

Test Size Estimation for Object Oriented Software Based
on Analysis Model

Chamundeswari Arumugam*, Chitra Babu
Department of Computer Science and Engineering, Sri Siva Subramaniya Nadar College of Engineering, Rajiv
Gandhi Salai (OMR), SSN Nagar, Tamil Nadu, India, 603110.

* Corresponding author. Email: chamundeswaria@ssn.edu.in.
Manuscript submitted August 29, 2014; accepted May 12, 2015.
doi: 10.17706/jsw.10.6.713-729

Abstract: Software test size estimation at the early analysis phase of software development lifecycle is crucial

for predicting the associated effort and cost. This paper proposes a new method namely System Test Size

Point (STSP) to estimate the system testing size of the object oriented software. The novel approach for the

system test size estimation at the analysis phase is based on the Use Case Model (UCM) which adapts the

Function Point Analysis (FPA) technique. The various features such as use case graph, test set, test set suite,

relationships, main flow and alternate flow, are extracted from the UCM. Based on this, UCM components for

estimation are derived. The FPA components are appropriately mapped to the UCM components and the

complexity based on the weightage is specified to calculate the STSP. This proposed test size estimation

approach has been evaluated with the object oriented software developed in our software engineering

laboratory to assess its ability to predict the system test size.

Key words: Function point, object-oriented software, system testing size estimation, use case model.

1. Introduction

Software estimation is essential in every software organization for effective decision making. Both

development and testing impact the size of an object oriented software system. Although several models

exist for estimating the development size of object oriented software[1], very few works focus towards the

estimation of testing size. Testing is a challengeable task, which requires quite a lot of effort to deliver high

quality software. The size and effort estimate for testing must be good enough to provide sufficient time to

conduct tests and guarantee that the product enters the market adequately tested, avoiding negative

reactions among consumers and damages in the image of the company responsible for the software.

Software organizations in fact assign a test manager exclusively to take the responsibility of estimating the

testing size and accordingly plan the software testing management activities.

FPA [2] is a popular method for software size estimation. This method estimates the software size based

on the functionality from the requirements specification, independent of the technology used to build the

software system. FPA was proposed by International Function Point User Group (IFPUG) and it has become

a standard for size estimation. FPA cannot be directly applied to Object Oriented (OO) software due to the

mismatch in the features supported by it. However, this method has been suitably adapted for estimating

size of the OO software [1]. The FPA component was mapped to use case model in an earlier work [1] to

estimate the size of OO software during the analysis phase itself. While this approach facilitated the

713 Volume 10, Number 6, June 2015

Journal of Software

mailto:chamundeswaria@ssn.edu.in

estimation of development size of OO software, it did not estimate the testing size. System testing in a

typical software life cycle is a phase where the software system is tested in its entirety to verify and

validate the requirements. It is important to estimate the effort involved in the various activities related to

system testing at the early stage of the software life cycle.

Table 1. Overview of the Existing Test Estimation Methods

Author(s) Estimation Method Name Data Used Adapted

Almeida et al Test activity effort Use case Nageswaran method

Aranha et al. Test execution effort Test specification -

Ashish et al. Test effort Software requirements specification -

Baudry et al. Test effort Class diagram -

Kushwaha et al. Test effort Source code -

Nageswaran Test effort Use case Use case point

Thomas mccabe Cyclomatic complexity Source code -

Veenendaal et

al.
Test point Functional requirements -

Xiaochun et al. Test execution effort Use case -

Zhou et al. Test suite size Use case -

UCM generally provides the complete information about all the functionality, addressed by any given

software system. It also has certain distinct advantages in capturing the system requirements earlier, in the

software life cycle [3]. Further, it captures different granularities such as brief, fully-specified and

refinements in the requirements analysis phase in detail [4]. UCM exhibits the various patterns of behavior

that are adequate in capturing the system testing activities. Activities related to system testing can be

estimated using UCM.

Researchers have contributed towards estimation of the testing effort using different UML diagrams and

specifications that are available at the various phases of software life cycle. Veenendaal [5] proposed the

test point analysis based on the functional requirements. Nageswaran [6] applied the use case points to

estimate the effort involved in software acceptance testing based on the use case diagram. Baudry et al. [7]

proposed the testing effort estimation based on the UML class diagram. Aranha et al. [8] proposed an

estimation model for test execution effort based on the test specification. Xiaochun et al. [9] proposed the

test execution effort estimation based on use cases, in the context of software testers. Though these

approaches estimate the test effort of the software systems at the various phases of the software life cycle,

they do not adhere to any standard. On the other hand, FPA is a standard proposed by IFPUG. Hence, it is

beneficial to combine the advantages of UCM as well as those of FPA for system test size estimation.

The objective of this work is to propose a system test size estimation method by adapting the FPA

method to UCM. This has been achieved by extracting the necessary information from the UCM and deriving

the essential components for estimation. The FPA components are appropriately mapped to the derived

UCM components and the formulae for test size estimation have been derived. The proposed estimation

method has been applied on sample OO projects and the results are empirically evaluated to analyze the

accuracy of the estimation.

The remainder of the paper is organized as follows. Section 2 surveys the work related to the estimation

of testing effort. In Section 3, the proposed system test size estimation method is presented. Section 4

applies this estimation approach for a case study. Section 5 discusses the empirical results and the analysis

of this approach. Section 6 concludes and suggests possible future directions.

2. Related Work

714 Volume 10, Number 6, June 2015

Journal of Software

Estimation of testing effort has been proposed by several researchers based on software requirement

specification [10], static class diagram [7], UCM [6], [9], [11], [12], functional requirements [13], test

specification [8], and complexity [13] [14]. Table 1 outlines the various existing test estimation methods in

literature discussed in this section. Veenendaal et al. [5] proposed test point analysis based on the

functional requirements at the early stage of the software life cycle. Dynamic and static test points were

calculated for each identified function of the software system. The estimation corresponding to a dynamic

test point for a function includes function point, function dependent, and quality dependent factors.

Similarly, the estimation corresponding to a static test point for a function includes sixteen quality

checklists in ISO 9126. Final test point comprises of dynamic and static test point. The primary test hours

estimation depends on test points, total test hours for test points, and environmental factors. Thus, the

rough test estimation for a software system based on functions and quality is presented to the client.

715 Volume 10, Number 6, June 2015

Journal of Software

Table 2. Comparison of Existing Test Estimation Methods

Author(s) Proposed work Drawbacks

Almeida et al.

Proposed a method for test effort, based on use cases. It

used the parameters namely actor ranking, technical and

environmental factors related to testing like test tools,

input, environment, distributed system, interface, etc for

the calculation of test effort. It used use case point for

estimation.

Only the use case is considered for

estimation as a whole for determining the

weightage. Fine granularity of each use

case was not considered in determining

the weightage of a use case.

Aranha et al.

Proposed an estimation model for test execution effort

based on the size and execution complexity measured

from test specification written in a controlled natural

language.

Test procedure needs to be written in a

controlled natural language.

Ashish et al.

Proposed test metrics to compute the complexity of

requirements on the basis of software requirement

specification.

The knowledge of NLP is required to

compute metrics.

Baudry et al.

Proposed the testing effort measurement based on UML

class diagram. measures the complexity of interactions

that must be covered during testing.

This work requires an elaborate design to

measure the complexity of the

interactions.

Nageswaran
Presented a use case based approach for acceptance test

effort estimation in V-model developmental life cycle.

Fine grain information corresponding to

the various scenarios in use case diagram

is not considered in assigning weights to a

use case.

Kushwaha et

al.

This work has made use of an existing simple cognitive

metric that includes all the important parameters of

software required for estimation of test effort.

Demonstrates that the cyclomatic complexity number

increases with the increase in the software complexity

when a new component is added to existing software.

Adapts the cyclomatic metric for the proposed metric.

Authors claim that the proposed metric is

robust, but how the robustness was

obtained was not clearly stated.

Veenandaal et

al.

Proposed the test point analysis based on the functional

requirements at the early stage of the software life cycle. A

rough test estimation for a software system based on

functions and quality is presented to the client.

Validation of this work was not discussed.

Xiaochun et al.

Estimated the test execution effort estimation. This

approach provided two key parts, namely test case

number prediction model and test suite execution vector

model.

This estimation presented an experience

based approach.

Zhou Bo et al.

Proposed test suite size estimation based on the use case.

The test suite size was predicted from test case number

prediction.

Presented an experience based approach

for the test suite size estimation.

Nageswaran [6] had estimated acceptance test effort in V-model developmental life cycle through use

case diagram. An existing developmental estimation method of use case point has been applied. In this

method, the actors and use cases were categorized and weights were assigned to estimate the unadjusted

use case point. Technical and environment factors were incorporated with this to estimate the adjusted use

case point. By applying the adjusted use case points, the acceptance test effort for EJB / COM / DCOM

software had been computed. Though this method employs the use case diagram and predicts the test

effort at the analysis phase, it has certain drawbacks. It lacks the description for classification of weights

assigned to the technical and environment factors. Further, the fine grain information corresponding to the

various scenarios is not considered in assigning weights to a use case.

Aranha et al. [8] proposed an estimation model for test execution effort based on the test specification. A

measure of test size and execution complexity was defined and validated. Test procedure for this

estimation had been written in controlled natural language. A test suite comprises of many test cases and

each test case has been analyzed for functional and non-functional characteristics to obtain the execution

points. Eight functional and three non-functional characteristics have been considered in this work. Based

on the productivity of the test team, from the total execution points, the test execution effort is calculated.

Guidelines and weightage for the different characteristics have been specified. Justification for the

weightage assigned to the various characteristics is rather ambiguous.

Xiaochun et al. [9] proposed test effort estimation based on test suite execution vector model and test

case number prediction model. This approach introduced a metric known as use case verification point to

measure the transactions and entity objects in a use case. Test case number, execution complexity, and

tester rank are determined to estimate the test execution effort from use cases. The accuracy of the

estimation depends on the expert judgment. Guidelines for the test execution complexity calculation need

to be precisely stated. Rules for the use case verification point need to be stated. The procedure, for

deriving the test cases, entity object, transaction steps, test set suite, special requirements and use case

verification point, is not clear.

Ashish et al. [15] proposed test metric that computes the requirement based complexity using software

requirement specification document. Ashish et al. [10] has empirically proposed test metrics for the

estimation of software test effort using software requirement specification. McCabe proposed a graph

theoretic complexity measure based on the source code. Zhou et al. [12] present an experience based

approach for the test suites size estimation based on use case. Almeida et al. [11] proposed a method to

extract test activity effort based on the use case. Aranha et al. [8] proposed an estimation model for test

execution effort based on test specification. Baudry et al. [7] proposed the testing effort estimation based

on UML class diagram. Kushwala et al. [14] discusses cognitive information complexity measure and

modeling of test effort based on Commercial off The Shelf (COTS) components and Component Based

Software Engineering (CBSE). Table 2. represents the comparison of various existing test estimation

methods. From all these works, it is evident that, the use case model data is not completely utilized in

estimating the system test size. Thus, a new estimation technique has been proposed in this paper that

integrates the use case diagram and use case specification document by adapting FPA to estimate the

system test size of the object oriented software at the analysis phase.

3. System Test Size Estimation

The proposed estimation method focuses on the various features of the UCM such as actors, use cases

within the system boundary, external references, relationship between use cases, and transaction features.

This section describes the proposed approach for determining the system test size of the object oriented

software, based on UCM. The following subsection describes these steps in detail. The steps involved are:

716 Volume 10, Number 6, June 2015

Journal of Software

1) Convert the use case diagram into the use case graph.

2) Derive the test set suite from the use case graph.

3) For the possible interactions based on the edges, determine the estimation parameters for STSP

components.

4) Map the FPA components to STSP components for estimation

5) Classify the technical complexity factors for system testing.

6) Estimate the system test point.

3.1. Formation of Test Set Suite

In the use case diagram, the system boundary identifies the border between different applications. Fig. 1

gives a pictorial overview of the boundary identification of the developmental software. The boundary is

identified for the proper classification of logical files. Different actors, such as an active actor, a passive

actor or a device will communicate with the use cases for various operations in the system boundary. These

use cases in turn may invoke other services outside the system boundary.

Fig. 1. Use case graph for RTO application.

The case study of Regional Transport Office (RTO) is a software application that manages all the activities

in RTO for issue of license. RTO is an on-line system which enables people to apply for learner’s permit,

license, renewals, vehicle registrations and transfers. It also provides them with the necessary information

regarding the dates on which tests will be conducted, issue dates, and expiry time limits. Alert mails will be

automatically sent to people whose licenses are about to expire. It allows users to pay registration fees

online using their credit/debit cards. The use case diagram for this application is converted into a use case

graph, G and it is represented in Fig. 1. Each use case and actor is represented as a vertex, and the

relationships such as 'uses' or ‘include’, 'extend', and 'communicate' alias 'comm' are represented as edges in

a use case graph.

Definition 1: Use case graph: Connections between the vertices and edges constitute a use case graph.

A use case graph has ‘n’ vertices and ‘m’ edges.

Definition 2. Test Set: Information exchanged between two vertices in each edge in the use case graph G is a

include

comm

RTO

validate refund

update results

Co comm

comm

extend

comm

Citizen repository

Send mail Issue license

admin

process application

include
include

check status

comm

refund

include

comm

extend
cashier pay fees

apply form

comm

comm

signup

member

717 Volume 10, Number 6, June 2015

Journal of Software

Test Set (TS).

Let TS be test set. It has vertexi, edgea, vertexj ε G, where 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ a ≤ m and for all test

sets, i <> j, TS = { vertexi, edgea, vertexj }

Definition 3. Test set suite: The set of all qualified test sets in the connected or disconnected components

of the use case graph, is defined as the Test Set Suite(TSS).

TSS has a set of TSi, where 1 ≤ i ≤ n2, TSS = {{TS1},...,{TSi}}. The qualified test sets for test set suite are

populated by the following steps.

1) Test sets for 'extend' and 'include' edges are populated in the test set suite.

2) Each vertex in the test set for ‘comm’ edge is checked for whether it is already populated as a test

set in the test set suite.

3) If this is true, ‘comm’ edge test set need not be included, otherwise it should be included in the test

set suite.

Here afterwards, the test set means qualified test set.

Fig. 2. Interaction for edges (a)'extend' (b)'include' (c) 'comm'.

3.2. Interactions of Test Set

UCM has use case specification document that describes all the use cases in the use case diagram. Each

use case in the use case specification document has details such as input data, pre-condition, post-condition,

main flow, alternate flow, and exception flow.

Definition 4. Main flow: Each vertex in use case graph G has a well defined goal and this is defined as the

main flow.

Main flow for a vertexi is expressed as M.

Definition 5. Alternate flow: If there is any obstacle to achieve the main flow of each vertex in use case

graph G, there is deviation and this is defined as alternate flow.

An alternate flow for a vertexi is expressed as A.

Definition 6. Execution Sequence: The interaction of flows based on the type of edge between the vertices

in a test set is known as Execution SEQuence (ESEQ).

Definition 7. Test Step : A message in the interaction of flows in a test set is Execution Step (ES).

Definition 8. Data Flow : Data used in ESEQ in a test set is Data Flow(DF).

In case of the test set with 'extend' edge, the completion of execution steps of the main flow of vertexi will

invoke the execution steps of the main flow of vertexj. The interaction between the main flows and alternate

flows for this edge is shown in Fig. 2(a).

Based on the main flow and alternate flow, for each test set with this edge, the following three possible

interactions of flows are to be considered, to identify the total number of ESEQ and ES.

718 Volume 10, Number 6, June 2015

Journal of Software

1) Main flow interactions of vertices.

2) Main flow of vertexi to one of the many alternate flows in vertexi.

3) Main flow of vertexi to main flow of vertexj followed by one of the many alternate flows of vertexj.

In case of the test set with ‘include’ edge, the main flow of vertexi is the caller and main flow of vertexj is

the callee. Any one of the execution steps of the caller will invoke the execution steps of the main flow of the

callee. On completion, the control returns back from the callee to the caller. The interaction between the

main flows for this edge is shown in Fig. 2(b). Based on the main flow and alternate flow, for each test set

with this edge, the following four possible interactions of flows are to be considered, to identify the total

number of ESEQ and ES.

4) Main flow interactions of vertexi to vertexj and then back to vertexi.

5) Main flow of vertexi to one of the many alternate flows of vertexi.

 Main flow of vertexi, main flow of vertexj followed by one of the many alternate flows of vertexj.

 Main flow of vertexi, main flow of vertexj followed by one of the many alternate flows of vertexj

and then one of the many alternate flows of vertexi.

In case of the test set with ‘comm’ edge, as one vertex is an actor, the main flow and alternate flows of the

other vertex are considered. Interaction between them is pictorially shown in Fig. 2(c). Based on the main

flow and alternate flow, the following two possible interactions of flows need to be considered, to identify

the total number of ESEQ and ES.

8) Main flow interactions of vertices.

 Main flow of vertexj to one of the many alternate flows in vertexj

Table 3. STTCF in System Testing

Terms Factors Brief Description Wt

FF

Test environment How many setups need to be undertaken for establishing the environment? 5

Test documentation How many associated documents need to be prepared? 5

Test conditions
What are the test scenarios to be verified for the completion of

transactions?
5

Test ware
What storage mechanism is adapted to store the different artifacts of

testing?
5

NFF

Performance
What are the different test scenarios for which the response rate needs to

be measured?
5

Load testing
What are the different types of scenarios for which response time has to be

measured?
5

Security testing How many unauthorized accesses need to be prevented? 5

Stress testing
What different evaluation mechanisms are used to study the system

behaviour?
5

OF

Testing tool How many tools are used for testing? 5

Tester‘s skill How many unskilled testers are involved in testing? 5

Innovative

technology

What are the hurdles in setting up innovative technology?
5

Multiple test

configurations

What are the test configurations used for testing?
5

Geographical

distribution of team

How many continents are used?
5

Product size What is developmental size of the software to be tested? 5

3.3. System Test Size Point Estimation

719 Volume 10, Number 6, June 2015

Journal of Software

6)

7)

9)

Function points introduced by Albrecht et al. [1] are used in software industry to estimate the

functionality of the software. In 1984, Albrecht refined the method and several versions of the function

point counting practices manual have been published by the International Function Point User Group

(IFPUG). It consists of five components namely Internal Logical File (ILF), External Interface File (EIF),

External Input (EI), External Output (EO), External Inquiry (EQ), and fourteen Technical Complexity Factors

(TCF). The FPA components of ILF and EIF are mapped to Internal Relational File (IRF) and External

Relational File (ERF) respectively, while EI component is mapped to Data Transaction (DT) of System Test

Size Point (STSP) component. EO and EQ components of FPA have no direct relationship in this context, and

are not considered. The STSP components are discussed in detail below.

Definition 9. Internal Relational File: Information exchanged in a test set, internally within the boundary of

use case graph G is defined as an Internal Relational File (IRF).

Thus, a test set is identified as one IRF. Classification of an IRF depends on two parameters namely

ESEQ and ES. The weightage for each ESEQ and ES is one. Based on the number of ESEQ and ES, the

complexity of IRF, is classified as low, average or high by applying the IFPUG, ILF complexity table.

Summation of the complexity of each IRF yields the total complexity due to IRF. IRF complexity

estimation for test sets based on different categories of edges for the case study is discussed in Section 4.

Definition 10. External Relational File: Information exchanged in a test set, externally away from the

boundary of use case graph G is defined as an External Relational File (ERF).

In case, if any vertex in the use case graph G, references another vertex externally, a separate test set is

created. Each such identified test set is one ERF. Classification of an ERF depends on two parameters

namely ESEQ and ES. The weightage for each ESEQ and ES is one. The complexity of each ERF, based on the

weightage assigned to ESEQ and ES, is classified as low, average or high by applying the IFPUG, ELF

complexity table. Summation of the complexity of all ERF yields the total complexity due to ERF.

Table 4. Test Set Suite for RTO Application

No. Test Set No. Test set

1 {apply form, include, signup} 6 {update result, include, process application}

2 {apply form, include, pay fees} 7 {process application, extend, issue license}

3 {pay fees, include, validate refund} 8 {applicant, comm, signup}

4 {validate refund, extend, refund} 9 {admin, comm, send mail}

5 {check status, include, update results} 10 {process application, comm, citizen repository}

Definition 11. Data Transaction: Data exchange in a test set is DT.

Each identified test set in the use case graph, exchanges data between the vertices. Classification of a DT

depends on two parameters namely ESEQ and DF. The weightage for each ESEQ and DF is one. Based on the

number of ESEQ and DF, the complexity of each DT, is classified as low, average or high by applying the

IFPUG, EI complexity table. Summation of the complexity of each DT yields the total complexity due to DT.

Definition 12. System Testing Technical Complexity Factors: The parameters that affect the system testing

that can be quantified are known as System Testing Technical Complexity Factors (STTCF).

STTCF identified for system test size estimation are tabulated in Table 3. They are broadly classified into

three categories such as Functional Factors (FF), Non-Functional Factors (NFF), and Organizational Factors

(OF). The assignment of weightage to these factors depends on their impact on testing. The weightage for

these factors varies in the range of 0 to 5 corresponding to no influence, incidental, moderate influence,

average influence, significant influence, and strong influence respectively. There are four factors namely

test environment, test documentation, test conditions and testware that are dependent on functional

720 Volume 10, Number 6, June 2015

Journal of Software

characteristics of the testable software. There are also four factors namely performance, load, security, and

stress that are dependent on non-functional characteristics of the testable software. There are totally six

factors namely testing tool, tester’s skill, innovative technology, multiple test configurations, geographical

distribution of team, and product size that are dependent on organizational decisions for testing. All these

factors and their contribution towards testing are summarized in Table 3. The STSP estimation of an object

oriented software application is calculated as shown below.

STSP = [a (IRF + ERF + DT)] (1)

where

14

1

 0.65 0.01 i

i

a STTCF

 IRF = f (ESEQ, ES), ERF = f (ESEQ, ES), DT = f (ESEQ, DF)

STSP is determined from four components namely ERF, IRF, DT and STTCF. Next section describes how

the proposed size estimation technique has been applied to the chosen RTO application case study.

Table 5. Use Case Documentation for a Test Set with ‘Extend’ Edge

Use case

name:
Process application Issue license

Main

Flow:

M3. Issue the LLR for the user

M3E1 Validate the application form, in case of invalid go to step A31E1

M3E2 Confirm the payment details, in case of incorrect payment go to step

A32E1

M3E3 Confirm the test dates

M3E4 Issue the LLR for new user

M3E5 Update the user status

M4. Issue the License for the user

M4E1 Generate the license for the

user, in case of failure go to step

A41E1

M4E2 Update the RTO information

M4E3 Update the user status

Alternate

flow:

A31 Invalid application form

A31E1 Convey the user to submit a valid application form

A32 Incorrect payment

A32E1 Convey the user to pay the correct amount

A41 License not issued

A41E1 License not issued for the

user

Fig. 3. Interactions for ‘extend’ edge.

Alternative 2

Alternative 2

Alternative 1

 Alternative 3

A31E11

A32E1

M3E5 M4E1 M4E3 M4E2

M3E1 M3E4 M3E3 M3E2

A41E1

721 Volume 10, Number 6, June 2015

Journal of Software

4. Estimation Validation

Consider the use case graph, G shown in Fig. 1 for RTO application developed in software engineering

laboratory using object oriented methodology. This use case graph, has vertices such as applicant, admin,

cashier, RTO, Citizen repository, apply form, signup, check status, update results, send mail, pay fees, refund,

validate refund, process application, issue license and edges such as include, extend, comm. Based on the

definition 2, the identified initial test sets from the use case graph are as follows: {applicant, comm,

signup},{applicant, comm, apply form},{applicant, comm, check status}, {apply form, include, signup}, {apply

form, include, pay fees}, {payfees, include, validate refund}, {validate refund, extend, refund}, {refund, comm,

cashier}, {check status, include, update results}, {admin, comm, send mail},{update result, include, process

application}, {process application, extend, issue license}, {process application, comm, RTO}, {process

application, comm, Citizen repository} . The test set suite contains the qualified test sets based on the

definition 3 and it is represented in Table 4. Main flow and alternate flow for 'extend‘ and 'include’, edges

are provided in the Table 5 and 6 respectively.

4.1. Internal Relational File Complexity Estimation

The estimation of IRF for a test set in Table 4, {process application, extend, issue license} with ‘extend’ edge

is as follows. Using the Table 5, it is clear that 'process application’ vertex comprises one main flow (M3) and

two alternate flows (A31, A32), while 'issue license' vertex comprises one main flow (M4) and one alternate

flow (A41). M3 contains five execution steps E1...E5, while M4 contains three execution steps E1...E3. Alternate

flows A31, A32, A41 each contain a single execution step E1. The three interactions discussed in Section 3.2 for

the ‘extend’ edge are applied to identify the total number of ESEQ and ES parameters for estimating the IRF

for this test set.

Table 6. Use Case Documentation for a Test Set with ‘Include’ Edge

Use
case

name:
Apply form Pay fees

Main
Flow:

M1 User submits the new license form
M1E1 Applicant request new license form
M1E2 Display the new license form
M1E3 Complete and submit the license form.
M1E4 Check whether license has been issued already. If already
issued go to step A11E1.
M1E5 Check the status of license. If status already exists go to
step A12E1 otherwise modify it.
M1E6 Generate a new application number.
M1E7 An applicant receives a new application number for the
new application form submitted.
M1E8 An applicant initiates the payment process to pay the
fees for the license.
M1E9 Go to step M2E1 to process the payment.
M1E10 License form submitted if payment complete, else go to
step A13E1

M2 Complete payment process
M2E1 Applicant chooses the gateway
M2E2 Payment gateway is checked
M2E3 Payment form is displayed
M2E4 Applicant fills the card and amount
information.
M2E5 Submits the payment form.
M2E6 On payment success the applicant
receives receipt and control transfers to
M1E10 else to A21E1

Alterna
te flow:

A11 User already a license holder
A11E1 Convey the applicant that he is already a license holder.
A12 User has already applied for license.
A12E1 Convey the applicant that he is already applied for
license.
A13 Incomplete submission
A13E1 Convey the applicant incomplete license form
submission.

A21 Amount not deducted
A21E1 Convey payment failure to the
applicant and go to step M1E10
A22 Submits an incomplete form
A22E1: The applicant submits the
incomplete form for the payment process

For the first interaction, the execution steps of M3 are executed followed by the execution steps of M4. The

total number of ESEQ and ES identified for this interaction are 1 and 8 respectively. The corresponding

722 Volume 10, Number 6, June 2015

Journal of Software

ESEQ is M3E1...M3E5, M4E1…M4E3. For the second interaction, when the execution steps of M3 are executed,

there is a possibility that any one of the alternate flows, either A31, or A32 can be invoked. The total number

of ESEQ and ES identified for this interaction are 2 and 4 respectively. The corresponding ESEQ can be M3E1,

A31E1 or M3E2, A32E1. For the third interaction, the execution steps of M3 are executed completely followed

by M4. Here, there is a possibility that the alternate flow A41 can be invoked. The total number of ESEQ and

ES identified for this interaction are 1 and 7 respectively. The corresponding ESEQ is M3E1...M3E5, M4E1,

A41E1. The complete ESEQ for the three interactions of this test set is represented in Fig. 3. Thus, the total

number of ESEQ and ES identified for this test set are 4 and 19 respectively. Based on these values, the

complexity for IRF is 7 using the ILF table defined in IFPUG.

The estimation of IRF for a test set {apply form, include, pay fees} with ‘include’ edge is as follows. The use

case documentation for this test set is captured in Table 6. From the Table 6, it is clear that ‘apply form'

vertex comprises one main flow (M1) and three alternate flows (A11, A12, A13), while 'pay fees’ vertex

comprises one main flow (M2) and two alternate flows (A21, A22). M1 contains ten execution steps E1...E10,

and M2 contains six execution steps E1...E6. Each alternate flow A11, A12, A21, and A22 contains a single

execution step E1. The four interactions identified for this ‘edge’ in Section 3.2 are applied to calculate the

total number of ESEQ and ES parameters for estimating IRF corresponding to this test set.

Fig. 4. Interactions for ‘include’ edge.

For the first interaction, the execution step vertexi (caller) will invoke vertexj (callee) execution step. The

E1...E9 steps of M1 followed by E1...E6 of M2 are executed and the control transfers back to the caller, M1E10.

Number of ESEQ and ES identified for this interaction are 1 and 16 respectively. The corresponding ESEQ is

M1E1…M1E9, M2E1…M2E6, M1E10. For the second interaction, there is a possibility that any one of the

alternate flows of vertexi (caller) can be invoked from main flow of vertexi(callee). Number of ESEQ and ES

identified for this interaction are 2 and 11. The corresponding ESEQ can be M1E1…M1E4, A11E1, or

M1E1...M1E5, A12E2. For the third interaction, any one of the execution steps of vertexi (caller) main flow will

invoke an execution step of vertexj(callee). From this, there is a possibility that any one of the many

Alternative 4

A21E1

Alternative 4

Alternative 3

Alternative 4

Alternative 3

A22E1

A13E1

M1E9

Alternative 1

Alternative 1,3 & 4

M1E10 M2E6 M2E2 M2E1 M2E5 M2E3 M2E4

Alternative 2

M1E8 M1E6 M1E2 M1E1 M1E5 M1E3 M1E4 M1E7

A12E2

A11E1

Alternative 2

723 Volume 10, Number 6, June 2015

Journal of Software

alternate flows of vertexj will be invoked. Number of ESEQ and ES are 1 and 16 respectively. The

corresponding ESEQ is M1E1…M1E9, M2E1…M2E5, A22E1.

For the fourth interaction, any one of the execution steps of vertexi (caller) main flow will invoke an

execution step of vertexj(callee). Here, there is a possibility that any one of the many alternate flows of

vertexi and vertexj will be invoked. Number of ESEQ and ES are 1 and 18 respectively. The corresponding

ESEQ is M1E1...M1E9, M2E1…M2E6, A21E1, M1E10, A13E1.Thus, the total number of ESEQ and ES, identified for

this test set are 5 and 61 respectively. The complete execution sequence for the four interactions of this test

set is represented in Fig. 4. With the identified values of ESEQ and ES, the complexity for IRF is 10 using the

ILF table defined in IFPUG.

4.2. External Relational File Complexity Estimation

In RTO application, vertex ‘issue license’ references another vertex ‘Citizen repository’ externally, which is

defined in another application. The qualified test set identified for ERF is {process application, comm, Citizen

repository}. The estimation of ERF for this test set with ‘comm’ edge is as follows. The vertex ‘process

application’ documentation is represented in Table 5. From Table 5, it is clear that ‘process application’

vertex comprises one main flow (M3) and two alternate flows (A31,A32), while 'Citizen repository’ vertex is

externally referenced and is a part of another application. The number of execution steps in the main flow

M3, is three and the alternate flows A31 and A32 is one each. Based on the discussion in Section 3.2, for

‘comm’ edge test set, the two possible interactions need to be considered, to classify the total number of

ESEQ and ES. For the first interaction, the number of ESEQ and ES are 1 and 5 respectively. The

corresponding ESEQ is M3E1, ...M3E5. For the second interaction, the number of ESEQ and ES are 2 and 5

respectively. The corresponding ESEQ is M3E1, A31E1 or M3E1, M3E2, A32E1. Thus, the total number of ESEQ

and ES estimated for this test set are 3 and 10 respectively.

Fig. 5. Interactions for ‘comm’ edge

The complete execution sequence for the two interactions of this test set is represented in Fig. 5. With the

identified values of ESEQ and ES, the complexity for ERF is 7 using the EIF table defined in IFPUG.

4.3. Data Transaction Complexity Estimation

The estimation of DT for a test set {applicant, comm, sign up} is as follows. ESEQ is identified for this test

set as 2. The identified DF for this test set is login name, login password, question, hint, email-id.

Cumulatively, adding these yields a DF value of 5. With the identified values of ESEQ and DF, the complexity

for DT is 4 using the EI table defined in IFPUG. The complete IRF, ERF, DT, and STTCF for the RTO

application are 101, 7, 53 and 13 respectively and these values are shown in Table 7. Applying these values

in eqn(1), the STSP is estimated as 125.58 TSP. For the same software, UCMFP[1] was estimated at 87.74

Alternative 2

A31E1

A32E1

Alternative 2

M3E1 M3E2 M3E3

Alternative 1

M3E5 M3E4

724 Volume 10, Number 6, June 2015

Journal of Software

FP.

5. Empirical Results and Analysis

5.1. Test Data Analysis

Table 7. STSP Estimation Parameters Values for RTO Application

Test
no

Functional Parameter Estimation System Testing Technical
Complexity Factors Estimation

File

Files DT Term Factor Weight

 ESEQ ES Complexity ESEQ DF Complexity FF Test
environment

1

1
IRF 6 38 15 6 23 6

Test
Documentation

2

2 IRF 5 61 5 5 21 6 Test Conditions 3

3 IRF 5 26 10 5 11 6 Testware 1
4 IRF 5 26 10 5 12 6 NFR Performance 2
5 IRF 7 29 15 7 22 6 Load Testing 2
6 IRF 6 24 15 6 32 6 Security Testing 2
7 IRF 4 19 7 4 29 6 Stress Testing 0
8 IRF 2 7 7 2 5 4 OF Testing Tool 0
9 IRF 2 8 7 2 3 3 Testers Skill 0

10
IRF

3 10 7 2 8 4
Innovative
Technology

0

Total Complexity 108 53
Multiple Test
Configurations

0

Geographical
Distribution of
Team

0

 Product Size 0
 Total Complexity 13

Table 8. Test Size Estimation

Project

Number
of use
cases

Complexity due to

STSP UCMFP
UCMFP

Development Effort
(hrs)

STSP Test Effort
(hrs) IRT &

ERT
DT

P1 13 75 46 94.91 83.46 2.1162 15.4229
P2 13 86 54 109.82 118.77 38.5884 17.8458
P3 16 91 66 122.59 116.63 37.8931 19.9209
P4 13 79 51 101.72 110.21 35.8072 16.5295
P5 11 62 36 76.26 82.39 26.7685 12.3923
P6 10 69 49 92.53 85.6 27.8114 15.0361
P7 11 84 52 106.08 98.44 31.9832 17.238
P8 11 83 61 112.04 107 34.7643 18.2065
P9 12 77 49 98.14 104.86 34.0690 15.9478

P10 10 84 42 88.23 83.46 27.1162 14.3374
P11 14 68 46 104.9 113.42 36.8502 17.0463
P12 13 82 52 109.45 104.86 34.0690 17.7856
P13 12 64 43 83.34 90.95 29.5497 13.5428
P14 10 72 49 94.56 87.74 28.5067 15.366
P15 12 79 63 111.65 105.93 34.4167 18.1431

The proposed estimation approach was applied to few of the OO software projects developed in our

software engineering laboratory. These projects were chosen for analysis because all of them were

developed in the same environment, by following all the activities in software life cycle. Each team followed

the same procedure to collect the data required for empirical analysis. All these projects were developed

by the final year undergraduate students using OO languages. Table 8 shows details of the projects chosen

for training. This data is applied in equation (1) and STSP in terms of TSP is estimated and tabulated in

725 Volume 10, Number 6, June 2015

Journal of Software

Table 8. Developmental size for these projects was also estimated by applying the UCMFP [1] in terms of

FPs and the results are tabulated in Table 8. Since the FPA is adapted to predict the STSP, the software

testing convention factor, followed in our software engineering laboratory, 1 FP=0.1625 man-hours is

applied to estimate the system test effort.

Similarly, the software development convention factor, 1FP=0.3249 man-hours is applied to estimate the

development effort. Appendix A details the calculation of these convention factors. Table 8 represents the

STSP and UCMFP obtained for the fifteen projects and their corresponding development and testing effort.

Pearson correlation coefficient [16] measures the strength of a linear relationship between two projects.

The formula used to compute Pearson coefficient is as follows.

r = Σ (Xi – x) (Yi –Y) / N бx бy

In which, ‘X’ denotes the STSP test effort, ‘Y’ denotes the UCMFP development effort, ‘N’ denotes the total

number of projects, ‘бx’ is the standard deviation of STSP test effort, and ‘бy’ is the standard deviation OF

UCMFP development effort. The correlation coefficient is always between -1 and +1. The relationship

between STSP test effort and UCMFP development effort was analyzed for the fifteen training projects and

its value is 0.827 positive. This indicates that a strong positive association exists between them.

Table 9. Effort Prediction for Sample Projects

Project
UCMFP development
effort

STSP Actual Test Effort (hrs) STSP Predicted Test Effort (hrs) Absolute Error

P1 27.1162 15.4229 13.9904 1.4325
P2 38.5884 17.8458 19.0381 1.1923
P3 37.8931 19.9209 18.1819 1.739
P4 35.8072 16.5295 17.8274 1.2979
P5 26.7685 12.3923 14.5287 2.1364
P6 27.8114 15.0361 14.4324 0.6037
P7 31.9832 17.238 16.1053 1.1327
P8 34.7643 18.2065 17.1803 1.0262
P9 34.0690 15.9478 17.0908 1.143
P10 27.1162 14.3374 14.2241 0.1133
P11 36.8502 17.0463 18.2655 1.2192
P12 34.0690 17.7856 16.9288 0.8568
P13 29.5497 13.5428 15.3935 1.8507
P14 28.5067 15.366 14.7142 0.6518
P15 34.4167 18.1431 17.0498 1.0933

Mean 1.2629

5.2. Test Data Evaluation

Leave one out cross validation technique [16] has been used to evaluate the model. Here, n-1 projects are

used for training and the remaining one was used for testing. This is repeated for each sample in the sample

set and the testing was done using regression technique. Linear regression [16] is a statistical analysis

technique used to assess the association between the STSP test effort and UCMFP development effort data

that is given in Table 8. The linear regression equation used here is y = a + bx. Keeping UCMFP development

effort as the independent variable and STSP test effort as the dependent variable, the linear regression

equation has been derived from a set of fourteen training projects. The derived equation is tested with the

fifteenth project, a(derived constant), b(derived constant), are applied and predicted STSP test effort is

obtained. Likewise, each time, a different set of fourteen projects are used for training and the remaining

project is used for testing. The tested sample set of the projects with the corresponding predicted STSP test

726 Volume 10, Number 6, June 2015

Journal of Software

effort results are tabulated in Table 9. The mean absolute error measures the accuracy of the tested data for

the sample set. The error in tested estimation ranges from 0.1133 to 2.1364 and the mean error found to be

1.2629. Hypothesis testing is used to evaluate experimental outcome about the relationship between STSP

actual and STSP predicted test effort data. Null hypothesis (Ho) and the alternative hypothesis (Ha)

concerning to this experiment are stated as follows:

Ho: D = 0 No difference exists between the actual and predicted test effort.

Ha: D ≠ 0 Difference exists between the actual and predicted test effort.

The hypothesis is applied on the tested projects using the paired t-test. Paired t-test is a statistical

technique that is used to compare two samples that are correlated. It can be used if the sample sizes are

very small as long as the pairs are not reliably different.

In this context, the paired t-test is applied to compare between the actual and predicted test effort. The

formula used for the paired t-test with n-1 degrees of freedom is:

t = d √ n

 S

where d is the mean difference between two samples, S is the standard deviation of differences, and n is

the sample size.

The level of significance considered is 95 percent likelihood (α = .05) that a Type I error is not made.

Trade-off for choosing a higher level of significance is that it will take much stronger statistical evidence to

ever reject the null hypothesis. The outcome of null hypothesis is reject if the computed value of paired

t-test is greater than or equal to +2.015 or less than or equal to −2.015 else it is accept. The collected data,

actual and predicted STSP test effort of tested fifteen projects are applied on paired t-test formula. The

value obtained is 0.9672. Since the t value obtained from paired t-test formula is less than the +2.015 value,

the null hypothesis is accepted. There is no significant difference between the actual and predicted STSP

test effort. Thus, the effort can be predicted at the early analysis phase if the use case model is complete.

6. Conclusions and Future Work

This paper proposed a new system test size estimation method at the analysis phase namely System Test

Size Points for object oriented software. This method is based on the use case model during the analysis

phase. Further, it adapts the IFPUG standard, FPA to the use case model for estimation, in contrast to the

existing works, which follow different complexity factors to determine the weightage. The use case diagram

is converted into a use case graph, and based on the three different types of edges in the graph, the

alternatives are derived to identify the relevant components for estimation from the use case model. After

applying these components, complexity for these estimation components was derived by assigning

weightages to the various parameters following the appropriate FPA complexity tables. Both STSP and the

UCMFP were evaluated for the fifteen projects developed by undergraduate students in our department

software engineering laboratory. Leave one out cross validation technique was used for training. The

relationship between the STSP test effort and UCMFP development effort was derived through linear

regression method. The derived linear regression equation was tested on the remaining project to evaluate

the accuracy of the system test size estimation. Mean error rate on the tested projects was found to be

1.2629. Hypothesis testing proved that no significant difference exists between the actual and predicted

test effort. The limitation of this approach is that currently it has been tested only with a few projects. The

validation can be further strengthened by testing with more number of projects. This work also can be

extended to measure the testability at the analysis phase of software life cycle.

727 Volume 10, Number 6, June 2015

Journal of Software

Appendix

Appendix A. Calculation Of Convention Factors

Project # # of Use cases UCMFP(FP) Actual development effort(hrs)
P1 13 83.46 30
P2 13 118.77 36
P3 16 116.63 36
P4 1 110.21 36
P5 11 82.39 33
P6 10 87.74 27
P7 11 98.44 33
P8 11 107 33
P9 12 104.86 30

P10 10 83.46 33
P11 14 113.42 36
P12 13 104.86 30
P13 12 90.95 27
P14 10 87.74 30
P15 12 105.93 36

Mean 99.724 32.4
 99.724 FP = 32.4 man-hours

 1 FP = 32.4 man-hours / 99.724

 = 0.3249 man-hours

The developmental convention factor, 1 FP = 0.3249 man-hours is considered for developmental effort

calculation. According to the thumb-rule used in the industry, the system testing convention factor is half

of the development convention factor. Based on this, the system testing convention factor considered is 1

FP = 0.3249/2 = 0.1625 man-hours.

References

[1] Chamundeswari A., & Babu, C., (2013). Developmental size estimation for object oriented software based on

analysis model. International Journal of Software Engineering and Knowledge Engineering, 23(3), 289-308.

[2] Albrecht, A., (1979). Measuring application development productivity. Proceedings of the IBM Application

Development Symposium (pp. 83-92).

[3] Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S., & Maegawa, Y. (2004). Estimating effort by use case

points:method, tool and case study. Proceedings of the Sixth International Symposium on Software Metrics

(pp. 292–299).

[4] Cockburn, A., (2001). Writing effective use cases. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

[5] Veenendaal, E. V., & Dekkers, T. (1999). Test point Analysis: A Method for Test Estimation.

[6] Nageswaran, S. (2001). Test effort estimation using use case points. Quality Week, 1–6.

[7] Baudry, B., & Traon., Y. L. (2005). Measuring design testability of a UML class diagram. Journal of

Information and Software Technology, 859–879.

[8] Aranha, E., & Borba., P. (2007). An estimation model for test execution effort. Proceedings of the

Proceedings of the First International Symposium on Empirical Software Engineering and Measurement (pp.

107–116).

[9] Xiaochun, Z., Bo, Z., Fan, W., Yi, Q., & Lu, C., (2008). Estimate test execution effort at an early stage: An

empirical study. Proceedings of the IEEE International Conference on Cyberworlds (pp. 195–200).

[10] Ashish, S., & Dharmender, S. K., (2012). Applying requirement based complexity for the estimation of

software development and testing effort. ACM SIGSOFT Software Engineering Notes, 37(1), 393-415.

[11] Almeida, E. R. C., Abreu, B. T. D., & Moraes, R., (2009). An alternative approach to test effort estimation based

on use cases. Proceedings of the International Conference on Software Testing Verification and Validation (pp.

279 – 288).

728 Volume 10, Number 6, June 2015

Journal of Software

[12] Zhou, W., & Liu, Q. (2010). Extended class point approach of size estimation for OO product. Proceedings of

the International Conference on Computer Engineering and Technology (pp. 117-122).

[13] McCabe, T. J., (1996). A complexity measure. Proceedings of the IEEE Transactions on Software Engineering,

2(4), 308-320.

[14] Kushwaha D. S., & Misra, A. K. (2008). Software test effort estimation. ACM SIGSOFT Software Engineering

Notes, 33(3).

[15] Ashish, S., & Dharmender, S. K. (2011). A metric suite for early estimation of software testing effort using

requirement engineering document and its validation. Proceedings of the IEEE Second International

Conference on Computer and Communication Technology (pp. 373-378).

[16] Anderson, R. D., Sweeney, D. J., & Williams, T. A. (2004). Statistics for Business and Economics (9th ed.),

Mason, OH: South-Western College Publishing.

Chamundeswari Arumugam received her B.E. degree in computer science and engineering

from Dr. M.G.R. Engineering College, affiliated to Madras University, Chennai, India in 1992. She

received her M.E. degree in software engineering from College of Engineering, Anna University,

Chennai, India, in 2002. She completed her Ph.D. degree in in the area of software estimation

from Anna University, Chennai, India, in 2013.

 She has published many papers in international conference and journals. Her current

research interests include software estimation, software testing, and cloud computing, etc. Now she is a

professor at Sri Siva Subramaniya College of Engineering, India. She is a life member of Computer Society of India

(CSI) and Indian Society for Technical Education (ISTE).

Chitra Babu is a professor and the head of the Department of Computer Science, SSN College of

Engineering, Chennai. She received her PhD in computer science from IIT, Madras, Chennai and

M.S. in CIS from the Ohio State University, USA. Her research interests include software

engineering, service oriented architecture and cloud computing. She has graduated two PhD

scholars and is currently guiding four PhD research scholars.

 She has published several research papers in international journals as well as conferences.

She has served as a technical program committee member in various international conferences. She is a member

of ACM, IEEE, CSI and ISTE.

Author’s formal
photo

Author’s formal
photo

729 Volume 10, Number 6, June 2015

Journal of Software

