

Experimental Observations of Construction Methods for
Double Array Structures Using Linear Functions

Shunsuke Kanda*, Kazuhiro Morita, Masao Fuketa, Jun-Ichi Aoe

Department of Information Science and Intelligent Systems, Faculty Engineering, University of Tokushima,
Tokushima, Japan

* Corresponding author. Email: c501437039@tokushima-u.ac.jp.
Manuscript submitted August 1, 2014; accepted March 8, 2015.
doi: 10.17706/jsw.10.6.739-747

Abstract: A trie is an ordered tree data structure to store keywords. It is used in natural language

processing and so on. The trie is represented by the double array. The double array can retrieve fast at time

complexity of O(1). The double array using linear functions (DALF) is proposed as a compression method of

the double array. DALF reduces space usage of the double array to 60%. DALF is built by using parameters,

and its space usage and its construction time depend on these parameters. However, appropriate values of

them are not determined. This paper observes these parameters and evaluates parameters by experiments.

From experiments, appropriate parameters are found, and it turns out that DALF can be built more

efficiently by keyword sets including multibyte characters.

Key words: Trie, double array, construction method, keyword search.

1. Introduction

A trie [1] is a tree structure for keyword retrieval. In the trie, each keyword is registered as the path from

the root node to the leaf node, and the prefixes of keywords are merged. Therefore, the trie can retrieve the

longest prefixes fast. Because of this merit, the trie is utilized in natural language processing [2], searching

for reserved words for compilers [3], IP address lookup [4], and so on [5], [6].

The double array presented by Aoe [7] is an efficient data structure that represents the trie with two

one-dimensional arrays called BASE and CHECK. The double array provides fast retrieval at time complexity

of O(1). BASE and CHECK are arrays of signed integers and have the same space usage. Each element of

BASE and CHECK need 4 bytes and 4 bytes, respectively. Therefore, the space usage of the double array is

8|D| bytes (|D| is the number of the double array’s elements).

To reduce the space usage of the double array, Yata et al. presented a compacted double array (CDA) [8]

and Fuketa et al. presented a single array with multi code (SAMC) [9]. CDA is a method that CHECK keeps

character codes. Each element of CHECK needs 1 byte, and the space usage of CDA is 5|D| bytes. SAMC is a

method that BASE is deleted and CHECK keeps character codes. Its space usage is |D| bytes. However, |D|

increases depending on sets of keywords.

The double array using linear functions (DALF) presented by Kanda et al. [10] is a more compact method

for the double array. DALF reduces each element of BASE to 2 bytes by using linear functions, and then the

space usage of DALF is 3|D| bytes. DALF reduces space usage of CDA to 60%. In construction algorithms,

DALF uses two parameters gain and a. When these parameters are appropriate, its space usage becomes

compact and its construction time becomes short. However, in [10], because it is difficult to choose

739 Volume 10, Number 6, June 2015

Journal of Software

appropriate them, definitions of them are not written clearly.

In this paper, DALF is built by using various combinations of parameters gain and a, and is evaluated

2. Double Array

2.1. Outline of the Double Array

The double array uses two one-dimensional arrays called BASE and CHECK in order to represent trie

nodes. For example, element s of the double array consists of BASE[s] and CHECK[s] corresponding to node

s in the trie. The following equations show an arc from node s to node t with character c;

BASE[] CODE[] ;CHECK[]s c t t s (1)

The index of destination node t is calculated by the sum of the offset BASE[s] and CODE[c] that is the

numerical code of character c. The index of source node s is stored in CHECK[t]. Each element of BASE and

CHECK respectively require 4 bytes and 4 bytes because these store integer values. The space usage of the

double array is 8|D| bytes. Fig. 1 shows a double array of keyword set K = {“ab”, “abc”, “ac”, “ba”, “bac”, “bc”}.

Special end marker ‘#’ is used at the end of keys.

2.2. Outline of the Compacted Double Array

A compacted double array (CDA) reduces the space usage of the double array. In CDA, (1) is changed as

follows;

Fig. 1. The double array for K. Fig. 2. The compacted double array for K.

BASE[] CODE[] ;CHECK[]s c t t c . (2)

Simultaneously, the following equation requires to be satisfied in all pairs of nodes {i, j} except the leaf
nodes.

][BASE][BASE ji (3)

A character is stored in CHECK. Each element of CHECK requires 1 byte and the space usage of the double

740 Volume 10, Number 6, June 2015

Journal of Software

array is 5|D| bytes. Fig. 2 shows CDA for key set K.

3. Double Array Using Linear Function

3.1. Outline of the Double Array Using Linear Functions

The double array using linear functions (DALF) compresses the space usage of CDA. DALF divides the trie

into each depth and defines linear functions fd(s) for each depth (d (≥1) is the depth of the trie). Equation (2)

is changed for DALF as follows;

DBASE[] () CODE[] ;CHECK[]ds f s c t t c . (4)

Each element of DBASE needs 2 bytes. fd(s) is the linear function with index s of the double array, and it is

represented by the following equation;

Fig. 3. The double array using linear functions for K. Fig. 4. The scatter diagram of Index-BASE and f3(s).

() .d d df s a s b (5)

In this paper, decimal places of fd(s) are rounded down. The following equation is established because (4)
is the same as (2);

 .)(][BASE][DBASE sfss d (6)

Moreover, in the same manner of (3), the following equation needs to be satisfied in all pairs of nodes {i, j}
except the leaf nodes.

)(][DBASE)(][DBASE jfjifi dd (7)

DALF is represented by the double array using DBASE and fd(s). Therefore, its space usage is 3|D| bytes.

Fig. 3 shows DALF for key set K. In Fig. 3, DBASE[s] is smaller than BASE values of Fig. 2 because of (6).

Furthermore, Fig. 4 shows a scatter diagram and fd(s) in depth 3. The scatter diagram has indexes of the

741 Volume 10, Number 6, June 2015

Journal of Software

double array on the x-axis and BASE values on y-axis.

3.2. Outline of Constructions

DALF defines linear functions for each depth of the trie. At the same time, elements of the double array

have blocks in each depth. The blocks are represented by the following equations;

 ,
)2(

)1(

1

1

1

 d

d

smax
smin

d

d
 (8)

 .)(
1

d

k

kkd unusedusedsmax (9)

In (8) and (9), variables in depth d are explained as follows;

1) smind is the minimum index.

2) smaxd is the maximum index.

3) usedd is the number of valid elements.

4) unusedd is the number of invalid elements.

For example, because the invalid element in Fig. 3 is 7, used3 and unused3 are 4 and 1, respectively.

Slope ad and y-intercept bd of fd(s) are defined by the following equations;

 ,a 1

dd

d

d
unusedused

used

 (10)

 .a1b dddd sminsmax (11)

If DALF cannot be built in (10), slope ad is increased, BASE[smind…smaxd] is expanded, and DALF is rebuilt

in depth d. Then, slope ad is decided again by the following equation;

 1 .d
d d

d d

used
a gain r

used unused

 (12)

In (12), gain ∙ rd is added to slope ad. gain is the addition value for slope ad, and rd is the number of times

to rebuild in depth d.

BASE[s] is represented by the following equation;

 .}{][BASE ss LMs (13)

Ms and Ls are adjusted by using constant a. Ms is represented by the following equation;

 .}2)()(|{ 16 sfxsfxM dds
 (14)

Ls is represented by the following equations;

if 'dsmin s s

 .)}(1|{ sfxsmaxxL dds (15)

if ' ds s smax

 .)}()(|{ sfxsfxL dds (16)

s’ is represented by the following equation;

 1
' .d d

d

smax b
s

a

 (17)

According to (13) - (17), DBASE[s] can be represented by 2 bytes.

742 Volume 10, Number 6, June 2015

Journal of Software

3.3. Construction Algorithms

The construction algorithm of DALF is shown as below;

 [Procedure Build(BT)]

Define: S1 = … = SMaxDepth(BT) := ∅

B-1 Append(S1, 1)

B-2 new[1]:= 1

B-3 for d:= 1 to MaxDepth(BT) do

B-4 SetLinear(d)

B-5 Sort(Sd)

B-6 while BuildDepth(BT, d) = False do

B-7 InitDa(d)

B-8 UpdateLinear(d)

B-9 end while

B-10 end for

Before procedure Build, BT is built as a data structure such as a two-dimensional array or a linked list. In

Build, a variable, an array and functions are used as follows;

Variable Sd stores node numbers of BT.

Array new[s] stores a node number of DALF corresponding to node number s of BT.

Function MaxDepth(BT) returns the deepest depth of BT.

Function Append(Sd, s) adds s to Sd.

Function SetLinear(d) sets fd(s) using (10) and (11).

Function Sort(Sd) sorts Sd in ascending order of DALF’s node number.

Function InitDa(d) initializes DBASE[smind…smaxd], CHECK[smind+1…smaxd+1], Sd+1.

Function UpdateLinear(d) resets fd(s) using (11) and (12).

In (12), rd is the number of times to repeat in line B-6 for depth d.

In line B-1, the root node number is added to S in depth 1. The loop of line B-3 builds DALF from BT in

each depth. The loop of line B-6 is repeated until construction of depth d is completed. InitDa and

UpdateLinear are called if the construction is failed. In UpdateLinear, parameters gain and a are used.

Function BuildDepth in line B-6 is shown as below;

 [Function BuildDepth(BT, d)]

D-1 for s in Sd do

D-2 base := XCheck(s)

D-3 if base ∈ {Mnew[s] ∪ Lnew[s]} then

D-4 DBASE[new[s]]:= base – fd(new[s])

D-5 else

D-6 return False

D-7 end if

D-8 for t in Children(BT, s) do

D-9 new[t] := base + CODE[Label(BT, t)]

D-10 CHECK[new[t]] := Label(BT, t)

D-11 if Children(BT, t) ≠ ∅ then

D-12 Append(Sd+1, t)

D-13 end if

743 Volume 10, Number 6, June 2015

Journal of Software

D-14 end for

D-15 end for

D-16 return True

Function BuildDepth builds DALF in depth d and returns True and False as a result of the construction. In

BuildDepth, functions are used as follows;

Function XCheck(s) returns the smallest value which satisfies (2), (3) and is over minimum values of

Lnew[s].

Function Label(BT, s) returns a label to destination s in BT.

Function Children(BT, s) returns child nodes of s in BT.

In line D-3, base is checked whether or not to satisfy (13). If base does not satisfy (13), BuildDepth returns

False in order to be rebuilt in depth d. The loop of line D-8 traverses all child nodes of s and sets node

numbers of DALF and CHECK value. Moreover, the loop prepares to build in depth d + 1.

Table 1. Information about Keyword Sets

 K1 K2 K3 K4

Language English English Japanese Japanese

Number of keywords 1,000,000 1,500,000 1,000,000 1,500,000

Average length (bytes) 18.5 18.5 20.9 20.8

Minimum length (bytes) 1 1 1 1

Maximum length
(bytes)

254 255 241 255

File size (MB) 19.5 29.3 21.9 32.8

4. Experimental Observations

4.1. Problems of Construction Methods for DALF

DALF is built by using parameter gain in (12) and parameter a in (14) - (17). The space usage becomes

small with reducing gain. However, the construction time becomes long, because the number of times to

rebuild DALF increases. The space usage becomes large with increasing gain. Additionally, the number of

times to rebuild DALF is increased because ad+1 becomes small in (10). On the other hand, the space usage

becomes large with reducing a, and the number of times to rebuild DALF increases with increasing a.

Therefore, these parameters need to be chosen as appropriate values.

However, determinations of these parameters have not defined. In this section, these parameters are

observed by experiments, and appropriate parameters are found.

4.2. Evaluations

DALF is built by using various combinations of parameters gain and a. The keyword sets were made by

extracting 1,000,000 and 1,500,000 titles from English and Japanese Wikipedia at random. They are called

K1 ... K4, and details of K1 ... K4 are shown in Table 1. Japanese keywords including multibyte characters such

as Kanji in UTF-8 were used as byte strings. The numerical codes of characters were decided in descending

order of appearance frequency in keyword sets. In this experiment, the filling rate of valid elements and the

number of times to rebuild are evaluated.

Fig. 5 shows experimental results for K1. When gain and a were respectively 0.01 and 24,000, the space

usage was the most compact and the filling rate of the valid elements was 97.84%. However, the number of

times to rebuild was 16. When gain and a are respectively 0.09 and 20,000, the number of times to rebuild

744 Volume 10, Number 6, June 2015

Journal of Software

was 1. Then, the filling rate of the valid elements was 97.78%.

Fig. 6 shows experimental results for K2. When gain and a were respectively 0.01 and 8,000, the space

usage was the most compact and the filling rate of the valid elements was 94.02%. However, the number of

times to rebuild was 63. When gain and a were respectively 0.11 and 6,000, the number of times to rebuild

was 11. Then, the filling rate of the valid elements was 91.59%.

Fig. 5. Experimental results for K1.

Fig. 6. Experimental results for K2.

Fig. 7. Experimental results for K4.

In the experimental results for K3, when a was from 0 to 24,000, the number of times to rebuild was 0.

745 Volume 10, Number 6, June 2015

Journal of Software

When a was from 12,000 to 24,000, the filling rate of the valid elements was 98.6%.

Fig. 7 shows experimental results for K4. When gain and a were respectively 0.01 and 16,000, the space

usage was the most compact and the filling rate of the valid elements was 98.60%. However, the number of

times to rebuild was 6. When a was 2,000, the number of times to rebuild was 0. Then, the filling rate of the

valid elements was 98.39%.

From the results, it turns out that the space usage becomes the most compact in all keyword sets when

gain is 0.01. However, the number of times to rebuild increases. In English, the appropriate values of gain

for the fast construction was 0.09 - 0.11. In Japanese, the appropriate values of α for the fast construction

was from 0 to 2,000.

Moreover, it turns out that the appropriate values of α decreases with increasing the number of
keywords.

Furthermore, it turns out that Japanese keyword sets can be built DALF more efficiently. In UTF-8, as the

first byte represents the length of the following bytes, this first byte frequently appears in keysets of

multibyte characters such as Japanese. Therefore, when BASE values are decided, the possibilities of

collisions among them become low, the filling rate of the valid elements increases, and the number of times

to rebuild DALF decreases. As a result, DALF is more efficient for the keyword sets including multibyte

characters such as Japanese, Arabic and Chinese.

5. Conclusion

This paper has observed various combinations of parameters gain and a in DALF. From experiments, it

turns out that the space usage becomes compact with decreasing gain. In English, the construction speed

becomes the fastest when gain is 0.09 - 0.11. In Japanese, the construction speed becomes the fastest when

a is from 0 to 2,000. Furthermore, it turns out that DALF can be built more efficiently by the keyword sets

including multibyte characters. A further work is to propose more efficient construction methods of DALF

for large keyword sets.

References

[1] Fredkin, E. (1960). Trie memory. Communications of the ACM, 3(9), 490–500.

[2] Yang, L., Xu, L., & Shi, Z. (2012). An enhanced dynamic hash TRIE algorithm for lexicon search.

Enterprise Information Systems, 6(4), 419-432.

[3] Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, Techniques, and Tools,

Addison-Wesley Longman Publishing Co., Inc.

[4] Huang, K., Xie, G., Li, Y., & Liu, A. X. (2011). Offset addressing approach to memory-efficient IP address

lookup. Proceedings of the 2011 IEEE International Conference on Computer Communications (pp.

306-310).

[5] Navarro, G. (2004). Indexing text using the ziv–lempel trie. Journal of Discrete Algorithms, 2(1), 87-114,

2004.

[6] Fu, J., Hagsand, O., & Karlsson, G. (2007). Improving and analyzing LC-trie performance for IP-address

lookup. Journal of Networks, 2(3), 18-27.

[7] Aoe, J. (1989). An efficient digital search algorithm by using a double-array structure. Transactions on

Software Engineering, 15(9), 1066–1077.

[8] Yata, S., Oono, M., Morita, K., Fuketa, M., & Aoe, J. (2007). A compact static double-array keeping

character codes. Proceedings of the Conference on Information Processing and Management (pp.

237-247).

[9] Fuketa, M., Kitagawa, H., Ogawa, T., Morita, K., & Aoe, J. (2014). Compression of double array structures

for fixed length keywords. Proceedings of the Conference on Information Processing and Management

746 Volume 10, Number 6, June 2015

Journal of Software

(pp. 796-806).

[10] Kanda, S., Morita, K., Fuketa, M., & Aoe, J. (2014). A compression method of double array structures

using approximate straight lines. IPSJ SIG Technical Report, 1-6.

 Shunsuke Kanda received his B.Sc. degree in information science and intelligent

systems from University of Tokushima, Japan, in 2014. He is currently a master course

student at University of Tokushima. His research interests are information retrieval.

 Kazuhiro Morita received his B.Sc., M.Sc. and Ph.D. degrees in information science and

intelligent systems from University of Tokushima, Japan, in 1995, 1997 and 2000,

respectively. Since 2006, he has been a research associate in the Department of

Information Science and Intelligent Systems, University of Tokushima, Japan. His

research interests are sentence retrieval from huge text databases, double array

structures and binary search tree.

Masao Fuketa received his B.Sc., M.Sc. and Ph.D. degrees in information science and

intelligent systems from University of Tokushima, Japan, in 1993, 1995 and 1998,

respectively. He had been a research assistant from 1998 to 2000 in information

science and intelligent systems, University of Tokushima, Japan. He is currently an

associate professor in the Department of Information Science and Intelligent Systems,

University of Tokushima, Japan. He is a member of the information processing society

in Japan and the association for natural language processing of Japan. His research

interests are information retrieval and natural language processing.

Jun-Ichi Aoe received his B.Sc. and M.Sc. degrees in electronic engineering from the

University of Tokushima, Japan, in 1974 and 1976, respectively, and received the Ph.D.

degree in communication engineering from the University of Osaka, Japan, in 1980.

Since 1976, he has been with the University of Tokushima. He is currently a professor in

the Department of Information Science and Intelligent Systems, University of

Tokushima, Japan. His research interests are natural language processing, a shift-search

strategy for interleaved LR parsing, a robust method for understanding NL interface

commands in an intelligent command interpreter, and trie compaction algorithms for large key sets. He was

the editor of the computer algorithm series of the IEEE Computer Society Press. He is a member of the

association for computing machinery and the association for the natural language processing of Japan.

747 Volume 10, Number 6, June 2015

Journal of Software

