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Abstract: Despite several attempts to accurately predict duration and cost of software projects, initial plans 

still do not reflect real-life situations. Since commitments with customers are usually decided based on 

these initial plans, software companies frequently fail to deliver on time and many projects overrun both 

their budget and time. To improve the quality of initial project plans, we show in this paper the importance 

of (1) reflecting features’ priorities/risk in task schedules and (2) considering uncertainties related to 

human factors in plan schedules.  

  To make simulation tasks reflect features’ priority as well as multimodal team allocation, enhanced 

project schedules (EPS), where remedial actions scenarios (RAS) are added, were introduced. They reflect 

potential schedule modifications in case of uncertainties and promote a dynamic sequencing of involved 

tasks rather than the static conventional way of modeling schedules. This paper describes a methodology to 

introduce EPS models in the development of project plans. Our case study findings show clearly the ability 

of the EPS model to anticipate delays due to human factors and to predict remedial scenarios to adjust to 

such delays. By comparing EPS to classical schedules, EPS simulation provides more accurate results with 

regards to project goals. 

  These instructions give you guidelines for preparing papers for Journal of Software (JSW). Use this 

document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an 

instruction set. The electronic file of your paper will be formatted further at Journal of Software. Define all 

symbols used in the abstract. Do not cite references in the abstract. Do not delete the blank line immediately 

above the abstract; it sets the footnote at the bottom of this column. 
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1. Introduction 

Project management is the discipline of planning, organizing, and managing resources to achieve specific 

project goals and objectives. It is the process that uses schedules to plan and subsequently report progress 

within project’s environment. With the increasing size of today’s software project, it is well recognized  

that the success of these fairly large projects is directly related to their management [1]. Not surprisingly, 

many researchers have identified poor planning as one of the primary causes for failure of software projects 

[2]-[4]. A common practice in software development is to first establish an initial software project plan. It is 
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usually concerned with defining project mission, developing project schedule plans, client consultation and 

client acceptance [3].  Moreover, it is used as a basis on which to make delivery commitments to clients; 

hence the importance of constructing a credible plan that provides an accurate estimation of completion 

dates. 

Even though planning is an important step in most of the software development processes, and even 

though it is performed in most of the large software projects, an effective planning is rarely accomplished 

because many interrelated factors increase the uncertainty that a project is surrounded by. These factors 

include task durations and resources sharing. Very often an activity in real industrial software project takes 

more than the originally estimated duration, leading to a delay in the remaining activities due to resource 

unavailability [5]. Consequently, many projects overrun their budget and time.  

Recently, the focus was shifted to the quality of initial project plans. Many attempts have been conducted 

to improve the design of initial project schedules [6]-[10]. On one hand, they endeavor to calculate an 

optimized schedule for a given project, but on the other hand many of them use over-simplified models that 

underestimate the interrelated nature of many project factors, affecting badly the accuracy of the resulting 

plan. Uncertainty in human resource allocation and availability is typically one of the factors that is 

frequently over-simplified and overlooked. While it has been defined over and over (Refer to [11]), 

uncertainty can be seen as any issue (aspect) in a project and its environment that can arise during its 

execution and may require a fast and rapid adaption of the plan to cope with it. Uncertainty can affect many 

other project factors such as task durations, feature modifications, and resources’ unavailability. In this 

paper we are concerned with human resources allocation uncertainty and its effective modeling within a 

project plan to improve the schedule’s quality.   

1.1. Problem Statement  

As in any project, software project managers deal with people, machines, and materials. These resources 

usually have limited availability. A common practice is to define an initial plan where efficient allocation of 

the available resources to the various project activities is considered. Despite this initial allocation, software 

project plans are frequently prone to changes. Unexpected human-related factors may eventually emerge 

during the project execution such as illness of team members, unforeseen implementation problems that 

requires more human resources on the activity, a team member turnover, etc... As a result, an activity in a 

real-life industrial project can take more than its original duration estimate, leading to a delay in the rest of 

the activities due to human-resources’ unavailability and/or reallocation. In such situation, the initial 

project plan is re-examined to optimize resources usage and answer these new features to avoid any delay 

in the product delivery date. Intuitively, we can think that reallocating teams will improve the project plan. 

However, this is not as simple as it looks. Let us analyze this situation more comprehensively.  

In a classic scenario, during project run, a manager may face a situation where a team that was originally 

assigned to the implementation of a feature is unavailable while at the same time another team is available. 

In such situation, the manager has three choices:  

1) Either to assign the activity “in hold” to the available team: As we may expect, teams have different 

levels of expertise, a fact that will in turn affect task’s duration. The available team may need longer 

time to achieve the task than the initially assigned team. In addition, the manager needs to make a 

decision concerning the team that was originally assigned to the task. Once the team becomes available, 

it can start the next assigned task, it can consider working on a task that was not initially part of its 

responsibility, or it can simply wait. Re-scheduling of tasks, as well as re-allocation of human resources, 

is possibly required in this case.   

2) To stick to the initial plan and wait for the assigned team: The waiting time of teams will increase and 

any delay in the execution of a task will potentially cause the delay of the whole project delivery. With 
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nowadays-evident pressure of time-to-market, this solution cannot be adopted at all times.  

3) Cancel the implementation of the task:  In an extreme case, the project manager can decide to cancel 

the implementation of the delayed task if he thinks that it will not affect the customer satisfaction or 

because of an extreme delivery pressure. Again, this solution can only be adopted in certain situations. 

To cope with these types of scenarios, it is important to provide managers with simulation approaches 

and tools that are flexible enough to handle resources’ uncertainty that surrounds software projects. These 

approaches are supposed to explore various possible scenarios that manager’s decisions may cause and 

improve the decisions about task’s rescheduling and its subsequent resources’ reallocations.  

1.2. Proposed Solution  

In a software project, once the features are defined and selected, they are assigned a priority level ranging 

from “must-have” (MH) to “nice-to–have” (NTH). This prioritization helps the project manager to resolve 

conflicts and, more importantly, to perform trade-offs throughout the development lifecycle [12]. Usually, a 

common practice in case of resources insufficiency is to first implement the features that have higher levels 

of priority. The implementation of the features with lower priority may be postponed, or even cancelled, 

according to the time-to-market and cost of the project.  

To improve the accuracy of project plans, it is required that schedules incorporate both resource 

allocation uncertainty and features’ priorities. For this purpose, we proposed in [13], to consider 

multi-modal tasks, where an activity can be processed in one of several modes, each defining a different 

options in terms of human resources allocation and duration. In addition, we extended the classic project 

schedule model to define several types of tasks to support flexibility in feature scheduling and, thus, cope 

with resources unavailability. This flexibility is based on the priority of the feature the task is implementing. 

Analogous to features priorities, we defined two types of tasks cancellable and non-cancellable.  

In this paper, we extend the model to have tasks that range from “non-floating” and “non-cancellable” to 

“floating” and “cancellable” tasks. Floating task is a task that anticipates high uncertainty and is highly 

flexible in terms of its human resource allocation. It has the property of being flexible in its order of 

execution with respect to other tasks.  Cancellable task is defined as a task that can be cancelled without 

harming the project success. Rather than a static task sequencing, floating and cancellable task introduce 

dynamicity to project. A mapping between project features to tasks is achieved based on features priorities 

and associated implementation risk factor. We also extend the definition of Enhanced Project Schedule with 

floating and cancellable tasks. Simulation of the proposed schedule is used to allow analyzing potential 

effects that uncertainties in project schedules may cause on meeting project goals and, thus, computing 

their significance in a given project.  

In this paper, we define a methodology to use efficiently EPS in project management. This methodology 

relies on an iterative process that takes advantage of the flexibility EPS is offering to simulate many redial 

action scenarios and assess their output with respect to a simulation goal set by the manager. By comparing 

different scenarios, managers can make their decision on the project initial plans based on sound results 

rather than their personal experience. Finally, we present a case study where we compare between the 

simulation results of the EPS, a classical schedule, and a model that do not consider task cancelation.  We 

demonstrate that the EPS is in fact introducing more accuracy and can help to predict in an efficient way the 

set of tasks that will be affected by delays and human uncertainty factors.    

To summarize, the contribution of this paper is threefold:  

1) Extend and improve the model presented in [13] to provide a more efficient mapping between project 

features and simulation tasks 

2) Define a methodology to use EPS in software project management and cope with requirements change 

related to human factors or task cancelation.  
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3) Compare the simulation results of the EPS and classical schedules to assess the 

advantages/disadvantages of EPS.  

1.3. Paper Organization  

The remainder of this paper is structured as follows: In the next section we provide an overview of the 

importance of effective project planning in the software industry. Then, we summarize the related work on 

coping with uncertainties in project scheduling. Section 3 we present the EPS model. Section 4 proposes a 

methodology to incorporate the use of EPS model in project management and plan. Section 5 and 6 

illustrate our approach through the simulation of the HOme Lightening automation System (HOLIS) case 

study as well as the results of the simulation. Finally, Section 7 concludes the paper and overviews some 

future directions.    

2. Preliminaries: Software Project Planning  

Before presenting our solution to incorporate human resources allocation uncertainty in project 

scheduling, we will outline some preliminaries about project planning. In this section, we sketch the key 

issues of features management and human resource allocation in project planning.  

2.1. Features Management in Project Planning  

A software process is a set of activities, methods, practices, and transformations that people use to 

develop and maintain the software and its associated products [14]. A project consists of a number of tasks 

(activities) where a predefined set of tasks has to be processed in order to complete the project. The tasks 

are interrelated by two constraints: 

Precedence constraints: tasks cannot be undertaken in any order and some tasks cannot start unless 

others have been already completed. This order is usually defined when specifying the various features to 

implement, and the precedence is not subject to change even in case of plan re-scheduling. Consequently, if 

the implementation of the feature F1 precedes the implementation of the feature F2, any change in the 

project plan has to verify this condition.   

Resource sharing: task execution requires efficient resources’ management. Such resources may include 

financial resources, inventory, human skills, production resources, information technology (IT), etc.   

It is common in real-life software project to have hundreds of distinct features. However, due to limited 

resources that in terms of staff, budget and time, it is highly critical to select and prioritize features. The 

selection and prioritization are usually based on each feature’s importance, time and effort, as well as the 

resources needed vs. their availability to implement it.   

The author in [15] proposes two means of feature’s prioritization: (1) by implementation order, which is 

the implementation order of the features in an incremental and iterative development cycle, and (2) by 

importance, which corresponds to the order by importance to some stakeholders (business value, cost of 

implementation, and risk). In this paper, we adopt the second approach, i.e. we prioritize features by their 

importance. The priority of a feature will be reflected in the schedule task nature, as we will present in the 

next section. 

Different scales of priority are used to classify features. We use a typical three level scale, termed as: 

critical, important, and useful features [16]. Critical feature is a must-have feature that needs to be delivered 

on time and the success of the project depends on it. An important feature is a feature that has to be 

delivered by the end of the project but its implementation can be delayed if needed. A useful feature is a nice 

to have feature that will be implemented only if resources are available, i.e. time, budget, and human 

resources.  
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2.2.   Human Resources Allocation in Project Management 

Workforce allocation is seen as an important phase in software project management. In this phase, 

software developers are being assigned to the various project tasks based on the software development 

process they are taken into consideration [17]. While an initial allocation of software designers/developers 

can be calculated based on the initial set of features, workforce adjustments during project performance 

often become necessary for several reasons: 

1) Projections recalculation, based on workforce size variability, and current development productivity 

[17], often project activities are either cancelled or implemented by resources that are not exclusively 

reserved for the current project [18]. Changes of either team members or task assignments may occur, 

introducing changes in the project baseline. 

2) Number of remaining features to be implemented and the time left with respect to the software 

delivery date. In many cases, when the deadline is approaching a re-allocation of the human resources 

is made to increase the chances of delivering critical and important features in the established 

deadlines. 

3) Requirements volatility [19], known as one of the main causes of software project failure. Despite 

advances in software engineering over the last decades, most software projects still experience 

considerable requirements’ changes during their development as a consequence of customers’ 

required changes, initial requirement misunderstanding, technology change, or even political changes. 

Requirements volatility refers to the growth or changes in project functional or non-functional [20] 

requirements during development lifecycle either by deletion, addition or modification [21]. Such 

changes usually impact the set of features under development. While volatility is expected and 

managed in the requirements engineering phase, it dramatically impacts the project schedule when 

changes occur in the later stages of software development lifecycle. 

Because of the above-mentioned reasons, it may happen during re-scheduling that a team is assigned to a 

task that was originally matched to another team during the workforce planning. Such scenario is not easy 

to predict during project scheduling because it is difficult to forecast when such an adjustment may happen. 

Building a robust schedule that considers this uncertainty factor is critical to software projects success. 

Such schedule needs to forecast possible deviation from the originally planned schedule and allow and 

support the adjustment in such situations with minimal waste in terms of delays and resources waiting 

time.    

The incorporation of uncertainty in project planning and scheduling has resulted in numerous research 

efforts, particularly focusing on uncertainty in task duration or cost [8] as we present next.  

2.3.   Related Work: Uncertainty and Scheduling 

Despite the fact that research on project scheduling has widely expanded over the last few decades, the 

majority of the research efforts are focused on building a schedule that assumes complete information and 

a static deterministic problem environment, which has been shown to be a non-realistic assumption [22]. 

Such a resulting schedule can only be considered as a baseline for the execution of the project. Often, during 

project execution, the baseline schedule is subject to uncertainties, leading to schedule changes, thus 

increasing the need to consider uncertainty in project scheduling.  

According to the literature, uncertainty in project scheduling has been considered in a number of ways 

[8], [11], [23], [24]. The authors of [8] have distinguished five approaches to deal with uncertainty :  

 Reactive scheduling [25]-[27] which ignores uncertainty in creating the baseline schedule and revises 

or re-optimizes it when an unexpected event occurs. It is based on repairing actions, and spans from the 

definition of basic rules such as the right left shift rule to a full rescheduling pass the remaining part of the 

project under consideration. 
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Stochastic scheduling which considers uncertainty in activity durations. Importance is given to 

stochastic resource-constrained project scheduling. It mainly focuses on minimizing the expected project 

duration, subject to precedence constraints and renewable resource constraints. It is defined as “A set of 

jobs with random processing times that have to be executed subject to both precedence and resource 

constraints” [28]. The authors of [18] focused on modeling stochastic resources availability. They propose a 

mathematical model and suggest an algorithm for building a more robust schedule and repairing the 

disruption due to resource unavailability. In our proposed approach, we extend this assumption and go 

even further by modeling various types of resource changes. This includes re-allocation of teams because of 

the unavailability of resources, or any other internal team change such as member’s illness and/or expertise 

modification. 

Scheduling under fuzziness, as first applied by Prade [29]; it uses fuzzy variables to describe duration 

times via expert knowledge rather than using probability distributions. Fuzzy theory is seen as an approach 

to adapt scheduling models into reality [30]. Recent research projects in this field present methodologies 

that calculate the fuzzy completion project time Feng-Tse, [31] or obtain fuzzy critical paths and critical 

activities and activity delay [32]. 

Proactive (robust) scheduling, as defined in [24]  proactive project scheduling deals with uncertainty 

by creating a baseline schedule that is as much as possible protected against disruptions, assuring a certain 

robustness in the resulting project scheduling. Herrolem and Leus [33] examined various procedures for 

development of a stable pre-schedule, which is unlikely to undergo major changes when it needs to be 

repaired when activity duration changes.  They proposed a mathematical model to minimize the expected 

weighted deviation in activity start times. However, they made abstraction of resources usage assuming a 

proper allocation of resources has been performed. 

Sensitivity analysis is studying the impact of uncertainty on the output of the scheduling algorithms. In 

[34], the authors study the degradation of the performance of the solution due to the disturbances by 

analyzing the impact of the perturbations on the computed schedule. 

In all of the abovementioned approaches, the evolution structure of the precedence is deterministic. In 

the research work we present in this paper, we deal with this aspect in a more realistic way by considering 

the fact that some precedence relationships may change under some conditions. In addition, stochastic 

resource-constrained project scheduling generalizes the so called stochastic project networks or 

PERT-networks job processing times that presume unlimited availability of resources.  In our approach, we 

assume that we have limited resources availability, which is usually the case in real-life software projects. 

One of the used tools for project management analysis is software process simulation and modeling [35]. 

Simulation is a technique that has been successfully applied in many domains [36-38] . In project 

scheduling, it can be used to forecast the effort/cost, schedule and the product quality, the staffing levels as 

well as the expertise needed across the time according to the task precedence constraints, the estimation of 

the resource constraints and hence better resource allocation; and finally an efficient analysis of risks. 

3. State-Dependent Tasks  

Recall that the objective of this work is to add robustness to the baseline project schedule by introducing 

human uncertainty. In our case, we are interested in interrelating human resource allocation uncertainty 

and features priority levels in the simulation model to obtain a robust baseline.  

To formalize uncertainty in human resources allocation with respect to features priorities, we define the 

notion of highly uncertain state-dependent task, for which we allow all relevant parameters to determine its 

duration. Before we introduce our simulation model, we first outline a few necessary assumptions upon 

which we build our project schedule. 
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3.1.   Assumptions 

We assume that: 

1) The manager is given a pool of human resources with different degrees of productivity to perform 

different types of tasks. 

2) Each team is responsible for completing the implementation of the task as a whole.   

3) Change in the initial structure of the team is equivalent to a change of the team. In other words, if one 

member of team A is absent for illness, or has to be transferred to another team to serve another task, 

then the resulting team is in fact team B that demonstrates a new expertise. In this particular case, the 

duration needed for team B to implement a task will be longer/shorter than the duration needed for 

team A.  

4) Tasks are sharing human resources and their implementations obey to a certain precedence order. 

5) Tasks are non-interruptible activities. Once the implementation of a task starts, it is not interrupted.  

6) Duration of a task is modeled by a probability distribution function.  

7) For activities that may be implemented by more than one team, duration probability distributions of 

each team need to be specified.  

8) Features are correctly prioritized. Change of prioritization [15], as it may happen during project 

implementation, due to addition/removal/change of other features leads to a change in the EPS as we 

will describe in the methodology proposed.     

9) Type of a task depends on the priority of the feature that the task is implementing and the 

implementation risk associated to it.  

10) When developing the state space of a schedule, the highest priority features have to be implemented 

first as part of the scheduling when possible.  

3.2.   Modeling and Classification of Features  

We propose to distinguish tasks in nature so they reflect priorities of the features they are implementing 

to introduce dynamic scheduling, on one hand, and flexibility in human resources allocation, on the other 

hand. We distinguish four types of tasks, identified as: non-floating non-cancelable tasks, floating 

non-cancelable tasks, floating cancelable tasks and finally non-floating cancelable tasks. They are defined as 

follows:  

Non-floating and non-cancellable (NFNC) tasks: They typically implement features that are estimated 

as critical for the success of the project. These tasks do not have any flexibility in terms of human resources 

allocation. They are assigned only to experienced professionals to reduce the risk of their failure. 

Consequently, resources assignment of NFNC tasks follows a fixed resource allocation strategy which 

implies a single team responsible for their implementation. These tasks cannot be cancelled.  

Floating and non-cancellable (FNC) tasks: these tasks have flexibility in terms of human resource 

allocation. They usually implement features that are not associated with high risk. Resource allocation for 

floating and non-cancellable tasks can follow a multi-modal strategy, where many teams can implement 

them with respect to their availability. During project’s lifecycle, any of the teams that become available can 

implement it in order to optimize project’s duration and maximize resource utilization, in accordance with 

project goals. In general, FNC tasks invite various on-the-fly decision scenarios since they are executed 

when the resources are available because they allow certain flexibility in team’s allocation. As consequence 

to human resources flexibility, FNC tasks can be postponed and rescheduled in the project plan however 

they can never be cancelled.    

Floating and cancelable (FC) tasks: These tasks have flexibility in terms of human resource allocation, 

yet can be cancelled if needed. In fact, when teams responsible for implementing the task are either 

unavailable or solicited to do more important tasks then the task is postponed. If the project is overdue, 
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then these tasks are cancelled. The resource allocation for FC tasks follows a multi-modal strategy, where 

many teams can implement them with respect to the team availability.  

Non-floating and cancelable (NFC) tasks: These tasks have no flexibility in terms of human resource 

allocation and yet can be cancelled if necessary. Resource allocation for NFC tasks follows fixed strategy, 

where only one team can implement them. If the team is not available, the implementation of the feature is 

cancelled. Consequently, NFC tasks have a very low probability of getting implemented compared to other 

types. 

Table 1 presents a possible mapping between features priority levels and their possible assigned task. Let 

us outline some facts:  

1) As expected, critical and important features can never be modeled as cancelable tasks. Only nice-to 

have features can be cancelled. 

2) While it is possible to model useful features as NC tasks, we do not recommend it. It prevents the 

model from certain flexibility in the task execution order, a decision that may delay the overall duration 

of the project.  

3) Critical and important features have to be modeled as non-cancellable tasks, either floating or 

non-floating. Such decision depends on the risk level the implementation of the feature presents. When 

the risk of the feature is high, it would be more judicious to assign its implementation to an 

experienced team and hence model it as NFNC. However, when the feature is critical but presents low 

risk and the project manager has some flexibility with regards to the delivery date of the feature, then 

s/he may tolerate model it as FNC.    

Let us now formally define a task. We extended the definition in [39] to incorporate the different type of 

tasks.  

Let R= {Ri, 1≤i≤n} be the set of n features of the software to implement. Let T= {Ti, 1≤i≤m} be the set of m 

teams (representing the human resources available for that software project).  

Definition 1: Task 

A task is a 3-tuple task =(Ri, D, type) where :  

1) Ri  R the feature the task is implementing.  

2) type {NFNC, FNC,NFC, FC} the type of the task 

3) D = {Dij (Ri, Tj)/Tj  T} is the set of predetermined task durations expressed as functions of the capable 

teams Tj and feature Ri.  

For NFNC and NFC tasks, D is a singleton.  

                          

 
Table 1. Mapping Feature Priority Levels to Task Types 

 
    
 
 
 
 
 
 
 
 
 

 

         Task        NFNC FNC NFC FC 

Critical High Risk X    

Low Risk  X   

Important  High Risk X    

Low Risk  X   

Useful  High Risk X 
(not recommended) 

X 
(not recommended) 

X  

Low Risk X 
(not recommended) 

X 
(not recommended) 

 X 

Contrarily to classical schedules, the task has a type. This type reflects the priority of the feature the task 
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is implementing. In addition, it may be defined as a multi-modal task that can be implemented by many 

teams adding as such flexibility to fixed human allocation usually adopted when defining projects’ 

schedules. These new task descriptions will be used to define the Enhanced Project Schedule. 

3.3.   Enhanced Project Schedule  

The project schedule model needs to reflect the nature of tasks in the simulation itself. To achieve this 

goal, we propose to extend the project schedule with fuzzy rules. Fuzzy rules are conditional statements that 

express potential deviations to the initial project plan and remedial scenarios that should be undertaken 

consequently. Each fuzzy rule is made up of two parts: condition and action, formally written as 

“                ”. Conditions can be described either by using strict terms, or fuzzy ones. The action 

can typically be canceling or interrupting some of the tasks, or one of the various types of rescheduling. This 

fact makes our schedule description evolving, rather than rigid and inflexible. An example for a fuzzy rule 

would be: 

                                  

or 

                                                 

 
Both are examples for typical proceedings during project execution. However, in our approach we allow 

for their modeling, assessment and quantitative evaluation.  

Fuzzy rules support the conversion of the type of the task in the project schedule model. Hence, these 

rules should be consistent with the type of the task specified by the analyst. As an example, a rule can never 

recommend to cancel a NFNC and FNC tasks as they represent critical and important features. Consequently, 

the two rules mentioned-above are correct only if       and       are cancellable tasks. 

Definition 2: Enhanced Project Schedule 

An Enhanced Project Schedule (EPS) is a 5-tuple                       where:  

1)                             , set of tasks, where each task corresponds to a task in the project 

schedule 

2)                , where               is the set of precedence constraints, that are actually 

tuples of two tasks where the completion of the first one is a pre-feature for commencing the second 

one, e.g.                would mean that completing of       is a pre-condition for beginning 

      

3)                , set of teams available for the execution of the project 

4)                , set of fuzzy rules that define remedial action scenarios. 

5)                        , initial sequencing of tasks that satisfies the set of precedence constraints 

provided by  . 

Note that F can be an empty set too, which would imply sticking to the original project schedule provided 

by IGC. Fuzzy rules ensure the dynamicity of the schedule.   

3.4.   Application to the Proxel-Based Simulation  

To implement our model, we need to extend simulation approaches to cope with the dynamic task 

scheduling. In [13], we proposed to extend the proxel based simulation. The proxel-based method, first 

introduced in [40], [41], is a relatively novel simulation method, whose underlying stochastic process is a 

discrete-time Markov chain [42] and implements the method of supplementary variables [43]. The method, 

however, is not limited to Markovian models. On the opposite, it allows for a general class of stochastic 

models to be analyzed regardless of the involved probability distribution functions. In other words, the 

proxel-based method combines the accuracy of numerical methods with the modeling power of 
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discrete-event simulation. 

The proxel-based method is based on expanding the definition of a state by including additional 

parameters which trace the relevant quantities in one model through a previously chosen time step. 

Typically this includes, but is not limited to, age intensities of the relevant transitions. The expansion 

implies that all parameters pertinent for calculating probabilities for future development of a model are 

identified and included in its state definition.  

Proxels, as basic computational units of the algorithm, follow dynamically all possible expansions of one 

model. The state-space of the model is built on-the-fly, as illustrated in Fig. 1, by observing every possible 

transiting state and assigning a probability value to it (Pr in the figure stands for the probability value of the 

proxel). Basically, the state space is built by observing all possible options of what can happen at the next 

time step. The first option is for the model to transit to another discrete state in the next time step, 

according to the associated transitions. The second option is that the model stays in the same discrete state, 

which results in a new proxel too. Zero-probability states are not stored and, as a result, no further 

investigated. This implies that only the truly reachable (i.e. tangible) states of the model are stored and 

consequently expanded. At the end of a proxel-based simulation run, a transient solution is obtained which 

outlines the probability of every state at every point in time, as discretized through the chosen size of the 

time step. It is important to notice that one source of error of the proxel-based method comes from the 

assumption that the model makes at most one state change within one time step. This error is elaborated in 

[41]. 

Each proxel carries the probability of the state that it describes. Probabilities are calculated using the 

instantaneous rate function (IRF), also known as hazard rate function. The IRF approximates the probability 

that an event will happen within a predetermined elementary time step, given that it has been pending for a 

certain amount of time t (indicated as ‘age intensity’). It is calculated from the probability density function 

(f) and the cumulative distribution function (F) using the following formula: 

 (t) = 
)(1

)(





F

f
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Fig. 1. Illustration of the development of the proxel-based simulation algorithm. 
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Fig. 2. Simulation methodology using the enhanced project schedule.  
 

For our purpose we extended the original proxel-based simulation algorithm to account for the fuzzy 

scenarios. They fitted straightforwardly into the existing framework. In addition, the algorithm was adapted 

to collect statistics about the probability of having a certain feature implemented. More on the extension of 

the proxel based simulation can be found in [13]. 

As all state-space based methods, this method also suffers from the state-space explosion problem [44], 

but it can be predicted and controlled by calculating the lifetime of discrete states in the model. In addition, 

its efficiency and accuracy can be further improved by employing discrete phases and extrapolation of 

solutions [45]. More on the proxel-based method can be found in [41]. 

4. A Methodology for Using EPS in Simulating Software Project Plans  

As Shown in Fig. 1, we define a methodology for project scheduling using the EPS model. This 

methodology relies on two main phases: a pre-simulation phase and a simulation phase.   

4.1.   Pre-simulation Phase 

Often, there are more features specified by the customer than can be implemented with the actual project 

resources. As mentioned previously, the project manager, through several negotiations with the customer, 

have to select and prioritize these features. At the end of this step, it is expected that the features to be 

implemented and delivered are chosen and accepted by the customer. Obviously, this step is challenging. 

The selected features have to satisfy the interests of the various stakeholders involved in the project and 

take into considerations the importance of business value, the risk and cost of development, and finally 

features dependencies [46]. After several iterations of selecting, prioritizing the features, and defining the 

precedence order between them, the pre-simulation phase ends by delivering a set of features, their 

respective priorities as well as the precedence order to respect during their implementation. Normally, not 

all features are coupled with a precedence order. Our approach takes advantages of this fact to add 

flexibility to the schedule under simulation. 

4.2.  Simulation Phase 

It consists of three steps: 

1)  Generation of EPS: which is threefold: (1) selecting the teams that have the potential to implement the 

features and estimating their level of expertise on the one hand, and attributing a probability function 

that will be used during the simulation on the other hand. Defining probability functions rely on 

previous data available to the analyst describing duration of time needed to implement a feature in 

similar situation with a comparable team expertise. (2) Define an initial Grant chart with respect to 
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precedence order of features as defined in the pre-simulation phase. The sequencing of the tasks in the 

initial Gantt chart gives the starting state of the simulation from where the different possibilities will 

be investigated (3) Generation of fuzzy rules in accordance to task types.   

2) Proxel-based simulation step: The generated EPS in the previous step is run by our proxel-based 

simulator or any other simulation tool that has been extended to process EPSs.   

3) Analysis step: The manager has now to interpret the obtained simulation results. We believe that a 

refinement of features at this level may be considered if the project runs out of the target time and/or 

budget specified during the simulation.    

Using the simulation model that we defined, the manager will have the necessary framework to better 

select the different features. An important aspect is the feedback that our approach is offering to him. In 

addition, using our model, the manager will be able to detect the idle time of the different teams. This 

information is very useful in initial project planning. It can be used to improve it either by refining the 

feature selection by adding or deleting some nice to have features, or by re-allocating human resources if 

the waiting time of certain teams is relatively long. Hence, our model will help the efficient allocation of 

team in order to achieve an effective time management.    

Finally, our model can be used in an iterative process, where the manager will first consider all the 

features defined by the customer. Then, by simulating our EPS model, he will refine the set of features so 

that the project fits well within the human resources and time assigned to it. 

5.  Proof of Concept 

HOLIS is a home lightening automation system that brings new lightening automation functionality with 

ease of use, comfort, and safety.  It is intended to be used by homeowners’ buildings and high-end homes. 

Details of the case study can be found in [16]. To simulate the schedule of the development of HOLIS, we 

select a subset of the different features that the system should implement. We follow the methodology we 

presented in Fig. 2 to present our case study. 

5.1.   Pre-simulation Phase 

Table 2 summarizes the subset of the HOLIS system features with their respective priorities and the effort 

needed to implement each of them. Effort has one of the three typical levels: low, medium, and high. 

Unsurprisingly, the effort needed to implement a task is team dependent. The values given in Table 2 

represent an estimation of the effort needed to a trained team to implement a given feature.   

 The third column represents the precedence constraint to respect when implementing the different 

features. Null indicates that the implementation of a feature is independent from the others. For instance, 

Feature1 can be implemented without any constraints while the implementation of Feature2 cannot start 

unless Feature1 has been already implemented. Fig. 3 shows the precedence relationship between the 

different features of the HOLIS case study. Any proposed schedule has to comply with it. 

5.1.1. Simulation phase 

According to our methodology, after defining the different features, their priorities and the precedence 

relationship between them, an EPS can be defined. At this level, a mapping between each feature and its 

corresponding task in the simulation schedule has to be defined.  

Let us consider our running example. We propose to categorize the set of prioritized features as NFNC, 

FNC, NFC and FC tasks. Fig. 3 shows this mapping. The six first features are all mapped to non-cancelable 

tasks, either floating or not. It is mainly because of their priorities (Critical and Important). Feature4 and 

Feature5 are considered as FNC allowing certain flexibility in their implementation. Feature7 is mapped to 

FC task while Feature8 is a NFC task.  

In order to simulate the HOLIS system, we process to the human resource allocation. We suppose that we 
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have two teams working on the HOLIS project: Team A and Team B. It is obvious that these two teams have 

different expertise, and each will fit better to a particular task. As explained previously, any software project 

is subject to workforce adjustment. During this case study, we anticipate such on-the-fly decision and allow 

the expression of possible decisions, while simulating the project duration. Table 2 illustrates the task 

allocation for each of the teams. It also shows the estimated effort that the assigned team needs to 

implement a feature. All the non-floating tasks are assigned to a single team and this team is not subject to 

change even if an uncertainty arises.  

 
Table 2. Features of the HOLIS System 

Features Priority Risk Effort  Preceence 

Feature 1: automatic timing settings for lights and so on. Critical High Low Null 

Feature 2: built-in security features (alarm, bells) Critical High Medium Feature1   

Feature 3: non-PC control unit Critical High High  Null 

Feature 4: vacation settings Critical Low Low Feature3  

Feature 5: uses my own PC for programming Important Low High Null 

Feature 6: close garage doors Important High Low Feature 1  

Feature 7: automatically turn on closed lights when door opened Useful Low Low Feature6  

Feature 8: Interface to audio/video system  Useful High Medium Null 

 
 

 

Fig. 3. Features precedence relationship. 

 

Finally, we draw the attention to two useful aspects our EPS may help the manager in:  

1) Verification of the consistency of the assigned features priority. It is obvious that a FC-task cannot have 

a precedence constraint with a NFNC task since it is against the semantic of the floating task as well the 

implementation flexibility this task is offering;  

2) According to the precedence constraint of the different features of the HOLIS system and their 

respective priorities, only one starting point to our project schedule can be defined: Team A  

implementing Feature1 and Team B implementing Feature3. However, in other projects, we may have 

several starting points. The project manager needs to investigate these possible starting points in order to 

identify the best that serves the project scheduling objectives.  

At this point, the manager is able to generate an EPS to be used as a simulation model. He needs to use 

the precedence graph shown in Fig. 3 as well as teams and task type allocation in Table 3. The simulation 

model is shown in Fig. 4. This model clearly states that Feature 4, 5, and 7 can be implemented by any of the 

available teams, to the opposite to the remaining features.  
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Fig. 4. EPS generation for the HOLIS system. 

6. Experiments and Results 

The experiments were run on a standard workstation with an Intel Core2Duo Processor at 2.0 GHz and 1 

GB RAM. The choice for t was 0.1 and the simulation was run up to time t = 20. This implies that the 

number of simulation steps was 200. The computation time for this experiment was ca. 4 seconds. In the 

following we present the results, i.e. the statistics that were calculated during this simulation experiment. 

In order to see the difference our new task modeling makes, we propose to have three different 

simulations and compare among them. 

6.1. Conventional Simulation Following a Gantt Chart (Case A) 

In the current simulation approaches, uncertainty, as well as flexibility, in human allocation is hardly 

represented. Table 3 shows a possible distribution of HOLIS features into simulation tasks in the case of 

conventional simulation approach.  

 

Table 3. HOLIS Conventional Distribution of Tasks 

Features Effort (for trained team) Assigned Team and Estimation of the Needed Effort  

Feature 1 Low Team A (Effort = Low) 

Feature 2 Medium Team A (Effort = Medium) 

Feature 3 High  Team B (Effort = High) 

Feature 4 Low Team B (Effort = Low)  

Feature 5 Medium Team A (Effort = Medium) 

Feature 6 Low Team B (Effort = Low) 

Feature 7 Low Team A (Effort = Low) 

Feature 8 Medium  Team B (Effort= Medium) 

 
Tasks of the HOLIS system can be represented using this simulation scheduling in Fig. 5.  

The state space of this rigid schedule is shown in Fig. 6. Twenty discrete states are generated and the 

sequencing denoted by the Gantt chart is respected. Neither the priority nor the human resource allocation 

uncertainty is taken into consideration. 

6.2. Simulation with Priority Consideration but without Fuzzy Rules (Case B) 

In this case, we simulate the model by taking into consideration the priority of the feature while 

developing the state space of the HOLIS system as well as the human resource flexibility. However, we do 

not allow the cancelation of tasks. Consequently, Feature7 and Feature8 are modeled as NFNC and FNC 
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tasks respectively.  

 

 
Fig. 5. Gantt chart for the HOLIS system. 

 

In the following we provide the details of the proxel-based simulation of the sample project schedule that 

involves the different tasks we are proposing. This should serve as description of our approach through an 

example.  

Each task in the model has a name, a priority level, a duration probability, which is distributions with 

respect to possible team association, and a set of pre-requisite tasks. The proxel format of the state of the 

project schedule encompasses the following parameters: task vector [47], where (Ti,Tj) reflects the fact that 

Team A is working on Ti and Team B is working on Tj respectively, the age intensity vector {i}, for tracking 

the duration of tasks, probability value and the probability for the model being the denoted state. I is used 

to reflect an idle team. 

Thus the format of the proxel is as follows: 
Proxel = (Task Vector, Age Intensity Vector, Probability) 

The initial proxel, i.e. the proxel that marks the initial state of the system would be ((T1, T3), (0, 0), 1.0). It 

describes the situation in which Team A is working on task T1, and Team B on task T3 with a probability of 

1.0. In the next time step the model can do each of the following developments: 

 Task T1 is completed,   

 Task T3 is completed, or 

 None of the tasks are completed 

Resulting into the following three proxels: 

a) ((T2, T3), (0, t), p1) 

b) ((T1, T4), (t, 0), p2) 

c) ((T1, T5), (t, 0), 1 - p1 - p2) 

In case (a), team A starts working on task T2, and also the corresponding age intensity is now reset to 

track the duration of T2. Case (b) and (c) show the cases when team B finishes Task 3, it will either start T4 

or T5. We recall that team B cannot start T6 because of the precedence constraints with T1 which in turn 

will minimize the idle time of teams. Team B cannot start T8 because T4 and T5 have higher priority than 

T8. 

During the state exploration, around 40 discrete states have been generated. Two facts contributed in 

doubling the number of states that can be reached: 1) no sequencing is followed except the respect of the 

ordering constraints, and 2) the introducing of three floating tasks that can be implemented by Team A or 

Team B according to their availability.  
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Fig. 6. State space of the HOLIS system. 

6.3. Simulation with Priority Consideration and Fuzzy Rules (Case C)  

In this simulation model, we allow the cancellation of tasks by adding fuzzy rules. T7 and T8 in this case 

are considered as cancellable tasks. Adding fuzzy rules will add few states during the state exploration 

comparing the previous model. However, it will add more connections to the states of the state exploration 

graph. As an example, let us consider the state ((T2, T4), (0, 0), 1.0). It describes the situation in which Team 

A is working on task T2, and Team B on task T4 with a probability of 1.0 and where Tasks T1, T3, T6,T5 are 

already implemented. In the next time step the model can do each of the following developments: 

 Task T2 is completed,   

 Task T4 is completed, or 

 None of the tasks are completed 

Normally, this will result into the following four proxels: 

a) ((T7, T4), (0, t), p1) 

b) ((T2, T7), (t, 0), p20.5) 

c) ((T2, T8), (t, 0), p20.5) 

d) ((T2,T4),(t ,t ),1 - p1 - p2) 

Proxels (b) and (c) show the probability for TeamB to start working on T7 and T8 after implementing 

Feature4 since both tasks are representing useful features. 

Making T7 and T8 cancellable change this fact and proxel ((T2, T4), (0, 0), 1.0) will lead to the following 

six proxels:  

a) ((T7, T4), (0, t), p1 (1-pcancel)) 

b) ((N, T4), (0, t), p1pcancel) 

c) ((T2, T7), (t, 0), 0.5 p2  (1-pcancel)) 

d) ((T2, T8), (t, 0), 0.5  p2  (1-pcancel)) 
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e) ((T2, N), (t, 0),  p2pcancel) 

f) ((T2, T4), (t, 0), 1 - p1 - p2) 

Pcancel represents the probability to cancel the implementation of a cancellable task. Consequently, Team 

A can start implementing T7, but can also stay idle if the project is close to deadline. Same applies for team 

B working on T7 and T8.  

6.4. Simulation Result and Discussion 

In order to evaluate our proposed model, we discuss simulation results based on three criteria: 

probability to complete the project on time, probability to complete all tasks by the end of the project and 

finally the probabilities to finish each task individually by the deadline.  

6.4.1. Project completion by deadline   

Fig. 7 shows the simulation results for the three cases. The deadline to complete the project was set at 20 

time units. The simulation shows that following the classical schedule, where priority of features, as well as, 

flexibility in human resources allocation is not considered, the project will never end on time while 

following the second model (Case B) , where no fuzzy remedial rules are defined, a small improvement is 

observed but still the project will not be delivered within the deadline. However, this probability reached 60% 

in the case of the EPS model. In addition, even by extending the deadline to 30 time units, while the 

probabilities to finish the project increase but still the observations do not change. As expected, the classical 

schedule (Case A) yields a probability to complete the project as 75%. In the second model (Case B) 

simulation shows that the probability to finish the project by the deadline is approximately 85%. The 

highest project completion probability is for the EPS model, where the probability to finish the project by 

the deadline is higher than 95%.  

This result confirms that: 

1) Rigid human allocation of tasks does not optimize the usage of human resources. Even without 

cancelling the implementation of useful features, the difference in probability between the first and the 

second model is roughly 10% which represents a considerable difference for the project manager. This 

is attributed to the floating tasks.   

2) Implementing the cancelation of task in EPS enhances the schedule accuracy and adaptability. It allows 

the manager to assess the risk and negotiate with customers about the possibility of task 

implementation cancelation if the project runs out of budget and /or time. This would save money and 

time, and focus the project work on the critical tasks. 

3) In this particular project, cancellation of useful features under certain circumstances (being close to 

the deadline) to meet the deadline seems to be a good option.  

Obviously, more parameters need to be included, such as cost, to make a complete decision. However, the 

simulation results can cut a significant amount of the risk in making these decisions. 

 

 

Fig. 7. Probability of completing the project. 
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6.4.2. Task completed by model  

Fig. 8 shows the probability to implement all tasks, as specified in the initial project schedule model. Case 

B model has the highest probability to have all tasks implemented by the deadline, while EPS and the classic 

schedule converge to having very close values (almost identical) at the deadline. As time goes by, beyond 

the deadline, this is changing, ultimately yielding the highest probability to Case A, and the lowest to Case C, 

which would be the expected. However, the important cutting point is the deadline, and at that time we can 

see no significant difference in the probability values that would oppose the scenario described by the Case 

C. This would form part of the assessment of the possible decision that the manager can make to meet the 

project deadline.  

 

 
Fig. 8. Probability of having all tasks completed. 

 

 

Fig. 9. Probability of individual task completion with classical schedules. 

 

6.4.3. Implementation of individual tasks per model  

The third interesting aspect to simulate is the probability of implementing each individual task per model. 

To study this aspect, we will consider the cases of critical, important and nice-to-have features. The 

simulation results for the three models (Case A, Case B, and Case C) are shown in Fig. 9, Fig. 10 and Fig. 11, 

respectively. 

 

Fig. 10. Probability of individual task completion with schedules with priorities and floating tasks. 
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Fig. 11. Probability of individual task completion with EPS. 

Comparing the simulation results leads to three main conclusions: 

1) In the classical schedule, the static sequencing of tasks may delay the implementation of 

critical/important tasks. As we can observe, the implementation of Task 6 will not start before time 

unit 10 in the first schedule, whereas it will start around time unit 8 in the second and the third 

schedule.  

2) Task 5 has a very low probability of implementation by the project deadline in the case of the classical 

schedule (Case A). This issue is not observed in the second and the third cases because Task 5 has 

more priority than Task 7 and Task 8, a fact that is taking in consideration while generating the state 

space.  

3) The EPS shows the highest probability to implement each critical and important task. It also has the 

lowest probability to implement the two useful features represented by Task 7 and Task 8.  

Finally, comparing the results of the second and the third case, the manager may consider to change the 

RAS and to re-simulate the EPS by considering the cancellation of Task 7 only.  Our model is proposed as a 

decision-making assistant as well as an approach to assess various decisions that managers may take in 

order to handle uncertainties. As such, it will certainly guide managers in the typical wealth of information 

that they are surrounded by. 

7. Conclusion and Future Work 

This paper presents a methodology that uses more realistic and robust project schedule modeling in 

simulating project plans that allows for a high level of uncertainty in resource constraints. This model uses 

the different priorities of software features to adequately represent them in the simulation model. For that, 

a new resource-constrained project scheduling in which tasks are classified in four categories according to 

the nature and level of importance of the features they are implementing is presented.  

The methodology the paper is proposing incorporates EPS in project management. It allows the 

generation of schedules that: (a) handles the uncertainty in human resources allocation to different project 

tasks and gives flexibility in teams’ allocation, (b) simulates various on-the-fly human decisions and their 

impact on the project duration, and finally (c) handles effectively delays that may occur while implementing 

different features. Ultimately, schedules produced using this methodology are more robust since they are 

less sensitive to resources unavailability: a delay of one activity would not necessary lead to a schedule 

disruption.  By comparing different models, we proved that EPS is in fact more informative to the manager 

since it allows him to simulate different possible remedial scenarios and to make decision on what scenario 

to adopt with regards to the project goal.  For instance, it would be simpler for managers to predict ahead 

of time which useful feature will be implemented and those that are not within the given project time frame. 

Following an iterative process, a manager may refine his features selection and re-build the corresponding 

simulation model. This will help deciding on the nice-to-have features to keep and those to eliminate, 
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helping consequently the process of negotiation with the customer.   

To extend our work we plan to address the effect of these uncertainty factors on the productivity and 

budget, by adding value, effort and cost parameters. In addition, we plan to enrich our simulation model to 

measure the effect of features volatility that software projects are suffering from. To handle features 

volatility, the model needs to be extended with task interruption.  
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