementation of the features with lower priority may be postponed, or even cancelled,

according to the time-to-market and cost of the project.

To improve the accuracy of project plans, it is required that schedules incorporate both resource

allocation uncertainty and features’ priorities. For this purpose, we proposed in [13], to consider

multi-modal tasks, where an activity can be processed in one of several modes, each defining a different

options in terms of human resources allocation and duration. In addition, we extended the classic project

schedule model to define several types of tasks to support flexibility in feature scheduling and, thus, cope

with resources unavailability. This flexibility is based on the priority of the feature the task is implementing.

Analogous to features priorities, we defined two types of tasks cancellable and non-cancellable.

In this paper, we extend the model to have tasks that range from “non-floating” and “non-cancellable” to

“floating” and “cancellable” tasks. Floating task is a task that anticipates high uncertainty and is highly

flexible in terms of its human resource allocation. It has the property of being flexible in its order of

execution with respect to other tasks. Cancellable task is defined as a task that can be cancelled without

harming the project success. Rather than a static task sequencing, floating and cancellable task introduce

dynamicity to project. A mapping between project features to tasks is achieved based on features priorities

and associated implementation risk factor. We also extend the definition of Enhanced Project Schedule with

floating and cancellable tasks. Simulation of the proposed schedule is used to allow analyzing potential

effects that uncertainties in project schedules may cause on meeting project goals and, thus, computing

their significance in a given project.

In this paper, we define a methodology to use efficiently EPS in project management. This methodology

relies on an iterative process that takes advantage of the flexibility EPS is offering to simulate many redial

action scenarios and assess their output with respect to a simulation goal set by the manager. By comparing

different scenarios, managers can make their decision on the project initial plans based on sound results

rather than their personal experience. Finally, we present a case study where we compare between the

simulation results of the EPS, a classical schedule, and a model that do not consider task cancelation. We

demonstrate that the EPS is in fact introducing more accuracy and can help to predict in an efficient way the

set of tasks that will be affected by delays and human uncertainty factors.

To summarize, the contribution of this paper is threefold:

1) Extend and improve the model presented in [13] to provide a more efficient mapping between project

features and simulation tasks

2) Define a methodology to use EPS in software project management and cope with requirements change

related to human factors or task cancelation.

Journal of Software

941 Volume 10, Number 8, August 2015

3) Compare the simulation results of the EPS and classical schedules to assess the

advantages/disadvantages of EPS.

1.3. Paper Organization

The remainder of this paper is structured as follows: In the next section we provide an overview of the

importance of effective project planning in the software industry. Then, we summarize the related work on

coping with uncertainties in project scheduling. Section 3 we present the EPS model. Section 4 proposes a

methodology to incorporate the use of EPS model in project management and plan. Section 5 and 6

illustrate our approach through the simulation of the HOme Lightening automation System (HOLIS) case

study as well as the results of the simulation. Finally, Section 7 concludes the paper and overviews some

future directions.

2. Preliminaries: Software Project Planning

Before presenting our solution to incorporate human resources allocation uncertainty in project

scheduling, we will outline some preliminaries about project planning. In this section, we sketch the key

issues of features management and human resource allocation in project planning.

2.1. Features Management in Project Planning

A software process is a set of activities, methods, practices, and transformations that people use to

develop and maintain the software and its associated products [14]. A project consists of a number of tasks

(activities) where a predefined set of tasks has to be processed in order to complete the project. The tasks

are interrelated by two constraints:

Precedence constraints: tasks cannot be undertaken in any order and some tasks cannot start unless

others have been already completed. This order is usually defined when specifying the various features to

implement, and the precedence is not subject to change even in case of plan re-scheduling. Consequently, if

the implementation of the feature F1 precedes the implementation of the feature F2, any change in the

project plan has to verify this condition.

Resource sharing: task execution requires efficient resources’ management. Such resources may include

financial resources, inventory, human skills, production resources, information technology (IT), etc.

It is common in real-life software project to have hundreds of distinct features. However, due to limited

resources that in terms of staff, budget and time, it is highly critical to select and prioritize features. The

selection and prioritization are usually based on each feature’s importance, time and effort, as well as the

resources needed vs. their availability to implement it.

The author in [15] proposes two means of feature’s prioritization: (1) by implementation order, which is

the implementation order of the features in an incremental and iterative development cycle, and (2) by

importance, which corresponds to the order by importance to some stakeholders (business value, cost of

implementation, and risk). In this paper, we adopt the second approach, i.e. we prioritize features by their

importance. The priority of a feature will be reflected in the schedule task nature, as we will present in the

next section.

Different scales of priority are used to classify features. We use a typical three level scale, termed as:

critical, important, and useful features [16]. Critical feature is a must-have feature that needs to be delivered

on time and the success of the project depends on it. An important feature is a feature that has to be

delivered by the end of the project but its implementation can be delayed if needed. A useful feature is a nice

to have feature that will be implemented only if resources are available, i.e. time, budget, and human

resources.

Journal of Software

942 Volume 10, Number 8, August 2015

2.2. Human Resources Allocation in Project Management

Workforce allocation is seen as an important phase in software project management. In this phase,

software developers are being assigned to the various project tasks based on the software development

process they are taken into consideration [17]. While an initial allocation of software designers/developers

can be calculated based on the initial set of features, workforce adjustments during project performance

often become necessary for several reasons:

1) Projections recalculation, based on workforce size variability, and current development productivity

[17], often project activities are either cancelled or implemented by resources that are not exclusively

reserved for the current project [18]. Changes of either team members or task assignments may occur,

introducing changes in the project baseline.

2) Number of remaining features to be implemented and the time left with respect to the software

delivery date. In many cases, when the deadline is approaching a re-allocation of the human resources

is made to increase the chances of delivering critical and important features in the established

deadlines.

3) Requirements volatility [19], known as one of the main causes of software project failure. Despite

advances in software engineering over the last decades, most software projects still experience

considerable requirements’ changes during their development as a consequence of customers’

required changes, initial requirement misunderstanding, technology change, or even political changes.

Requirements volatility refers to the growth or changes in project functional or non-functional [20]

requirements during development lifecycle either by deletion, addition or modification [21]. Such

changes usually impact the set of features under development. While volatility is expected and

managed in the requirements engineering phase, it dramatically impacts the project schedule when

changes occur in the later stages of software development lifecycle.

Because of the above-mentioned reasons, it may happen during re-scheduling that a team is assigned to a

task that was originally matched to another team during the workforce planning. Such scenario is not easy

to predict during project scheduling because it is difficult to forecast when such an adjustment may happen.

Building a robust schedule that considers this uncertainty factor is critical to software projects success.

Such schedule needs to forecast possible deviation from the originally planned schedule and allow and

support the adjustment in such situations with minimal waste in terms of delays and resources waiting

time.

The incorporation of uncertainty in project planning and scheduling has resulted in numerous research

efforts, particularly focusing on uncertainty in task duration or cost [8] as we present next.

2.3. Related Work: Uncertainty and Scheduling

Despite the fact that research on project scheduling has widely expanded over the last few decades, the

majority of the research efforts are focused on building a schedule that assumes complete information and

a static deterministic problem environment, which has been shown to be a non-realistic assumption [22].

Such a resulting schedule can only be considered as a baseline for the execution of the project. Often, during

project execution, the baseline schedule is subject to uncertainties, leading to schedule changes, thus

increasing the need to consider uncertainty in project scheduling.

According to the literature, uncertainty in project scheduling has been considered in a number of ways

[8], [11], [23], [24]. The authors of [8] have distinguished five approaches to deal with uncertainty :

 Reactive scheduling [25]-[27] which ignores uncertainty in creating the baseline schedule and revises

or re-optimizes it when an unexpected event occurs. It is based on repairing actions, and spans from the

definition of basic rules such as the right left shift rule to a full rescheduling pass the remaining part of the

project under consideration.

Journal of Software

943 Volume 10, Number 8, August 2015

Stochastic scheduling which considers uncertainty in activity durations. Importance is given to

stochastic resource-constrained project scheduling. It mainly focuses on minimizing the expected project

duration, subject to precedence constraints and renewable resource constraints. It is defined as “A set of

jobs with random processing times that have to be executed subject to both precedence and resource

constraints” [28]. The authors of [18] focused on modeling stochastic resources availability. They propose a

mathematical model and suggest an algorithm for building a more robust schedule and repairing the

disruption due to resource unavailability. In our proposed approach, we extend this assumption and go

even further by modeling various types of resource changes. This includes re-allocation of teams because of

the unavailability of resources, or any other internal team change such as member’s illness and/or expertise

modification.

Scheduling under fuzziness, as first applied by Prade [29]; it uses fuzzy variables to describe duration

times via expert knowledge rather than using probability distributions. Fuzzy theory is seen as an approach

to adapt scheduling models into reality [30]. Recent research projects in this field present methodologies

that calculate the fuzzy completion project time Feng-Tse, [31] or obtain fuzzy critical paths and critical

activities and activity delay [32].

Proactive (robust) scheduling, as defined in [24] proactive project scheduling deals with uncertainty

by creating a baseline schedule that is as much as possible protected against disruptions, assuring a certain

robustness in the resulting project scheduling. Herrolem and Leus [33] examined various procedures for

development of a stable pre-schedule, which is unlikely to undergo major changes when it needs to be

repaired when activity duration changes. They proposed a mathematical model to minimize the expected

weighted deviation in activity start times. However, they made abstraction of resources usage assuming a

proper allocation of resources has been performed.

Sensitivity analysis is studying the impact of uncertainty on the output of the scheduling algorithms. In

[34], the authors study the degradation of the performance of the solution due to the disturbances by

analyzing the impact of the perturbations on the computed schedule.

In all of the abovementioned approaches, the evolution structure of the precedence is deterministic. In

the research work we present in this paper, we deal with this aspect in a more realistic way by considering

the fact that some precedence relationships may change under some conditions. In addition, stochastic

resource-constrained project scheduling generalizes the so called stochastic project networks or

PERT-networks job processing times that presume unlimited availability of resources. In our approach, we

assume that we have limited resources availability, which is usually the case in real-life software projects.

One of the used tools for project management analysis is software process simulation and modeling [35].

Simulation is a technique that has been successfully applied in many domains [36-38] . In project

scheduling, it can be used to forecast the effort/cost, schedule and the product quality, the staffing levels as

well as the expertise needed across the time according to the task precedence constraints, the estimation of

the resource constraints and hence better resource allocation; and finally an efficient analysis of risks.

3. State-Dependent Tasks

Recall that the objective of this work is to add robustness to the baseline project schedule by introducing

human uncertainty. In our case, we are interested in interrelating human resource allocation uncertainty

and features priority levels in the simulation model to obtain a robust baseline.

To formalize uncertainty in human resources allocation with respect to features priorities, we define the

notion of highly uncertain state-dependent task, for which we allow all relevant parameters to determine its

duration. Before we introduce our simulation model, we first outline a few necessary assumptions upon

which we build our project schedule.

Journal of Software

944 Volume 10, Number 8, August 2015

3.1. Assumptions

We assume that:

1) The manager is given a pool of human resources with different degrees of productivity to perform

different types of tasks.

2) Each team is responsible for completing the implementation of the task as a whole.

3) Change in the initial structure of the team is equivalent to a change of the team. In other words, if one

member of team A is absent for illness, or has to be transferred to another team to serve another task,

then the resulting team is in fact team B that demonstrates a new expertise. In this particular case, the

duration needed for team B to implement a task will be longer/shorter than the duration needed for

team A.

4) Tasks are sharing human resources and their implementations obey to a certain precedence order.

5) Tasks are non-interruptible activities. Once the implementation of a task starts, it is not interrupted.

6) Duration of a task is modeled by a probability distribution function.

7) For activities that may be implemented by more than one team, duration probability distributions of

each team need to be specified.

8) Features are correctly prioritized. Change of prioritization [15], as it may happen during project

implementation, due to addition/removal/change of other features leads to a change in the EPS as we

will describe in the methodology proposed.

9) Type of a task depends on the priority of the feature that the task is implementing and the

implementation risk associated to it.

10) When developing the state space of a schedule, the highest priority features have to be implemented

first as part of the scheduling when possible.

3.2. Modeling and Classification of Features

We propose to distinguish tasks in nature so they reflect priorities of the features they are implementing

to introduce dynamic scheduling, on one hand, and flexibility in human resources allocation, on the other

hand. We distinguish four types of tasks, identified as: non-floating non-cancelable tasks, floating

non-cancelable tasks, floating cancelable tasks and finally non-floating cancelable tasks. They are defined as

follows:

Non-floating and non-cancellable (NFNC) tasks: They typically implement features that are estimated

as critical for the success of the project. These tasks do not have any flexibility in terms of human resources

allocation. They are assigned only to experienced professionals to reduce the risk of their failure.

Consequently, resources assignment of NFNC tasks follows a fixed resource allocation strategy which

implies a single team responsible for their implementation. These tasks cannot be cancelled.

Floating and non-cancellable (FNC) tasks: these tasks have flexibility in terms of human resource

allocation. They usually implement features that are not associated with high risk. Resource allocation for

floating and non-cancellable tasks can follow a multi-modal strategy, where many teams can implement

them with respect to their availability. During project’s lifecycle, any of the teams that become available can

implement it in order to optimize project’s duration and maximize resource utilization, in accordance with

project goals. In general, FNC tasks invite various on-the-fly decision scenarios since they are executed

when the resources are available because they allow certain flexibility in team’s allocation. As consequence

to human resources flexibility, FNC tasks can be postponed and rescheduled in the project plan however

they can never be cancelled.

Floating and cancelable (FC) tasks: These tasks have flexibility in terms of human resource allocation,

yet can be cancelled if needed. In fact, when teams responsible for implementing the task are either

unavailable or solicited to do more important tasks then the task is postponed. If the project is overdue,

Journal of Software

945 Volume 10, Number 8, August 2015

then these tasks are cancelled. The resource allocation for FC tasks follows a multi-modal strategy, where

many teams can implement them with respect to the team availability.

Non-floating and cancelable (NFC) tasks: These tasks have no flexibility in terms of human resource

allocation and yet can be cancelled if necessary. Resource allocation for NFC tasks follows fixed strategy,

where only one team can implement them. If the team is not available, the implementation of the feature is

cancelled. Consequently, NFC tasks have a very low probability of getting implemented compared to other

types.

Table 1 presents a possible mapping between features priority levels and their possible assigned task. Let

us outline some facts:

1) As expected, critical and important features can never be modeled as cancelable tasks. Only nice-to

have features can be cancelled.

2) While it is possible to model useful features as NC tasks, we do not recommend it. It prevents the

model from certain flexibility in the task execution order, a decision that may delay the overall duration

of the project.

3) Critical and important features have to be modeled as non-cancellable tasks, either floating or

non-floating. Such decision depends on the risk level the implementation of the feature presents. When

the risk of the feature is high, it would be more judicious to assign its implementation to an

experienced team and hence model it as NFNC. However, when the feature is critical but presents low

risk and the project manager has some flexibility with regards to the delivery date of the feature, then

s/he may tolerate model it as FNC.

Let us now formally define a task. We extended the definition in [39] to incorporate the different type of

tasks.

Let R= {Ri, 1≤i≤n} be the set of n features of the software to implement. Let T= {Ti, 1≤i≤m} be the set of m

teams (representing the human resources available for that software project).

Definition 1: Task

A task is a 3-tuple task =(Ri, D, type) where :

1) Ri  R the feature the task is implementing.

2) type {NFNC, FNC,NFC, FC} the type of the task

3) D = {Dij (Ri, Tj)/Tj  T} is the set of predetermined task durations expressed as functions of the capable

teams Tj and feature Ri.

For NFNC and NFC tasks, D is a singleton.

Table 1. Mapping Feature Priority Levels to Task Types

 Task NFNC FNC NFC FC

Critical High Risk X

Low Risk X

Important High Risk X

Low Risk X

Useful High Risk X
(not recommended)

X
(not recommended)

X

Low Risk X
(not recommended)

X
(not recommended)

 X

Contrarily to classical schedules, the task has a type. This type reflects the priority of the feature the task

Journal of Software

946 Volume 10, Number 8, August 2015

is implementing. In addition, it may be defined as a multi-modal task that can be implemented by many

teams adding as such flexibility to fixed human allocation usually adopted when defining projects’

schedules. These new task descriptions will be used to define the Enhanced Project Schedule.

3.3. Enhanced Project Schedule

The project schedule model needs to reflect the nature of tasks in the simulation itself. To achieve this

goal, we propose to extend the project schedule with fuzzy rules. Fuzzy rules are conditional statements that

express potential deviations to the initial project plan and remedial scenarios that should be undertaken

consequently. Each fuzzy rule is made up of two parts: condition and action, formally written as

“ ”. Conditions can be described either by using strict terms, or fuzzy ones. The action

can typically be canceling or interrupting some of the tasks, or one of the various types of rescheduling. This

fact makes our schedule description evolving, rather than rigid and inflexible. An example for a fuzzy rule

would be:

or

Both are examples for typical proceedings during project execution. However, in our approach we allow

for their modeling, assessment and quantitative evaluation.

Fuzzy rules support the conversion of the type of the task in the project schedule model. Hence, these

rules should be consistent with the type of the task specified by the analyst. As an example, a rule can never

recommend to cancel a NFNC and FNC tasks as they represent critical and important features. Consequently,

the two rules mentioned-above are correct only if and are cancellable tasks.

Definition 2: Enhanced Project Schedule

An Enhanced Project Schedule (EPS) is a 5-tuple where:

1) , set of tasks, where each task corresponds to a task in the project

schedule

2) , where is the set of precedence constraints, that are actually

tuples of two tasks where the completion of the first one is a pre-feature for commencing the second

one, e.g. would mean that completing of is a pre-condition for beginning

3) , set of teams available for the execution of the project

4) , set of fuzzy rules that define remedial action scenarios.

5) , initial sequencing of tasks that satisfies the set of precedence constraints

provided by .

Note that F can be an empty set too, which would imply sticking to the original project schedule provided

by IGC. Fuzzy rules ensure the dynamicity of the schedule.

3.4. Application to the Proxel-Based Simulation

To implement our model, we need to extend simulation approaches to cope with the dynamic task

scheduling. In [13], we proposed to extend the proxel based simulation. The proxel-based method, first

introduced in [40], [41], is a relatively novel simulation method, whose underlying stochastic process is a

discrete-time Markov chain [42] and implements the method of supplementary variables [43]. The method,

however, is not limited to Markovian models. On the opposite, it allows for a general class of stochastic

models to be analyzed regardless of the involved probability distribution functions. In other words, the

proxel-based method combines the accuracy of numerical methods with the modeling power of

Journal of Software

947 Volume 10, Number 8, August 2015

discrete-event simulation.

The proxel-based method is based on expanding the definition of a state by including additional

parameters which trace the relevant quantities in one model through a previously chosen time step.

Typically this includes, but is not limited to, age intensities of the relevant transitions. The expansion

implies that all parameters pertinent for calculating probabilities for future development of a model are

identified and included in its state definition.

Proxels, as basic computational units of the algorithm, follow dynamically all possible expansions of one

model. The state-space of the model is built on-the-fly, as illustrated in Fig. 1, by observing every possible

transiting state and assigning a probability value to it (Pr in the figure stands for the probability value of the

proxel). Basically, the state space is built by observing all possible options of what can happen at the next

time step. The first option is for the model to transit to another discrete state in the next time step,

according to the associated transitions. The second option is that the model stays in the same discrete state,

which results in a new proxel too. Zero-probability states are not stored and, as a result, no further

investigated. This implies that only the truly reachable (i.e. tangible) states of the model are stored and

consequently expanded. At the end of a proxel-based simulation run, a transient solution is obtained which

outlines the probability of every state at every point in time, as discretized through the chosen size of the

time step. It is important to notice that one source of error of the proxel-based method comes from the

assumption that the model makes at most one state change within one time step. This error is elaborated in

[41].

Each proxel carries the probability of the state that it describes. Probabilities are calculated using the

instantaneous rate function (IRF), also known as hazard rate function. The IRF approximates the probability

that an event will happen within a predetermined elementary time step, given that it has been pending for a

certain amount of time t (indicated as ‘age intensity’). It is calculated from the probability density function

(f) and the cumulative distribution function (F) using the following formula:

 (t) =
)(1

)(





F

f



 (1)

Initial state of the system

Pr = 1.0

System can transit to

another discrete state

If transition is race enable,

reset corresp. age variable,

else advance it by t
Pr = p1

System can stay in the

same discrete state

Advance all age variables

by t
Pr = 1 - p1

What can happen next?

What can happen next? What can happen next?

fo
r a

ll
po

ss
ib
le
 tr

an
si
tio

ns

t = 0

t = t

t = 2t

..
.

Fig. 1. Illustration of the development of the proxel-based simulation algorithm.

Journal of Software

948 Volume 10, Number 8, August 2015

Fig. 2. Simulation methodology using the enhanced project schedule.

For our purpose we extended the original proxel-based simulation algorithm to account for the fuzzy

scenarios. They fitted straightforwardly into the existing framework. In addition, the algorithm was adapted

to collect statistics about the probability of having a certain feature implemented. More on the extension of

the proxel based simulation can be found in [13].

As all state-space based methods, this method also suffers from the state-space explosion problem [44],

but it can be predicted and controlled by calculating the lifetime of discrete states in the model. In addition,

its efficiency and accuracy can be further improved by employing discrete phases and extrapolation of

solutions [45]. More on the proxel-based method can be found in [41].

4. A Methodology for Using EPS in Simulating Software Project Plans

As Shown in Fig. 1, we define a methodology for project scheduling using the EPS model. This

methodology relies on two main phases: a pre-simulation phase and a simulation phase.

4.1. Pre-simulation Phase

Often, there are more features specified by the customer than can be implemented with the actual project

resources. As mentioned previously, the project manager, through several negotiations with the customer,

have to select and prioritize these features. At the end of this step, it is expected that the features to be

implemented and delivered are chosen and accepted by the customer. Obviously, this step is challenging.

The selected features have to satisfy the interests of the various stakeholders involved in the project and

take into considerations the importance of business value, the risk and cost of development, and finally

features dependencies [46]. After several iterations of selecting, prioritizing the features, and defining the

precedence order between them, the pre-simulation phase ends by delivering a set of features, their

respective priorities as well as the precedence order to respect during their implementation. Normally, not

all features are coupled with a precedence order. Our approach takes advantages of this fact to add

flexibility to the schedule under simulation.

4.2. Simulation Phase

It consists of three steps:

1) Generation of EPS: which is threefold: (1) selecting the teams that have the potential to implement the

features and estimating their level of expertise on the one hand, and attributing a probability function

that will be used during the simulation on the other hand. Defining probability functions rely on

previous data available to the analyst describing duration of time needed to implement a feature in

similar situation with a comparable team expertise. (2) Define an initial Grant chart with respect to

Journal of Software

949 Volume 10, Number 8, August 2015

precedence order of features as defined in the pre-simulation phase. The sequencing of the tasks in the

initial Gantt chart gives the starting state of the simulation from where the different possibilities will

be investigated (3) Generation of fuzzy rules in accordance to task types.

2) Proxel-based simulation step: The generated EPS in the previous step is run by our proxel-based

simulator or any other simulation tool that has been extended to process EPSs.

3) Analysis step: The manager has now to interpret the obtained simulation results. We believe that a

refinement of features at this level may be considered if the project runs out of the target time and/or

budget specified during the simulation.

Using the simulation model that we defined, the manager will have the necessary framework to better

select the different features. An important aspect is the feedback that our approach is offering to him. In

addition, using our model, the manager will be able to detect the idle time of the different teams. This

information is very useful in initial project planning. It can be used to improve it either by refining the

feature selection by adding or deleting some nice to have features, or by re-allocating human resources if

the waiting time of certain teams is relatively long. Hence, our model will help the efficient allocation of

team in order to achieve an effective time management.

Finally, our model can be used in an iterative process, where the manager will first consider all the

features defined by the customer. Then, by simulating our EPS model, he will refine the set of features so

that the project fits well within the human resources and time assigned to it.

5. Proof of Concept

HOLIS is a home lightening automation system that brings new lightening automation functionality with

ease of use, comfort, and safety. It is intended to be used by homeowners’ buildings and high-end homes.

Details of the case study can be found in [16]. To simulate the schedule of the development of HOLIS, we

select a subset of the different features that the system should implement. We follow the methodology we

presented in Fig. 2 to present our case study.

5.1. Pre-simulation Phase

Table 2 summarizes the subset of the HOLIS system features with their respective priorities and the effort

needed to implement each of them. Effort has one of the three typical levels: low, medium, and high.

Unsurprisingly, the effort needed to implement a task is team dependent. The values given in Table 2

represent an estimation of the effort needed to a trained team to implement a given feature.

 The third column represents the precedence constraint to respect when implementing the different

features. Null indicates that the implementation of a feature is independent from the others. For instance,

Feature1 can be implemented without any constraints while the implementation of Feature2 cannot start

unless Feature1 has been already implemented. Fig. 3 shows the precedence relationship between the

different features of the HOLIS case study. Any proposed schedule has to comply with it.

5.1.1. Simulation phase

According to our methodology, after defining the different features, their priorities and the precedence

relationship between them, an EPS can be defined. At this level, a mapping between each feature and its

corresponding task in the simulation schedule has to be defined.

Let us consider our running example. We propose to categorize the set of prioritized features as NFNC,

FNC, NFC and FC tasks. Fig. 3 shows this mapping. The six first features are all mapped to non-cancelable

tasks, either floating or not. It is mainly because of their priorities (Critical and Important). Feature4 and

Feature5 are considered as FNC allowing certain flexibility in their implementation. Feature7 is mapped to

FC task while Feature8 is a NFC task.

In order to simulate the HOLIS system, we process to the human resource allocation. We suppose that we

Journal of Software

950 Volume 10, Number 8, August 2015

have two teams working on the HOLIS project: Team A and Team B. It is obvious that these two teams have

different expertise, and each will fit better to a particular task. As explained previously, any software project

is subject to workforce adjustment. During this case study, we anticipate such on-the-fly decision and allow

the expression of possible decisions, while simulating the project duration. Table 2 illustrates the task

allocation for each of the teams. It also shows the estimated effort that the assigned team needs to

implement a feature. All the non-floating tasks are assigned to a single team and this team is not subject to

change even if an uncertainty arises.

Table 2. Features of the HOLIS System

Features Priority Risk Effort Preceence

Feature 1: automatic timing settings for lights and so on. Critical High Low Null

Feature 2: built-in security features (alarm, bells) Critical High Medium Feature1

Feature 3: non-PC control unit Critical High High Null

Feature 4: vacation settings Critical Low Low Feature3

Feature 5: uses my own PC for programming Important Low High Null

Feature 6: close garage doors Important High Low Feature 1

Feature 7: automatically turn on closed lights when door opened Useful Low Low Feature6

Feature 8: Interface to audio/video system Useful High Medium Null

Fig. 3. Features precedence relationship.

Finally, we draw the attention to two useful aspects our EPS may help the manager in:

1) Verification of the consistency of the assigned features priority. It is obvious that a FC-task cannot have

a precedence constraint with a NFNC task since it is against the semantic of the floating task as well the

implementation flexibility this task is offering;

2) According to the precedence constraint of the different features of the HOLIS system and their

respective priorities, only one starting point to our project schedule can be defined: Team A

implementing Feature1 and Team B implementing Feature3. However, in other projects, we may have

several starting points. The project manager needs to investigate these possible starting points in order to

identify the best that serves the project scheduling objectives.

At this point, the manager is able to generate an EPS to be used as a simulation model. He needs to use

the precedence graph shown in Fig. 3 as well as teams and task type allocation in Table 3. The simulation

model is shown in Fig. 4. This model clearly states that Feature 4, 5, and 7 can be implemented by any of the

available teams, to the opposite to the remaining features.

Journal of Software

951 Volume 10, Number 8, August 2015

Fig. 4. EPS generation for the HOLIS system.

6. Experiments and Results

The experiments were run on a standard workstation with an Intel Core2Duo Processor at 2.0 GHz and 1

GB RAM. The choice for t was 0.1 and the simulation was run up to time t = 20. This implies that the

number of simulation steps was 200. The computation time for this experiment was ca. 4 seconds. In the

following we present the results, i.e. the statistics that were calculated during this simulation experiment.

In order to see the difference our new task modeling makes, we propose to have three different

simulations and compare among them.

6.1. Conventional Simulation Following a Gantt Chart (Case A)

In the current simulation approaches, uncertainty, as well as flexibility, in human allocation is hardly

represented. Table 3 shows a possible distribution of HOLIS features into simulation tasks in the case of

conventional simulation approach.

Table 3. HOLIS Conventional Distribution of Tasks

Features Effort (for trained team) Assigned Team and Estimation of the Needed Effort

Feature 1 Low Team A (Effort = Low)

Feature 2 Medium Team A (Effort = Medium)

Feature 3 High Team B (Effort = High)

Feature 4 Low Team B (Effort = Low)

Feature 5 Medium Team A (Effort = Medium)

Feature 6 Low Team B (Effort = Low)

Feature 7 Low Team A (Effort = Low)

Feature 8 Medium Team B (Effort= Medium)

Tasks of the HOLIS system can be represented using this simulation scheduling in Fig. 5.

The state space of this rigid schedule is shown in Fig. 6. Twenty discrete states are generated and the

sequencing denoted by the Gantt chart is respected. Neither the priority nor the human resource allocation

uncertainty is taken into consideration.

6.2. Simulation with Priority Consideration but without Fuzzy Rules (Case B)

In this case, we simulate the model by taking into consideration the priority of the feature while

developing the state space of the HOLIS system as well as the human resource flexibility. However, we do

not allow the cancelation of tasks. Consequently, Feature7 and Feature8 are modeled as NFNC and FNC

Journal of Software

952 Volume 10, Number 8, August 2015

tasks respectively.

Fig. 5. Gantt chart for the HOLIS system.

In the following we provide the details of the proxel-based simulation of the sample project schedule that

involves the different tasks we are proposing. This should serve as description of our approach through an

example.

Each task in the model has a name, a priority level, a duration probability, which is distributions with

respect to possible team association, and a set of pre-requisite tasks. The proxel format of the state of the

project schedule encompasses the following parameters: task vector [47], where (Ti,Tj) reflects the fact that

Team A is working on Ti and Team B is working on Tj respectively, the age intensity vector {i}, for tracking

the duration of tasks, probability value and the probability for the model being the denoted state. I is used

to reflect an idle team.

Thus the format of the proxel is as follows:
Proxel = (Task Vector, Age Intensity Vector, Probability)

The initial proxel, i.e. the proxel that marks the initial state of the system would be ((T1, T3), (0, 0), 1.0). It

describes the situation in which Team A is working on task T1, and Team B on task T3 with a probability of

1.0. In the next time step the model can do each of the following developments:

 Task T1 is completed,

 Task T3 is completed, or

 None of the tasks are completed

Resulting into the following three proxels:

a) ((T2, T3), (0, t), p1)

b) ((T1, T4), (t, 0), p2)

c) ((T1, T5), (t, 0), 1 - p1 - p2)

In case (a), team A starts working on task T2, and also the corresponding age intensity is now reset to

track the duration of T2. Case (b) and (c) show the cases when team B finishes Task 3, it will either start T4

or T5. We recall that team B cannot start T6 because of the precedence constraints with T1 which in turn

will minimize the idle time of teams. Team B cannot start T8 because T4 and T5 have higher priority than

T8.

During the state exploration, around 40 discrete states have been generated. Two facts contributed in

doubling the number of states that can be reached: 1) no sequencing is followed except the respect of the

ordering constraints, and 2) the introducing of three floating tasks that can be implemented by Team A or

Team B according to their availability.

Journal of Software

953 Volume 10, Number 8, August 2015

Fig. 6. State space of the HOLIS system.

6.3. Simulation with Priority Consideration and Fuzzy Rules (Case C)

In this simulation model, we allow the cancellation of tasks by adding fuzzy rules. T7 and T8 in this case

are considered as cancellable tasks. Adding fuzzy rules will add few states during the state exploration

comparing the previous model. However, it will add more connections to the states of the state exploration

graph. As an example, let us consider the state ((T2, T4), (0, 0), 1.0). It describes the situation in which Team

A is working on task T2, and Team B on task T4 with a probability of 1.0 and where Tasks T1, T3, T6,T5 are

already implemented. In the next time step the model can do each of the following developments:

 Task T2 is completed,

 Task T4 is completed, or

 None of the tasks are completed

Normally, this will result into the following four proxels:

a) ((T7, T4), (0, t), p1)

b) ((T2, T7), (t, 0), p20.5)

c) ((T2, T8), (t, 0), p20.5)

d) ((T2,T4),(t ,t),1 - p1 - p2)

Proxels (b) and (c) show the probability for TeamB to start working on T7 and T8 after implementing

Feature4 since both tasks are representing useful features.

Making T7 and T8 cancellable change this fact and proxel ((T2, T4), (0, 0), 1.0) will lead to the following

six proxels:

a) ((T7, T4), (0, t), p1 (1-pcancel))

b) ((N, T4), (0, t), p1pcancel)

c) ((T2, T7), (t, 0), 0.5 p2  (1-pcancel))

d) ((T2, T8), (t, 0), 0.5  p2  (1-pcancel))

Journal of Software

954 Volume 10, Number 8, August 2015

e) ((T2, N), (t, 0), p2pcancel)

f) ((T2, T4), (t, 0), 1 - p1 - p2)

Pcancel represents the probability to cancel the implementation of a cancellable task. Consequently, Team

A can start implementing T7, but can also stay idle if the project is close to deadline. Same applies for team

B working on T7 and T8.

6.4. Simulation Result and Discussion

In order to evaluate our proposed model, we discuss simulation results based on three criteria:

probability to complete the project on time, probability to complete all tasks by the end of the project and

finally the probabilities to finish each task individually by the deadline.

6.4.1. Project completion by deadline

Fig. 7 shows the simulation results for the three cases. The deadline to complete the project was set at 20

time units. The simulation shows that following the classical schedule, where priority of features, as well as,

flexibility in human resources allocation is not considered, the project will never end on time while

following the second model (Case B) , where no fuzzy remedial rules are defined, a small improvement is

observed but still the project will not be delivered within the deadline. However, this probability reached 60%

in the case of the EPS model. In addition, even by extending the deadline to 30 time units, while the

probabilities to finish the project increase but still the observations do not change. As expected, the classical

schedule (Case A) yields a probability to complete the project as 75%. In the second model (Case B)

simulation shows that the probability to finish the project by the deadline is approximately 85%. The

highest project completion probability is for the EPS model, where the probability to finish the project by

the deadline is higher than 95%.

This result confirms that:

1) Rigid human allocation of tasks does not optimize the usage of human resources. Even without

cancelling the implementation of useful features, the difference in probability between the first and the

second model is roughly 10% which represents a considerable difference for the project manager. This

is attributed to the floating tasks.

2) Implementing the cancelation of task in EPS enhances the schedule accuracy and adaptability. It allows

the manager to assess the risk and negotiate with customers about the possibility of task

implementation cancelation if the project runs out of budget and /or time. This would save money and

time, and focus the project work on the critical tasks.

3) In this particular project, cancellation of useful features under certain circumstances (being close to

the deadline) to meet the deadline seems to be a good option.

Obviously, more parameters need to be included, such as cost, to make a complete decision. However, the

simulation results can cut a significant amount of the risk in making these decisions.

Fig. 7. Probability of completing the project.

Journal of Software

955 Volume 10, Number 8, August 2015

6.4.2. Task completed by model

Fig. 8 shows the probability to implement all tasks, as specified in the initial project schedule model. Case

B model has the highest probability to have all tasks implemented by the deadline, while EPS and the classic

schedule converge to having very close values (almost identical) at the deadline. As time goes by, beyond

the deadline, this is changing, ultimately yielding the highest probability to Case A, and the lowest to Case C,

which would be the expected. However, the important cutting point is the deadline, and at that time we can

see no significant difference in the probability values that would oppose the scenario described by the Case

C. This would form part of the assessment of the possible decision that the manager can make to meet the

project deadline.

Fig. 8. Probability of having all tasks completed.

Fig. 9. Probability of individual task completion with classical schedules.

6.4.3. Implementation of individual tasks per model

The third interesting aspect to simulate is the probability of implementing each individual task per model.

To study this aspect, we will consider the cases of critical, important and nice-to-have features. The

simulation results for the three models (Case A, Case B, and Case C) are shown in Fig. 9, Fig. 10 and Fig. 11,

respectively.

Fig. 10. Probability of individual task completion with schedules with priorities and floating tasks.

Journal of Software

956 Volume 10, Number 8, August 2015

Fig. 11. Probability of individual task completion with EPS.

Comparing the simulation results leads to three main conclusions:

1) In the classical schedule, the static sequencing of tasks may delay the implementation of

critical/important tasks. As we can observe, the implementation of Task 6 will not start before time

unit 10 in the first schedule, whereas it will start around time unit 8 in the second and the third

schedule.

2) Task 5 has a very low probability of implementation by the project deadline in the case of the classical

schedule (Case A). This issue is not observed in the second and the third cases because Task 5 has

more priority than Task 7 and Task 8, a fact that is taking in consideration while generating the state

space.

3) The EPS shows the highest probability to implement each critical and important task. It also has the

lowest probability to implement the two useful features represented by Task 7 and Task 8.

Finally, comparing the results of the second and the third case, the manager may consider to change the

RAS and to re-simulate the EPS by considering the cancellation of Task 7 only. Our model is proposed as a

decision-making assistant as well as an approach to assess various decisions that managers may take in

order to handle uncertainties. As such, it will certainly guide managers in the typical wealth of information

that they are surrounded by.

7. Conclusion and Future Work

This paper presents a methodology that uses more realistic and robust project schedule modeling in

simulating project plans that allows for a high level of uncertainty in resource constraints. This model uses

the different priorities of software features to adequately represent them in the simulation model. For that,

a new resource-constrained project scheduling in which tasks are classified in four categories according to

the nature and level of importance of the features they are implementing is presented.

The methodology the paper is proposing incorporates EPS in project management. It allows the

generation of schedules that: (a) handles the uncertainty in human resources allocation to different project

tasks and gives flexibility in teams’ allocation, (b) simulates various on-the-fly human decisions and their

impact on the project duration, and finally (c) handles effectively delays that may occur while implementing

different features. Ultimately, schedules produced using this methodology are more robust since they are

less sensitive to resources unavailability: a delay of one activity would not necessary lead to a schedule

disruption. By comparing different models, we proved that EPS is in fact more informative to the manager

since it allows him to simulate different possible remedial scenarios and to make decision on what scenario

to adopt with regards to the project goal. For instance, it would be simpler for managers to predict ahead

of time which useful feature will be implemented and those that are not within the given project time frame.

Following an iterative process, a manager may refine his features selection and re-build the corresponding

simulation model. This will help deciding on the nice-to-have features to keep and those to eliminate,

Journal of Software

957 Volume 10, Number 8, August 2015

helping consequently the process of negotiation with the customer.

To extend our work we plan to address the effect of these uncertainty factors on the productivity and

budget, by adding value, effort and cost parameters. In addition, we plan to enrich our simulation model to

measure the effect of features volatility that software projects are suffering from. To handle features

volatility, the model needs to be extended with task interruption.

References

[1] Herroelen, W. (2005). Project scheduling-Theory and practice. Production and Operations

Management, 14, 413-432.

[2] Neimat, T. A. (2014). Why IT Projects Fail?. Retrieved 2014, from

http://www.projectperfect.com.au/info_it_projects_fail.php

[3] Pinto, J. K. (2002). Project management.

[4] Belassi, W., & Tukel, O. I. (1996). A new framework for determining critical success/failure factors in

projects. International Journal of Project Management, 14, 141-151.

[5] Charette, R. N. (2005). Why Software Fails?. Retrieved 2005, from

http://spectrum.ieee.org/computing/software/why-software-fails/

[6] Wen, Z. J., & Fang, S. H. (2009). Multi-mode double resource-Constrained time/cost trade-offs project

scheduling problems. Proceedings of the International Conference on Management and Service Science

(pp. 1-4).

[7] Huang, W., Ding, L., Wen, B., & Cao, B. (2009). Project scheduling problem for software development

with random fuzzy activity duration times.

[8] Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials.

European Journal of Operational Research, 165, 289-306.

[9] Arauzo, J. A., Galán, J. M., Pajares, J., & Paredes, A. L. (2009). Multi-agent technology for scheduling and

control projects in multi-project environments. An Auction based approach. Inteligencia Artificial, 42,

12-20.

[10] Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity

duration to maximize expected net present value. European Journal of Operational Research, 198,

697-705.

[11] Perminova, O., Gustafsson, M., & Wikström, K. (2008). Defining uncertainty in projects — A new

perspective. International Journal of Project Management, 26, 73-79.

[12] Port, D., Olkov, A., & Menzies, T. (2008). Using simulation to investigate requirements prioritization

strategies. Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering.

[13] Mizouni, R., & Molnar, S. L. (2012). Simulation-based feature selection for software requirements

baseline. Journal of Software.

[14] Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M. B., & Bush, M. (1993). Key Practices of the Capability

Maturity Model, Version 1.1. Tech. Rept. CMU/SEI-93-TR-25. Software Engineering Institute, Carnegie

Mellon University Pittsburgh, Pennysylvania Tech. Rept. CMU/SEI-93-TR-25, 1993.

[15] Firesmith, D. (2004). Prioritizing requirements. Journal of Technology, 3, 35-48.

[16] Leffingwell, D., & Widrig, D. (2003). Managing Software Requirements: A Use Case Approach. Pearson

Education.

[17] Pfahl, D., & Lebsanft, K. (2000). Using simulation to analyse the impact of software requirement

volatility on project performance. Information and Software Technology, 42, 1001-1008.

[18] Olivier, L., Erik, D., & Willy, H. (2008). Proactive and reactive strategies for resource-constrained project

Journal of Software

958 Volume 10, Number 8, August 2015

http://www.projectperfect.com.au/info_it_projects_fail.php
http://spectrum.ieee.org/computing/software/why-software-fails/

scheduling with uncertain resource availabilities. Journal of Scheduling, 11, 121-136.

[19] Ferreira, S., Shunk, D., Collofello, J., Mackulak, G., & Dueck, A. (2011). Reducing the risk of requirements

volatility: findings from an empirical survey. Journal of Software Maintenance and Evolution: Research

and Practice, 23, 375-393.

[20] Mizouni, R., & Salah, A. (2010). Towards a framework for estimating system NFRs on behavioral models.

Knowledge-Based Systems, 23, 721-731.

[21] S. Ferreira, J. Collofello, D. Shunk, & Mackulak, G. (2009). Understanding the effects of requirements

volatility in software engineering by using analytical modeling and software process simulation.

Journal of Systems and Software, 82, 1568-1577.

[22] Leus, R. (2004). The generation of stable project plans. A Quarterly Journal of Operations Research, 2,

251-254.

[23] Daneva, M. (2010). Balancing uncertainty of context in ERP project estimation: an approach and a case

study. Journal of Software Maintenance and Evolution: Research and Practice, 22, 329-357.

[24] Vonder, S., Demeulemeester, E., Leus, R., & Herroelen, W. (2006). Proactive-reactive project scheduling

trade-offs and procedures. Perspectives in Modern Project Scheduling, 25-51.

[25] Sadeh, N., Otsuka, S., & Schelback, R. (1993). Predictive and reactive scheduling with the microboss

production scheduling and control system. Proceedings of the IJCAI-93, Workshop on Knowledge-Based

Production Planning, Scheduling and Control (pp. 293-306).

[26] Sakkout, H. E., & Wallace ,M. (2000). Probe backtrack search for minimal perturbation in dynamic

scheduling. Constraints, 5, 359-388.

[27] Alagöz, O., & Azizoglu, M. (2003). Rescheduling of identical parallel machines under machine eligibility

constraints. European Journal of Operational Research, 149, 523-532.

[28] Stork, F. (2001). Stochastic Resource-Constrained Project Scheduling. Technische Universitat Berlin.

[29] Prade, H. (1979). Using fuzzy set theory in scheduling problem: A case study. Fuzzy Sets and Systems, 2,

153-165.

[30] Soltani, A., & Haji, R. (2007). A project scheduling method based on fuzzy theory. Journal of Industrial

and Systems Engineering, 1, 70-80.

[31] Tse, L. F., & Y. S. Jing. (2003). Fuzzy critical path method based on signed-distance ranking and

statistical confidence-interval estimates. Journal Supercomput, 24, 305-325.

[32] Oliveros, A. V. O., & Fayek, A. R. (2005). Fuzzy Logic approach for activity delay analysis and schedule

updating. Journal of Construction Engineering and Management, 131, 42-51.

[33] Herroelen, W., & Leus, R. (2004). The construction of stable project baseline schedules. European

Journal of Operational Research, 156, 550-565.

[34] Penz, B., Rapine, C., & Trystram, D. (2001). Sensitivity analysis of scheduling algorithms. European

Journal of Operational Research, 134, 606-615.

[35] Kellner, M. I., Madachy, R. J., & Raffo, D. M. (1999). Software process simulation modeling: Why? What?

How? Journal of Systems and Software, 46, 91-105.

[36] Barachi, M. E., Glitho, R., & Dssouli, R. (2011). Control-level call differentiation in IMS-based 3G core

networks. Network, 25, 20-28.

[37] Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: QoS-based clustering protocol for

vehicular ad hoc networks. Computer Communications, 36, 1422-1435.

[38] Cayirci, E. (2013). Modeling and simulation as a cloud service: A survey. Proceedings of the 2013 Winter

Simulation Conference: Simulation: Making Decisions in a Complex World.

[39] Lazarova, S. M., & Mizouni, R. (2010). Modeling human decision behaviors for accurate prediction of

project schedule duration. Hammamet, Tunisia.

Journal of Software

959 Volume 10, Number 8, August 2015

[40] Horton, G. (2002). A new paradigm for the numerical simulation of stochastic Petri nets with general

firing times. Proceedings of the European Simulation Symposium.

[41] Isensee, C., Molnar, S. L., & Horton, G. (2005). Combining proxels and discrete phases. Proceedings of

International Conference on Modeling, Simulation and Applied Optimization.

[42] Stewart, W. J. (1994). Introduction to the Numerical Solution of Markov Chains, Princeton University

Press.

[43] Cox, D. R. (1955). The analysis of non-markovian stochastic processes by the inclusion of

supplementary variables. Proceedings of the Cambridge Philosophical Society (pp. 433-441).

[44] Lin, F. J., Chu, P. M., & Liu, M. T. (1987). Protocol verification using reachability analysis: The state space

explosion problem and relief strategies. Computer Communication Review, 17, 126-135.

[45] Isensee, C., & Horton, G. (2005). Approximation of discrete phase-type distributions. Proceedings of the

38th annual Symposium on Simulation (pp. 99-106).

[46] Li, C., Akker, M. V. D., Brinkkemper, S., & Diepen, G. (2010). An integrated approach for requirement

selection and scheduling in software release planning. Requirements Engineering, 15, 375-396.

[47] AbouRizk, S. M., & Wales, R. J. (1997). Combined discrete-event/continuous simulation for project

planning. Journal of Construction Engineering and Management, 123, 11-20.

Rabeb Mizouni is an assistant professor in software engineering at Khalifa University. She

got her PhD and her MSc in electrical and computer engineering from Concordia University,

Montreal, Canada in 2007 and 2002 respectively. Previously, she was appointed as an

assistant professor at the College of Information Technology at the United Arab Emirates

University. Currently, she is interested in the deployment of context aware mobile

applications, software product line and cloud computing.

Sanja Lazarova Molnar is currently working as an associate professor at the center for

energy informatics, under the Faculty of Engineering, at the University of Southern

Denmark. Previously, she was appointed as an assistant professor at the College of

InformationTechnology at the United Arab Emirates University. Sanja obtained her Ph.D. in

computer science from the University “Otto-Von-Guericke” in Magdeburg, Germany where

she was also a member of the Simulation Group at the Institute of Simulation and Graphics

Author’s formal
photo

Journal of Software

960 Volume 10, Number 8, August 2015

http://www.sdu.dk/en/Om_SDU/Institutter_centre/CentreForEnergyInformatics
http://www.sdu.dk/en/Om_SDU/Institutter_centre/CentreForEnergyInformatics
http://www.sdu.dk/en/Om_SDU/Fakulteterne/Teknik
http://www.sdu.dk/
http://www.sdu.dk/
http://fit.uaeu.ac.ae/
http://fit.uaeu.ac.ae/
http://www.uaeu.ac.ae/
http://www.uni-magdeburg.de/
http://www.sim.ovgu.de/
http://wwwisg.cs.uni-magdeburg.de/

