
Software Performance Evaluation Utilizing UML
Specification and SRN Model and Their Formal

Representation

Razib Hayat Khan*, Poul E. Heegaard

Norwegian University of Science & Technology (NTNU), Trondheim, Norway.

* Corresponding author. Tel.: +4745578010, email: rkhan@alumni.ntnu.no.
Manuscript submitted March 8, 2014; accepted October 12, 2014.
doi: 10.17706/jsw.10.5.499-523

Abstract: Performance assessment should be included in the software development process to ensure the

quality of the software in operation. Hence, this paper introduces a performance modeling framework for a

distributed software system that proposes a transformation process from a high level Unified Modeling

Language (UML) notation to a Stochastic Reward Net (SRN) model. The model is solved for relevant

performance metrics. In order to capture the system dynamics through our modeling framework, we

outline a specification style that focuses on the UML collaboration and activity as reusable specification

building blocks, while UML deployment diagram identifies the physical components of the system and the

assignment of software artifacts to the identified system components. Efficient deployment mapping of

software components on the available physical resources of the system is investigated by deriving the cost

function. The UML specification presented in this work facilitates to delineate the complete behavior of the

system components according to the functionalities they offer and has been utilized as input for model

transformation. The paper describes the mapping rules for defining the transformation process from the

UML model to the SRN model. In addition, the tool support of the framework is introduced that ensures

automatic translation from UML to SRN model and evaluation of the SRN model. The applicability of our

framework is demonstrated in the context of performance modeling of distributed systems.

Key words: Performance, reusability, service deployment, UML, SRN.

1. Introduction

The design and implementation of distributed systems and services are always intricate endeavors and

complex tasks (The terms “system” and “service” are used interchangeably in this paper). Systems consist

of logical components that interact and are deployed in a physical, resource-constrained infrastructure.

Quantitative analysis determines whether a system achieves its non-functional properties based on the

functional behavior that is mapped onto a physical, resource-constrained infrastructure. Quantitative

analysis is realized by conducting a performance evaluation of the distributed system. It is evident that a

successful development process for a distributed system is not guided solely by the perfect modeling and

implementation of such a system. This process is also supported by the early assessment of performance-

related factors, which helps developers to reveal any bottleneck in the modeling, design, and

implementation of a distributed system that can jeopardize meeting end-user expectations. This, in turn,

reduces the cost of making any modification of the system architecture once the system is built. In the

Journal of Software

499 Volume 10, Number 5, May 2015

worst case, this modification might require restarting the development process from the beginning.

However, the perfect modeling of the system functional behavior is a great concern at the early stage of the

development process for the acceptable evaluation of a system performance. Being able to assess the

performance of a distributed system at an early stage in the development process is considered to be a

matter of great importance. However, this is a considerable challenge that includes the following:

 Precise and formally correct description of the system functional behavior, even at the early stage

 Representation of the physical infrastructure that the system is expected to be executed on, including

the resource constraints

 Non-functional attributes of the system, including acceptable thresholds (e.g., given as QoS parameters

in a Service Level Agreement (SLA))

 Knowledge of the specific system complexity and domain, with the expected usage pattern,

deployment strategy, operational issues, environmental influences, and other related factors

 Selection of an approach for performance evaluation to produce pertinent results in accordance with

the real system behavior

In order to develop a framework that addresses these challenges, we need the following:

 Modeling functional behavior in a manner that can be combined with the deployment and enables

scalable, automated translation into a model that can assess the performance of a distributed system

 Non-functional properties that reflect the performance attributes of the system

 Physical resource constraints to capture the effect of different deployment strategies

 Performance evaluation approach to uncover meaningful evaluation results when the real system does

not exist

Considering the above-mentioned factors, the general structure of the performance modeling framework

for a distributed system is illustrated in Fig. 1 [1]. The rounded rectangle in the figure represents

operational steps, whereas the square boxes represent input/output data. The inputs for the automated

model transformation process are as follows:

 A system or service functional behavior

 Information of a system execution environment

 Non-functional parameters

The model representations of the functional behavior, physical platform, and non-functional properties

are combined to form annotated models. Then, a given deployment of the service components onto the

currently available physical resources (assumed static throughout the evaluation) is added, using

annotated models. Finally, this deployment specification is automatically translated into a performance

evaluation model and the performance of the system can be assessed. When using the framework given in

Fig. 1, several feedback loops will exist, depending on the objective of the case study [1]. Furthermore, the

modeling process is supported by a set of tools, including Arctis and Symbolic Hierarchical Automated

Reliability/Performance Evaluator (SHARPE) with the incremental model checking facility. Arctis is used

for specifying the system functional behavior [2]. The evaluation of the performance models generated by

the framework is achieved using SHARPE [3].

Numerous efforts have been considered so far to develop a performance model from the system design

specification. Lopez-Grao et al. proposed a conversion method where annotated UML activity diagram is

formalized using generalized stochastic petrinet model [4]. In Ref. [5], the authors presented an overview of

their aspect-oriented Formal Design Analysis Framework (FDAF) and how it can be used to design and

analyze performance properties. In Ref. [6], the author experienced annotating UML class diagrams with

fragments of the Object-Z specification language. Another approach is proposed by IBM where the Object

Constraint Language (OCL) [7] is used as a standard formal specification language to formalize UML

Journal of Software

500 Volume 10, Number 5, May 2015

diagrams. In Ref. [8], the author proposed Software/Hardware Engineering (SHE) method that enables

constructing formal executable models based on the expressive modeling Parallel Object-Oriented

Specification Language (POOSL). The related works presented here still lack of a complete formal semantics

and capabilities to prove the properties and refinements as well as fails to provide the formal

representation of concurrent activities. Some other efforts have been taken to outline formal definition of

UML models and mostly the works are based on the UML statechart diagram and sequence diagram [9] -

[12]. UML activity diagram is not thoroughly investigated to generate a performance model for software

performance analysis except some of the works in [5], [13], [14]. Moreover, several tools exist in this regard

to generate a performance model from UML [15] - [19]. ArgoUML is a well established UML modeling tool

with no support of generating performance model [15]. UML-Performance Simulator (UML-PSI) is a

software performance evaluation tool based on the process-oriented simulation [16]. PERMABASE uses

UML class, sequence, and deployment diagram to generate performance model [17]. Protocol Software

Performance Engineering using XMI (proSPEX) is a performance modeling tool for the design and

performance analysis of communication protocols specified with UML [18]. Performance by Unified Model

Analysis (PUMA) provides a unified interface between different kinds of design information and different

kinds of performance models, for example - markov models, Stochastic Petri Nets (SPN), process algebras,

queues, and layered queues [19]. Among all the cited tools, only PUMA has the support of generating SPN

model. Our model semantics and supported diagrams are different than the above mentioned framework

and also our approach supports the model checking facility.

Fig. 1. General structure of the performance and performability framework [1].

The objective of this paper is to provide an extensive modeling framework that offers an automatic

transformation process from system specification models to performance evaluation models for generating

the performance result of the systems at the early stage of the development process. The transformation

must be scalable and efficient in such a way that it can hide the intricate system details. The main focus of

this paper is on the framework shown in Fig. 1, mostly without the feedback loops [1]. The paper is

organized as follows: Section 2 delineates the overview of the framework, Section 3 describes the

formalization of UML model, Section 4 defines the tool support of our framework, Section 5 explains the

case study, and Section 6 delineates the conclusion with future directions.

2. Overview of the Framework

2.1. Service Functional Behavior

We adopt a model-driven approach, where the functional behavior of service is specified using UML,

which is a universally used modeling specification language that is widely accepted by the scientific

community [20]. UML provides a set of diagrams that facilitates illustration of system behavior from

Journal of Software

501 Volume 10, Number 5, May 2015

different viewpoints and from different detail levels. UML collaboration is utilized as the main specification

unit to define the service functional behavior. The service components are defined as collaboration roles

and the interactions among the collaboration roles are specified by the collaboration diagram. The UML

collaboration diagram that is mentioned in our work is purely structural. That means the collaboration

diagram defines the structure of the service specification as combination of service components and the

necessary interactions among them. In particular, we model collaboration in the form of encapsulated

building blocks in a self-contained way that can easily be composed with each other [21]. In particular,

capturing the properties of the system into collaborative building blocks will allow system developers to

reuse those building blocks. This, in turn, makes the developer’s tasks easier and faster by removing the

need for the system developer to be an expert in all domains of distributed systems. The reusability of

encapsulated collaborative building blocks provides tremendous benefits to delineate system functional

behavior such as the following:

 When the collaborative building block will be formed in a self-contained way, the system developers

can just reuse them to build the system without dealing inner complexities

 Collaborative building blocks might be combined into more comprehensive services. This means that

new services can be developed combining existing building blocks rather than starting the

development process from scratch. This, in turn, increases the productivity in accordance with cost

reduction.

 Modeling system functional behavior by composing the basic specification unit thus reflects the

subsystem properties in the resulting system behavior. Thus, the system overall functional behavior

will be consistent with the behavior of its components.

As the service specification later on will be transformed into a performance model, provided only the

structural specification of the service is not sufficient. This transformation requires a way to define the

behavioral aspects of the collaboration to know the exact functional behavior of the service components. In

order to remove this shortcoming, we use UML activity diagram. The internal behavior of a building block is

described by UML activity. It is declared as the classifier behavior of the collaboration and has one activity

partition for each collaboration role in the structural description.

For delineating the detailed behavior of the system and to know about how the different events of the

collaborative building blocks are coupled, UML collaborations and activities are used to complement each

other. UML collaborations focus on the role binding and structural aspects, whereas the UML activities

complement this by also covering the behavioral aspect [22]. For this purpose, call behavior actions are

used. Collaboration is represented by call behavior action referring to the respective activity of building

blocks. Each call behavior action represents an instance of a building block. For each activity parameter

node of the referred activity, a call behavior action declares a corresponding pin. Pins have the same

symbol as the activity parameter nodes to represent them on the frame of a call behavior action. Arbitrary

logic between pins may be used to synchronize the building block events and transfer data between them.

By connecting the individual input and output pins of the call behavior actions, the events occurring in

collaborations can be coupled with each other.

2.2. System Physical Platform

Specification of the system physical platform is incorporated into our modeling framework by the use of

a UML deployment diagram. A UML deployment diagram is used in our modeling framework to define the

execution architecture of the system by identifying the system physical components, the connections

between components, and the assignment of software artifacts to those identified physical components

[20]. Service delivered by the system is defined by the joint behavior of the system components, which are

Journal of Software

502 Volume 10, Number 5, May 2015

physically distributed. This, in turn, aids in exposing the direct mapping between the software components

to the system physical components to exhibit the probable deployment of the service.

2.3. System Non-functional Properties

Specification of system non-functional properties is included in our modeling framework using a UML

profile. Profiles in UML are defined using stereotypes and tag definitions that are applied to specific model

elements, such as classes, attributes, operations, and activities. A profile is a collection of such extensions

that collectively customize the UML for a particular domain or platform [23]. Stereotypes permit us to map

model elements to the semantics of an analysis domain and provide values for properties that are

necessary to conduct the analysis. Specific tagged values are also applied according to the UML profile.

Tagged values are a type of value slot associated with the attributes of specific UML stereotypes [23], [24].

The significance of using UML profile is that it provides a common method of modeling both hardware and

software aspects to capture real-time properties of the system. It must be possible to construct UML models

that can be used to analyze and predict the salient real-time properties of a system. In particular, it is

important to be able to perform such analysis early in the development cycle. Moreover, Modelers should

be able to take advantage of different types of model analysis techniques without requiring a deep

understanding of the inner workings of those techniques. We use UML profile for MARTE – Modeling and

Analysis of Real-Time Embedded Systems for describing the non-functional properties of the system [4].

MARTE defines foundations for model-based descriptions of real-time and embedded systems. These core

concepts are then refined for both modeling and analyzing concerns [24]. The modeling part provides the

support required from specification to detailed design of real-time and embedded characteristics of

systems. MARTE also concerns model-based analysis. Hence, it provides facilities to annotate models with

information required to perform specific analysis. The stereotypes and tagged values according to the

MARTE profile used in this paper are defined below [23], [24]:

 SaStep: saStep is a type of step that begins and ends when decisions about the allocation of system

resources are made.

 ComputingResource: A ComputingResource represents either virtual or physical processing devices

capable of storing and executing program code. Hence, its fundamental function is to compute.

 Scheduler: Scheduler is a stereotype that brings access to a resource following a certain scheduling

policy mentioned by the tagged value schedPolicy.

 SaSharedResource: SaSharedResource is a type of shared resources that are dynamically allocated by

means of an access policy.

 GaExecHost: GaExecHost can be any device that executes behavior, including storage and peripheral

devices.

 schedPolicy: schedPolicy defines certain scheduling policies based on which access of system physical

resources can be conducted.

 deadline: deadline defines the maximum time limits for the completion of the particular execution

segment.

 resmult: resmult indicates the multiplicity of a resource. It may specify the maximum number of

instances of the resource considered as available.

 capacity: capacity defines the number of permissible concurrent users.

2.4. Annotated Model

UML is used to specify the service functional behavior by identifying the software components and

interactions between them. UML reveals the relations between software components with available

Journal of Software

503 Volume 10, Number 5, May 2015

physical resources in the execution environment. However, one shortcoming of UML is not having the

capability to incorporate non-functional parameters, which is vital for conducting the quantitative analysis

of the system. This requires a mechanism for providing a specification to make quantitative prediction

regarding non-functional properties of the system, taking into account both software and hardware

characteristics. Thus, we use MARTE specification style to generate annotated UML model, which provides

several stereotypes and tagged values (see Section 2.3) for incorporating performance-related parameters

into the service specification model defined by the UML [23]. Examples of annotated model have been given

in the case study section (see Section 5).

2.5. Deployment Mapping

An efficient allocation of the service components over the physical infrastructure (execution

environment) is crucial for achieving good performance. Given a static set of available resources in a fixed

topology, the deployment strategy needs to consider the following:

 Overhead cost between two communicating service components. It is assumed that two components

on the same physical component have lower overhead than two service components that are not co-

located.

 Resource constraints (capacities) of the physical components constituting the infrastructure, such as

link capacity, memory storage

 Non-functional properties (attributes with corresponding thresholds), such as processing capacity of

the distributed node

In real systems, this task is even more complex, as the infrastructure might alter available system

resources and topology dynamically. This alteration occurs due to events such as failures or overload that

might significantly delay or block the operation of certain components. The objective of the deployment

strategies is to find the best possible service component mapping on the currently available physical

resources, satisfying all the non-functional requirements [25]. The resulting deployment mapping has a

large influence on the QoS that will be provided by the system. In this paper, we do not develop optimal

deployment strategies but rather gives a framework for the performance of a given deployment that can be

specified and assessed.

We model the system as a collection of N interconnected physical nodes. Our objective is to find a

deployment mapping for this execution environment for a set of service components that comprises the

service [24]. Deployment mapping M is defined as [M=(C →N)], between a number of service component

instances {c1, c2, …} ϵ C (captured by collaboration diagram), onto physical nodes {n1, n2, ….} ϵ N (captured

by UML deployment diagram). In this setting, the service components communicate with each other via a

set of collaborations {k1, k2, ….} ϵ K. Hence, a collaboration kj may exist between two components ca and cb.

Considering the above description, we focus on the deployment mapping assessment of the service

components to the available physical resources by considering several non-functional properties. Assessing

the deployment mapping of the service components is realized by defining cost functions, which is a

function that expresses the utility of deployment mapping of the service components to the physical

resources with their constraints and capabilities to satisfy the non-functional properties of the system. We

consider three types of requirements in the deployment problem, where the term cost is introduced to

capture several non-functional requirements those are later on utilized to conduct performance evaluation

of the systems [24]:

 Service components have execution costs

 Collaborations have communication costs and costs for execution of background process, which are

known as overhead costs

Journal of Software

504 Volume 10, Number 5, May 2015

 Some of the service components can be restricted in the deployment mapping to specific physical

nodes, which are called bound components

Furthermore, we observe the processing cost that physical nodes impose, while hosting the service

components and also the target balancing of the cost among the physical nodes available in the network.

Communication costs are considered if the collaboration between two service components occurs remotely,

i.e., it occurs between two physical nodes [26], [24]. In other words, if two service components are placed

onto the same physical node, the communication cost between them will be ignored. This holds for the case

study that is conducted in this paper. This is not generally true, and it is not a limiting factor of our

framework. The cost for execution of the background process for conducting the communication between

the collaboration roles is always considerable no matter whether the collaboration roles are deployed on

the same or different physical nodes. Using the above specified input, the deployment logic provides an

efficient deployment architecture taking into account the QoS requirements for the specified services. We

then define the objective of the deployment logic as obtaining an efficient (low-cost, if possible optimum)

mapping of the service components onto the physical nodes that satisfies the requirements in a reasonable

time. The deployment logic is mentioned by the cost function F(M) [24]. The cost function should reflect the

execution, communication, and overhead cost. Ideally, the service turnaround time should be minimized,

which, in turn, maximizes the utilization of system resources while minimizing the communication between

processing nodes. As a result, a high system throughput can be accomplished taking into account the

expected execution and inter-node communication requirements of the service components on the given

hardware architecture [27]. The cost function F(M) is mainly influenced by our method of service definition.

Service is defined in our approach as a collaboration of E service components labeled as ci (where i = 1,….,E)

and K collaborations labeled as kj, (where j = 1,…,K). In addition, the following labeling methods are used

[24]:

 The execution cost between the service components is labeled, ic
f

 The communication cost between the service components is labeled, jk
f

 The cost for execution of the background process for conducting the communication between the

service components (overhead cost) is labeled, jB
f

We will assess the quality of the solution of equally distributed cost among the processing nodes and the

lowest cost possible, while taking into account the following:

 execution cost ic
f

, i = 1,….,E

 communication cost jk
f

, j = 1,….,K

 overhead cost jB
f

, j = 1,….,K

ic
f ,

jk
f ,and

jB
f are derived from the service specification, and thus, the total offered execution cost for the

given service can be calculated as
| |

1

E

i ic
f

 [24]. Hence, the average load Ta becomes [25]:

| |

1

1

| |

E

a i ic
f

X
 T (1)

where X = the available total nodes in a network N where the service is deployed.

Journal of Software

505 Volume 10, Number 5, May 2015

To account for the communication cost
jk

f of the collaboration kj in the service, the function
0
(,)q cM is

defined first [25]:

0
, { | }q c n N c n M M (2)

This means that
0
(,)q cM returns the physical node n from a set of physical nodes N available in the

network that hosts components in the list mapping M [24]. Let collaboration 1 1 2
,k c c and set of physical

nodes
1 2

(,)N n n taking into account the following:

 The communication cost of k1 is 0 if components c1 and c2 are co-located, i.e., 0 1 0 2
(,) (,)q c q cM M

 (if

M = ({c1, c2→ n1}) or ({c1, c2→ n2})).

 The cost is jk
f

if the service components are otherwise co-located (i.e., the collaboration is remote) (if

M = ({c1→ n1} {c2→ n2}) or ({c1→ n2} {c2→ n1})).

 Using an indicator function I(x), this is expressed as 0 1 0 2
((,) (,)) 1I q c q c M M

, if the collaboration is

remote and 0 otherwise.

 To determine which collaboration kj is remote, the set of mapping M is used. Given the indicator

function, the overall communication cost of service, FK(M), is the sum [24], [25]:

| |

K 0 ,1 0 ,21
F ((,) (,))

K

j jj
jk

fI q k q k

 M M M

Given a mapping M = {mn} (where mn is the set of service components at physical node n) the total load

can be obtained as ˆ
i

n c m cni
fl

 [24]. Furthermore, the overall cost function F(M) becomes [24], [25]

(where Ij = 1, if kj external or 0 if kj internal to a node):

| | | |

K1 1

ˆF() | | F
X K

n an j jB
fl

 M MT

The absolute value ˆ| |
n a

l T is used to penalize the deviation from the desired average load per physical

node.

2.6. Model Transformation

In order to conduct the early assessment of performance modeling, the service functional specification

defined by the UML is transformed into analytical model. The reason for choosing analytical model is that

the analytical models are attractive because of the existence of well established formulas and the

availability of analysis tools for conducting quantitative system evaluation. It is very efficient with respect

to the execution time and requirements of computational resources to evaluate the analytical model using

evaluation tools. Nevertheless, a critical challenge with the analytical model is restrictive modeling

assumptions that sometimes hinder capturing the real behavior of the system. This challenge can be met by

the use of simulation method under less restrictive assumptions. However, model evaluation using the

analytical approach becomes complex when the evaluation needs to be conducted at an early stage of the

system development process. There might be a chance of producing erroneous results during the early

assessment, which can result in the incorrect development and implementation of the whole system. The

solution to the problem lies in the correct representation of the modeling formalisms of the system

functional behavior and conducting the model transformation accurately to generate the analytical model.

(3)

(4)

Journal of Software

506 Volume 10, Number 5, May 2015

Conducting the model transformation in a correct, automated, and scalable way requires developing

reusable model transformation rules that can handle the model transformation process of large and

multifaceted systems. The reusability of model transformation rules makes the model transformation

process easier and faster for the system developers who will just apply the rules for model transformation

without understanding the inner complexity.

In particular, we will generate SRN models as analytical models from service functional specification. The

reason behind focusing on the SRN model is due to having some prominent and interesting properties such

as - priorities assignment in transitions, presence of guard functions for enabling transitions that can use

entire state of the net rather than a particular state, marking dependent arc multiplicity that can change the

structure of the net, marking dependent firing rates, and reward rates defined at the net level [28]. The SRN

model is described formally by the 6-tuple {Φ, T, A, TT, Ml, m0} in the following manner [24]:

Φ = Finite set of the place

T = Finite set of the transition

A {Φ × T} {T × Φ} is a set of the arc connecting Φ and T

TT: T → {Timed (time>0), Immediate (time = 0)} specifies the type of the each transition.

Ml: A→ {1, 2, 3,…} is the multiplicity associated with the arcs in A.

m: Φ → {0, 1, 2,..} is the marking that denotes the number of tokens for each place in Φ. The initial

marking is denoted as m0.

In order to keep the service specification model and analytical model consistent with each other, the

process of model transformation is driven by the model transformation rules, which provide an efficient,

scalable, and automated approach to conduct model transformation for large, complex, and multifaceted

distributed systems. By considering the semantic definition of the SRN models, we provide the model

transformation rules to generate performance models. Rules for generating performance SRN models can

be divided into two categories:

 Rule 1: Deployment mapping of a collaboration role

 Rule 2: Deployment mapping of collaboration

Rule 1: Deployment mapping of a collaboration role: Rule 1 addresses the generation of an SRN

model of a collaboration role with deployment mapping, which is shown in Fig. 2 (where Pi = Processing of

ith collaboration role and di = Processing performed of the ith collaboration role) [1]. Mainly, rule 1 has been

utilized to model the load of a physical node. For each physical node, there must be an upper bound on the

execution of the process in parallel with that node. The execution of the process is only possible when the

node has the capacity to do so. When the collaboration role of a building block deploys onto a physical node,

the equivalent SRN model is illustrated in Fig. 2 [1]. Initially, place PPn contains q (where integer q > 0)

tokens, which define the upper bound on the execution of the process in parallel with a physical node n, and

the timed transition do will fire (which symbolizes the execution of the process i) only when there is a

token available in both the place Pi and PPn. The place PPn will again receive its token back after firing of the

timed transition do, indicating that the node is ready to execute other processes deployed on that node.

When the collaboration role of a building block deploys onto a physical node, the equivalent SRN model is

represented by the 6-tuple in the following manner:

 Φ = {Pi, di, PPn}

 T= {do, exit}

 A = {{(Pi × do) (do × di)}, {(PPn × do) (do × PPn)}, {(di × exit) (exit × Pi)}}

 TT = (do → Timed, exit → Immediate)

 Ml= {(Pi × do) →1, (do × di) →1, (PPn × do) →1, (do × PPn) →1(di × exit) →1, (exit × Pi)→1}

 mo = {(Pi→1}, (di →0), (PPn →q)}

Journal of Software

507 Volume 10, Number 5, May 2015

Fig. 2. Model transformation rule 1 [1].

Fig. 3. Model transformation rule 2 [1].

Rule 2: Deployment mapping of collaboration: Rule 2 addresses the generation of an SRN model of

collaboration, which is illustrated in Fig. 3 [1]. The collaboration connects only two collaboration roles in

bidirectional manner, where roles are deployed on the same or different physical nodes. When

collaboration roles i and j are deployed on the same physical node n, the timed transition tij in the SRN

model is only realized by the overhead cost, as in this case, communication cost = 0. When collaboration

roles i and j are deployed on the different physical nodes n and m, the timed transition tij in the SRN model

is realized by both the overhead cost and communication cost.

The SRN model of a collaboration, where collaboration connects only two collaboration roles in a

bidirectional manner and the roles are deployed on the same physical node can be represented by the 6-

tuple in the following way:

Φ = {Pi, di, Pj, dj PPn}

T= {doi, doj,tij}

A= {(Pi × doi) (doi × di), (PPn × doi) (doi × PPn), (di × tij) (tij × Pi), (Pj × doj) (doj × dj), (PPn × doj)

 (doj × PPn), (dj × tij) (tij × Pj)}

TT = {(doi, doj, tij) → Timed}

Journal of Software

508 Volume 10, Number 5, May 2015

Ml= {((Pi × doi), (doi × di), (PPn × doi), (doi × PPn), (di × tij), (tij × Pi), (Pj × doj), (doj × dj), (PPn × doj), (doj ×

PPn), (dj × tij), (tij × Pj)) →1}

mo = {(Pi→1),(di →0), (Pj→1) (dj →0), (PPn →q)}

Similar to the above, the UML model of collaboration can be represented by the 6-tuple, where

collaboration connects only two collaboration roles in bidirectional way and the roles are deployed on the

different physical nodes.

Table 1. Transformation Rules of UML Nodes [1]

UML Node SRN model

Furthermore, we present the transformation rules in Table 1 to generate SRN models for some of the

components of the activity diagram that might have been presented in collaborative building blocks [1].

Regarding the decision node, the activation of outgoing flow is achieved based on a condition that means

the decision is not random. Therefore, we attach a guard function with immediate or timed transition in the

equivalent SRN model of the decision node during the model transformation. The guard function is

associated with a condition based on which the activation of the transition will be permitted. For example,

immediate transition tyes in Table 1 is attached with a guard function [gr] in the SRN model, which will

capture the same condition to be activated as the outgoing flow indicated as “yes” in the activity diagram. If

operation

operation1 operation2

op1 op2

op

operation2

operation1

op1 op2

T

t1 t2

operation

operation1 operation2

op

op1 op2

yes no tno
tyes
[gr]

operation

operation1 operation2

operation

operation1 operation2

Decision node

Merge node

Timer node

Join node

 Fork node

op1 op2

op

op

op1 op2

t

t

Journal of Software

509 Volume 10, Number 5, May 2015

the condition of the guard function [gr] is fulfilled, the attached transition will be activated. In the same

manner, it is also possible to attach a guard function with the immediate transition tno instead of transition

tyes and to conduct the same process for the activation of outgoing flow.

3. Formalizing UML Specification Style Using CTLA

The UML specification style introduced in this paper has been utilized to define the exact and complete

behavior of the service specification that focuses on the functionalities they offer and will be used as an

input model for the model transformation process. Though UML provides comprehensive architectural

modeling capabilities, it lacks the ability to present the modeling specifications formally and does not

convey formal semantics or syntax. As a result, we delineate the precise semantics of UML collaborations,

activities, and deployment by formalizing the concept in the temporal logic compositional Temporal Logic

of Actions (cTLA) style, which is defined as cTLA/c [29]. This is a variant of TLA which provides couplings

based on jointly executed transitions enabling to glue interacting constraints nicely. Moreover, cTLA makes

the description of state transition systems in a process-like style [29]. The motivation behind expressing

the semantics using cTLA is to describe various forms of structures and actions through an assortment of

operators and techniques, which correspond superbly with UML collaboration, activity, and deployment

diagrams.

The concept of UML collaboration introduced in this work is rather structural and describes a structure

of collaborating elements. To illustrate the structural concept of the collaboration, collaborations are

mapped into a cTLA/c process, where the process is realized between the collaboration roles internal to the

collaborations. In [29], the detailed process for formalizing the UML collaboration specification is

introduced, where the focus was not only to specify the behavior internally to the collaboration but also to

define the mechanism to couple the collaborations with others during the composition if necessary.

UML activities have been utilized to express the behavior of collaborations. UML collaboration is

complemented by an activity, which uses one separate activity partition for each collaboration role. In

terms of the cTLA/c, an activity partition corresponds to a collaboration role. The semantics of UML

activities are based on the Petri nets [21]. Thus, an activity essentially describes a state transition system,

with the token movements as the transitions and the placement of tokens within the graph as the states.

Consequently, the variables of a cTLA/c specification model the actual token placement on the activity,

while its actions specify the flow of tokens between states. Flows may cross partition borders. According to

the cTLA/c definition and as partitions are implemented by distributed components, flows moving between

partitions are modeled by communication buffers, while states assigned to activity nodes are represented

in cTLA/c by local variables. To define the semantics of activities using cTLA/c, we opted for an approach

that directly uses the mechanisms of cTLA. Illustration of some activity element types as separate cTLA

processes are given in [29], which help to understand the semantics of the activity elements. Moreover, the

production rules of cTLA actions for UML activities have been presented in [29] to produce the system

actions from the local process actions as a set of rules, so that each activity element can be defined

separately.

The concept of a UML deployment diagram is also structural and describes a structure of the execution

environment by identifying a system’s physical layout. It also specifies which pieces of service components

run on what pieces of physical nodes and how nodes are connected by communication paths. We use a

specific tuple class as an additional invariant that is also a part of the style cTLA/c to model UML

deployment [1].

The mapping process to demonstrate the correspondence between formalized UML diagram and SRN

model has been demonstrated in [1] which is beyond the scope of this paper.

Journal of Software

510 Volume 10, Number 5, May 2015

4. Tool Support of Our Framework

Tool support is an essential part of our modeling framework. A tool provides editing support and an

automated means of model transformation with the capability to verify the model. It also provides a faster

way of model development and evaluation. We have used two tools:

 Arctis for defining service functional behavior

 SHARPE for generating model evaluation result

The tools are tailored to serve their own purpose in this work, but the integration achieved between

these tools through our modeling framework performs a novel and complete task that spans from the

modeling of service functional behavior to the performance evaluation of that service.

The service specification models of our modeling framework, such as the UML collaboration and activity

diagram (described in Section 2.1), are generated using the Arctis tool [2]. Arctis focuses on the abstract,

reusable service specifications that are composed of UML collaborations and activities. It uses collaborative

building blocks as reusable specification units to provide the structural and behavioral aspects of the

service components. To support the construction of building blocks that consist of collaborations and

activities, Arctis offers special actions and wizards. Arctis provides an editor to specify services, which

allows the user to create collaborations from scratch or compose existing ones taken from a library to

create composite collaborations. Special actions are available to update each composite building block,

which require that the activities and their partitions as well as call behavior actions must be synchronized

with the collaboration. For example, Arctis automatically generates a corresponding activity for the

behavioral specification of the composition. For each collaboration role, an activity partition is created and

each collaboration is represented by a call behavior action with its pins. This skeleton is then completed

manually with activity flows and nodes that model the extra logic to couple the sub-collaborations. When a

building block is complete and syntactically correct, Arctis transforms the UML activity into TLA+, the

language for TLA, and initializes the model checker TLC [30]. TLC can verify a specification for various

temporal properties that are stated as theorems. For each activity, a set of theorems is automatically

generated, which claims certain properties to be maintained by activities in general. When TLC detects that

a theorem is violated, it produces an error trace displaying the state sequence that leads to the violation.

However, the automated model verification process with TLC is currently only applicable to UML

collaborations and activity diagrams, as missing plug-ins to generate UML deployment diagram and

incorporate non-functional parameters to annotate UML model for Arctis are under development.

SHARPE is a tool that accepts specifications of mathematical models and requests for model analysis [3].

It is a tool to specify and analyze performance, reliability, and performability models. It is a toolkit that

provides a specification language and solution methods for most of the commonly used model types. Non-

functional requirements of the distributed system can also be evaluated using SHARPE, such as response

time, throughput, job success probability, etc. The SHARPE tool specifies a SRN model using several

sections. First section specifies a place name and the initial number of tokens in the place. Second section

specifies a name for a timed transition, a transition type (ind if the transition rate is marking-independent

and dep if it is marking-dependent), a place name if and only if the rate is dependent, and a rate. Third

section specifies a name for an immediate transition, a transition type (ind if the transition weight is

marking-independent and dep if it is marking-dependent), a place name if and only if the weight is

dependent, and a weight. Fourth section specifies the arcs from places to transitions. The multiplicity

indicates the number of tokens that must be present in the place for the transition to fire. Section five

specifies the arcs from transitions to places. The multiplicity indicates the number of tokens that are

deposited in the place when the transition is fired. Section six specifies inhibitor arcs from places to

transitions. The multiplicity indicates how many tokens must be in place to inhibit the transition from firing.

Journal of Software

511 Volume 10, Number 5, May 2015

Section seven specifies the built in functions of SHARPE or user-defined functions that can be used to derive

result.

Although the Arctis and SHARPE tools have been utilized to describe service definitions using UML

collaboration and activity as well as model evaluations, the following steps of our modeling framework

have been developed:

 System physical platform using UML deployment diagram

 Deployment mapping

 Generation of annotated UML model

 Automated Model transformation

 Model validation for XML

The steps of the performance modeling framework, such as UML deployment diagram and deployment

mapping (see Section 2.2 and 2.5), and performance parameters incorporation into UML models (see

Section 2.4) are generated as XML documents. We have defined XML schema files for corresponding XML

documents. The XML schema file describes the structure of an XML document that is used to validate the

corresponding XML document to ensure that the XML data are in correct format and the XML document is

syntactically correct. Hence, erroneous data or typos in the XML document will be fixed during the XML

validation and inform users to correct the corresponding data. To ensure this claim, we have defined

several constraints and checks in the schema files.

5. Case Study

As a representative example, we consider two case scenarios to show the applicability of our

performance modeliWe agree to cancel your articleng framework.

5.1. Clustering of Modules

The first scenario is dealing with heuristically clustering of modules and assignment of clusters to nodes

[24], [26], [31]. Even though the scenario is artificial, it is complex enough to show the applicability of our

performance modeling framework. The problem is defined in our approach as a service of collaboration of

E = 10 components or collaboration roles (labeled C1,…,C10) to be deployed and K = 14 collaborations

between them illustrated in Fig. 4(a) [26]. We consider three types of requirements in this specification.

Besides the execution cost, communication cost and overhead cost, we have a restriction on components C2,

C7, and C9 regarding their location. They must be bound to nodes n2, n1, and n3 respectively [24]. The

internal behavior of the collaboration Ki of our example scenario is realized by the call behavior action

through the UML activity diagram shown in Fig. 5(b) [1]. The collaboration in Fig. 5(b) is the encapsulated

building block that will be stored in a library for later reuse. The detailed behavior of the collaboration role

C is realized through UML activity diagram demonstrated in Fig. 5(a) [1] which is mainly composed of the

collaborations demonstrated in Fig. 5(b). However, there is no behavior modeled in detail, only those

collaborations between processes deployed on different physical nodes. The UML collaboration diagram

can be modeled by the activity that may capture the detailed behavior but the level of details must be

selected with care in order for the model to scale while generating the performance model [24].

In this example, the target execution environment consists of only N = 3 identical, interconnected nodes

with a single provided property, namely processing power and with infinite communication capacities

depicted in Fig. 4(b) [1] [24]. The optimal deployment mapping can be observed in Table 2 [26]. The lowest

possible deployment cost, according to “(4)” is 17 + 100 + 70 = 187 [26], [31]. In order to annotate the UML

diagram in Fig. 4(b) and 5(a), we use the stereotypes SaStep, ComputingResource, and Scheduler, and the

tagged values execTime, deadline, and schedPolicy, which are already described in Section 2.4 [24].

Journal of Software

512 Volume 10, Number 5, May 2015

Collaboration Ki is associated with two instances of deadline (see Fig. 5(a)) as collaborations in the example

scenario are associated with two kinds of cost: communication cost and overhead cost [1].

Fig. 4(a). Collaborations and components [26] (b). Deployment diagram of example scenario [1].

Fig. 5(a). Detail behavior of collaborative building block (b). Internal behavior of collaboration [1].

Table 2. Optimal Deployment Mapping in the Example Scenario [26]

By considering the annotated UML model and the model transformation rules, the corresponding SRN

model of our example scenario is illustrated in Fig. 6 [24]. Fig. 6 sketches the resulting SRN model by

illustrating details of entire places and transitions, which is produced by applying the model transformation

rules (see Section 2.6) [24]. According to the transformation rules 1, each collaboration role is defined by

the two states Pi and di and the passing of token from state Pi to di is realized by the timed transition.

Initially, there will be a token from place P1 to P10. According to rule 1, in order to define the upper bound

Journal of Software

513 Volume 10, Number 5, May 2015

on the execution of the processes in parallel by a network node, we introduce three places PP1, PP2, and PP3

in the SRN model for the corresponding three physical nodes and initially, these three places will contain q

(Here, q = 1) tokens, where q will define the maximum number of the process that will be handled by a

physical node at particular time instant. To ensure the upper bound on the execution of the processes in

parallel of a network node n1, we introduce arcs from place PP1 to transitions t4, t7, and t8. That means

components C4, C7, and C8 can start their processing if there is token available in place PP1 as the firings of

transitions t4, t7, and t8 not only depend on the availability of the token in the places P4, P7, and P8 but also

depend on the availability of the token in the place PP1. Likewise, to ensure the upper bound on the

execution of the processes in parallel of network nodes n2 and n3, we introduce arcs from place PP2 to

transitions t2, t3, and t5 and from place PP3 to transitions t1, t6, t9, and t10. For generating the SRN model

from annotated UML model, firstly, we will consider the collaboration roles deploy on the processor node

n1, which are C4, C7, and C8 (see Table 2). Here, component C7 is connected with C4 and C8. The

communication cost between the components is 0 but still there is a cost for execution of the background

processes. So according to rule 2, after the completion of the state transitions from P7 to d7 (states of

component C7), from P4 to d4 (states of component C4) and from P8 to d8 (states of component C8) the states

d7, d4, and d7, d8 are connected by the timed transitions k8 and k9 to generate the SRN model. In the same

way, the SRN models for collaboration roles deployed on the processor nodes n2 and n3 have been

generated. In order to generate the system level SRN model, we need to combine the entire three SRN

models generated for three processor nodes by considering the interconnection among them. To compose

the SRN models of processor nodes n1 and n2, states d4 and d3 are connected by the timed transition k1 and

states d4 and d5 are connected by the timed transition k2 according to rule 2. Likewise, composition of the

SRN models of processor nodes n2 and n3, and processor nodes n1 and n3 has been achieved [24].

Fig. 6. SRN model of our example scenario [24].

The throughput calculation according to “(7)” (see Appendix A) for the different deployment mappings

including the optimal deployment mapping is shown in Table 3 [24]. The optimal deployment mapping

Journal of Software

514 Volume 10, Number 5, May 2015

presented in Table 3 also ensures the optimality in case of throughput calculation. Though we present here

the throughput calculation of some of the deployment mappings of the software artifacts the approach

presented in this work confirms the optimality in every case [24].

Table 3. Deployment Mapping in the Example Scenario Along with Throughput [24]

5.2. Taxi Control System

Another representative example has been considered, Taxi control system, where several taxis are

connected to a control centre and update their status (busy or free). The control centre accepts the tour

orders from clients via SMS or mobile call. The orders are processed by the call centre, which sends out tour

requests to the taxis. Fig. 7 illustrates the scenario as the UML collaboration [1]. Participants in the service

are represented by the collaboration roles taxi, control centre, and client. The control centre has a default

multiplicity of one, whereas there can be many taxis and clients in the system denoted by multiplicity

[1,…,*]. Between the roles, the collaborations denote the occurrence of the behavior: the taxi and control

centre are interacting with collaboration status update & tour request, and the control centre is cooperating

with the client by means of collaboration tour order & notify, whereas the interaction between the taxi and

client is realized by the collaboration start tour. The internal behavior of the collaborations status update &

tour request, tour order & notify, and start tour are demonstrated using UML activity, which are shown in

Fig. 8 [1]. The specifications for the collaborations are given as coherent, self-contained building blocks and

have one activity partition for each collaboration role.

Fig. 7. Collaborations and components in the taxi control system [1].

For composition of the building blocks to delineate the detailed behavior of the taxi control system,

activity parameter nodes are used that can be connected to other elements. For each activity parameter

node of the referred activity, a corresponding pin is declared. There are different types of pins (activity

parameter nodes) illustrated on the building blocks such as starting pin, streaming pin, and terminating pin.

The pins shown in Fig. 8 (resT, reqC, resC1, reqT, etc.) are all streaming pins, which pass tokens throughout

Journal of Software

515 Volume 10, Number 5, May 2015

the active phase of the building blocks and are used to connect the building blocks to delineate the detailed

behavior of the taxi control system [1]. The detailed behavior of the taxi control system is shown in Fig. 9

[1], which is mainly composed of the collaborations demonstrated in Fig. 8. When a new taxi arrives or a

busy taxi becomes free after completing the tour, the taxi performs a log-in operation into the system and

set that taxi status to free. Then, the control centre will be notified of the status update. The control centre

is responsible for adding the taxi in the free taxi queue. When there is a taxi available in the free taxi queue,

the control centre sends the tour order information to the free taxi if there is any pending tour order. After

receiving the tour order information, the taxi notifies the control centre of its acceptance of the request. The

control centre adds the taxi into the busy taxi pool and notifies the taxi about the changing of its status. The

taxi then performs the system log-off operation and checks the tour order to determine whether the client

is still waiting for a taxi or not. Based on the results given by the control centre, the taxi conducts the tour

and then again performs log-in operation into the system and changes its status. The control centre

receives notification about any client request. The control centre is responsible for adding the request in

the queue. After receiving a request from the client, there might be two possibilities in the control centre

(which is realized by the decision node dec): either the control centre looks for an available taxi, or the

request might be cutoff because of the number of client requests exceed the capacity of the control centre to

handle the client requests. If the control centre locates an available taxi, it notifies the user about the

availability of taxi, but the number of client requests will be cutoff if it exceeds the capacity of the control

centre. When a taxi is ready to conduct the tour and a client is waiting for the taxi, the taxi will start the tour.

When the tour finishes, the taxi becomes free and is then ready to pick up another client.

Fig. 8. Internal behavior of the collaboration using UML activity of taxi control system [1].

Journal of Software

516 Volume 10, Number 5, May 2015

Fig. 9. Detailed illustration of the service behavior using UML activity [1].

Fig. 10. Deployment diagram and deployment mapping of a taxi control system [1].

UML deployment diagram for the taxi control system is illustrated in Fig. 10 [1], where the system

components taxi and the user mobile device are connected with the control centre via a wireless

communication channel.

Annotation of the UML model for the taxi control system is illustrated in Fig. 9 and Fig. 10 [1]. In Fig. 9,

the annotated activity diagram is defined as follows: after being deployed in the execution environment,

communication between taxi and control centre is achieved in 50 sec, whereas the overhead time to

 <<saStep>>

{deadline1 = 50, s},

{deadline2 = 5, s}

{schedPolicy = FIFO}

<<Scheduler>>

{resMult = 1}

<<GaExecHost>>

{capacity = 20}

<<SaSharedResource>>

Taxi
Control

centre
Mobile

device

Control

centre

str: status

update & tour

request

st: start tour

Taxi

[1…*]
Client

[1…*]

trn: tour order

& notify

Journal of Software

517 Volume 10, Number 5, May 2015

conduct this communication is 5 sec, which is annotated using the stereotype SaStep and two instances of

the tagged value deadline (according to the UML profile for MARTE) – deadline1 defines the communication

time, and deadline2 is used for overhead time. The communication between the client and the control centre

and the communication between the taxi and the client can be annotated in the same manner as above.

Annotation of UML deployment diagram of the taxi control system according to the MARTE profile is

demonstrated in Fig. 10. The control centre is connected with the client and taxi using a wireless

communication channel, where the tagged value schedPolicy specifies that the control centre follows a FIFO

scheduling policy to serve the queued jobs. Moreover, the tagged value resmult indicates that the maximum

number of instances of the resource control centre is 1, and the tagged value capacity indicates that the

maximum number of permissible concurrent users handled by the control centre is 20.

Fig. 10 also demonstrates the deployment mapping of a taxi control system, where it is a straightforward

and one-to-one mapping between the service components and the physical components [1].

We will illustrate how the model transformation rules have been utilized to generate the performance

SRN model for the example taxi control system. Generation of an analytical model (SRN) for the

performance evaluation of the taxi control system by applying the model transformation rules is

demonstrated in Fig. 11 [1]. Considering the deployment mapping of the taxi control system (see Fig. 10),

UML models with annotations (see Fig. 9 and Fig 10), and the model transformation rules (see Section 2.6)

the SRN model of the taxi control system has been generated. The collaborative building block status update

& tour request is transformed into a SRN model according model transformation rule 2 (see Fig. 3). The

generated places and transition from collaborative building block status update & tour request are Pli, Pafq,

Prat, and ttr. The timed transition ttr is realized by both the communication time and overhead time, as the

collaboration roles taxi and control centre are deployed on different physical nodes. Likewise, the

collaborative building block tour order & notify is transformed into a SRN model according to model

transformation rule 2 (see Fig. 3). The generated places and transition from collaborative building block

tour order & notify are Pgr, Pafq, Pgt, and tto. The timed transition tto is realized by the communication time

and overhead time, as the collaboration roles client and control centre are deployed on different physical

nodes. Client activity partition of the tour order & notify collaborative building block also contains a

decision node, which is transformed into a SRN model according to the decision node transformation rule

(see Table 1). Two flows are created from place Pgt: one towards the immediate transition it1 and another

towards the timed transition tst. The immediate transition it1 is realized by a guard function [gr], which is

only enabled when the client requests exceed the capacity of the control centre. The definition of guard

function [gr] is given as: [If (#(Pgt) > n) 1 else 0], where (#(Pgt)) defines the number of client requests that

have arrived in the system and ‘n’ defines the capacity of the control centre. In addition, the collaborative

building block start tour is transformed into a SRN model according to model transformation rule 2 (see Fig.

3), where the timed transition tst is realized by the communication time and overhead time.

Fig. 11. Performance SRN model of taxi control system [1].

trn: tour order

& notify

str: status update

& tour request

st: start tour

tst

t1

Pli
Pafq Pgr

Pgt
Prat

ttr

tto

[gr]

Journal of Software

518 Volume 10, Number 5, May 2015

The obtained SRN model for the taxi control system has been solved to calculate the mean response time

for serving client requests (using little’s law [32]) for various numbers of client and taxi combinations. The

result is shown in the graph presented in Fig. 12 (Here, the rate of each timed transition in the SRN model is

considered 0.033) [1]. The top curve shows the mean response time for serving a client request when there

is 1 taxi available in the system, and it also focuses on how the mean response time for individual client

requests increases gradually with an increasing number of clients in the system. This curve shows the mean

response time of around 520 sec for serving a client request for over 20-25 customers and 1 taxi available

in the system. The response time for serving a client request depends not only on the available taxis but

also on the number of client requests arrived in the system. For fixed number of taxis available in the

system, if the number of client requests increases in the system the response time for serving a client

request will be higher. Again for fixed number of client requests, the response time will be lower with the

increasing number of taxis in the system. The middle and bottom curves show the mean response time for

serving a client request when there are 5 and 20 taxis available in the system, respectively. It is clearly

shown that the response time increases with the higher number of customers in the system. But all 3

graphs show the cutoff point when the number of clients equals 20, as in our example, we assume that the

control centre capacity for handling concurrent client’s request at particular time instant is 20. It is not

logical that the control centre would be able to handle unlimited number of clients at particular time instant.

However, it is possible to solve the SRN model for a large number of client and taxi combinations.

0

100

200

300

400

500

600

1 25 50 75 100 125 150 175 200

No of Customer

m
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e
 (

s
e
c
)

1 Taxi

5 Taxis

20 Taxis

Fig. 12. Numerical results of the analytical model (SRN) of the taxi control system.

6. Conclusion

The examples we considered as case studies and presented in this paper were chosen to cover real

scenario and also included the well-known problem of assigning clusters to nodes as an artificial case study.

The examples were compact enough in some respects to be completely presented within the space

constraints of the article. We claim, however, that the modeling approach scales well and can also handle

specimens of real system specifications. Moreover, we might expect more complex forms of collaborations

than those demonstrated in the paper, which can be solved with additional levels of simplification. In

addition, our provided deployment logic can handle any properties of the service as long as a cost function

for the specific property can be produced. The defined cost function can react in accordance with the

changing size of the search space of an available hosts presented in the execution environment to assure an

efficient deployment mapping. For the model transformation, we have described generalized rules to

handle complexity and scalability. Model transformation rules have been defined based on the

Cut off point at number of
client equals 20

Journal of Software

519 Volume 10, Number 5, May 2015

encapsulated self-contained reusable UML building blocks that can describe complex behavior and

interaction of the system participants. The novelty of the model transformation process is that the

encapsulated building blocks have been utilized as the input in the model transformation process to

generate SRN models instead of considering single component of the UML diagram as input, which solves

the state explosion problem [1].

While performing the model transformation, the UML diagrams such as collaboration, activity, and

deployment are formalized using cTLA that captures the behavior of the collaborative system specification.

We apply cTLA as a foremost background technique to understand the formalism of collaborative

specifications expressed in other languages, such as UML. The provision of a formal semantics does not end

in itself but, is a vital part for the automated model transformation. It is also basis for meaningful semantic

checks as, for instance, to be done with the model checking approach introduced in [30].

The extensibility of our modeling approach can be defined in several directions, such as developing

missing plug-ins for Arctis to define UML deployment diagram and to generate annotated UML model,

permitting the deployment logic to dynamically provide new configurations of the deployment mapping

when changes in the execution environment or workload configuration are encountered, considering more

comprehensive scenarios for large networks including more physical nodes and clusters, developing an

automated feedback method to find UML anti-patterns and then change the functional design accordingly,

comparing numerous execution environments, and to find the optimal deployment mapping of service

components over a physical environment.

Appendix A: Performance Model Evaluation

We focus on measuring the throughput of the system from the SRN model. We are interested in

throughput calculation, which can be defined as a measure of jobs that a system can process in a given time

period. This in turn justifies the efficiency of our deployment logic mentioned in section 2.5 in accordance

with system performance evaluation. Before deriving formula for throughput estimation, we consider

several assumptions that will allow us determining the parameters necessary for the throughput

calculation of the system:

 Executions of the processes occur independently of each other

 Communication between processes is independent

 Communication between interconnected nodes will be started following entire completion of the

processing and communication inside each physical node

We define the throughput as function of expected number of jobs in the system, E(N) and cost of the

network, netC , which defines the time required to complete the expected number of jobs in the system [24].

The value of E(N) is calculated by solving the SRN model using SHARPE [3]. Cost of the network, netC is

defined below. At first, the cost of a subnet (
sn

C) will be calculated as follows:

 | |

0 ,1 0 ,21
max ((,) (,))

m

j ji
x i j jsn c B k

fC f I q k q k f

 M M

 | |

1
max

m

i Bi jc
f f

where

Xsn

C = cost of the xth subnet (where x = 1….n; n is the total number of subnet that comprises the

network)

ic

f = execution cost of the ith process of the xth subnet

(5)

Journal of Software

520 Volume 10, Number 5, May 2015

 m = total number of service components deployed on the xth subnet

jB

f = overhead cost of collaboration j (where j =1….n; n is the total number of collaboration in the xth

subnet)

jk

f = communication cost of collaboration j (where j =1….n; n is the total number of collaboration in

the xth subnet)

0 ,1 0 ,2

((,) (,))
j j

I q k q kM M = 0 (according to Section 2.5); as in this case, processes connected by the

collaboration deploy on the same physical node.

Now we evaluate the cost between each pair of subnet with respect to the subnet’s own processing cost,

overhead cost, and the cost associated with the communication with other subnet in the network.

 0 ,1 0 ,2
max() (((, (,)),

j j
y a b j jsnp sn sn B k

fC C C I q k q k f M M

 max() (),
a b j jsn sn B k

fC C f

where

ysnp

C = cost of the yth subnet pair (y = 1….n; n is the total number of subnet pairs in the network,

where each subnet pair corresponds between two subnets)

 ,
a bsn sn

C C = cost of the ath and bth subnet (where (a, b) ϵ x and a ≠ b)

jB

f = overhead cost of collaboration j (where j =1….n; n is the total number of collaboration between

the subnet pair (,
a bsn sn

C C))

jk

f = communication cost of collaboration j (where j =1….n; n is the total number of collaboration

between the subnet pair (,
a bsn sn

C C))

0 ,1 0 ,2

((,) (,))
j j

I q k q kM M = 1 (according to Section 2.5); as in this case, processes connected by the

collaboration deploy on the different physical nodes.

So Cost of the network:

1

max ,,,
n

net snp snp
C C C

Finally, the throughput is:

References

[1] Khan, R. H. (2014). Performance and performability modeling framework considering management of

service components deployment. PhD thesis, Norwegian University of Science and Technology.

[2] Kraemer, F. A. (2013). ARCTIS, Retrieved May, 2013, from http://arctis.item.ntnu.no.

[3] Trivedi, K. S., & Sahner, R. (2012). Symbolic hierarchical automated reliability / performance evaluator

(sharpe), Duke University.

(6)

(7)
()

net

E N

C

Journal of Software

521 Volume 10, Number 5, May 2015

[4] Lopez, G., Merseguer, J., & Campos, J. (2004). From UML activity diagrams to SPN: application to

software performance engineering. Proceedings of the 4th International Conference on Software and

Performance.

[5] Cooper, K., Dai, L., & Deng, Y. (2003). Modeling performance as an aspect: A UML based approach.

Proceedings of the 4th Workshop on AOSD Modeling with UML.

[6] Moura, P., Borges, R., & Mota, A. (2003). Experimenting formal methods through UML. Proceedings of

the Brazilian Workshop on Formal Methods.

[7] Warmer, J., & Kleppe, A. (1999). The Object Constraint Language: Precise Modeling with UML. Addison-

Wesley.

[8] Theelen, B. (2004). Using the SHE method for UML-based performance modeling. System specification

and design languages.

[9] Yin, Y. et al. (2010). The integrated application based on real-time extended UML and improved formal

method in real-time embedded software testing. Journal of Networks, 5(12), 1410-1416.

[10] Merayo, M. G., Nu′n˜ez, J., & Rodrı′Guez, I. (2008). Formal Testing from timed finite state machines.

Computer Networks, 52, 432–460.

[11] Andolfi, F. et al. (2000). Deriving performance models of software architecture for message sequence

charts. Proceeding of the 2nd International Conference on Software and Performance (pp. 45-57).

[12] Cardoso, J. & Blanc, C. (2001). Ordering actions in sequence diagram of UML. Proceedings of the

International Conference on Information Technology Interfaces (pp. 19-22).

[13] Eshuis, R., & Wieringa, R. (2001). A comparison of petri net & activity diagram variants. Proceedings of

the Collaboration on Petri Net Technologies for Modeling Communication Based Systems.

[14] Petriu, D. & Shen, H. (2001). Applying the UML performance profile: Graph grammar based deviation of

LQN models from UML specifications. Tools, pp. 14-17.

[15] Tigris. (2012). ArgoUML. Retrieved 19 November, 2012, from http://argouml.tigris.org.

[16] Marzolla, M. and Balsamo, S. (2004). UML-PSI: The UML performance simulator. Proceedings of the

International Conference on Quantitative Evaluation of Systems (pp. 340-341).

[17] Akehurst, D. et al. (1999). Predictive performance analysis for distributed systems–PERMABASE.

Proceedings of the Workshop on Software Performance Predication Extracted from Design.

[18] Wet, N. D., & Kritzinger, P. (2005). Using UML models for the performance analysis of network system.

Journal of Computer Networks, 49(5), 627-642.

[19] Petriu, C. et al. (2005). Performance by Unified Model Analysis (PUMA). Proceedings of the 5th

International Conference on Software and Performance (pp. 1-12).

[20] OMG. (2009). UML: Superstructure. Version-2.2.

[21] Kraemer, F. A. (2008). Engineering reactive systems: A compositional and model-driven method based

on collaborative building blocks. PhD thesis, Norwegian University of Science and Technology.

[22] Kraemer, F. A. & Herrmann, P. (2006). Service specification by composition of collaborations-an

example. Proceedings of the Web Intelligence – Intelligent Agent Technology Workshops (pp. 129-133).

[23] OMG. (2009). UML profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems.

Version – 1.0.

[24] Khan, R. H., Heegaard, P. E., & Ullah, K. W. (2012). Performance evaluation of distributed system using

SPN.

[25] CORBA M. J. (2012). Cost-efficient deployment of distributed software services. PhD thesis, Norwegian

University of Science and Technology.

[26] Csorba, M. J., Heegaard, P. E. & Herrmann, P. (2008). Cost-efficient deployment of collaborating

components. Proceedings of the 8th IFIP International Conference on Distributed Applications and

Journal of Software

522 Volume 10, Number 5, May 2015

Interoperable Systems (pp. 253–268).

[27] Khan, R. H., & Heegaard, P. E. (2011). A Performance modeling framework incorporating cost efficient

deployment of multiple collaborating components. Proceedings of the 2nd International Conference on

Software Engineering and Computer Systems (pp. 31-45).

[28] Ciardo, G., Muppala, J., and Trivedi, K. S. (1992). Analyzing Concurrent and Fault-Tolerant Software

Using Stochastic Reward Nets. Journal of Parallel and Distributed Computing.

[29] Kraemer, F. A. & Herrmann, P. (2007). Formalizing collaboration-oriented service specifications using

temporal logic. Proceedings of the International Conference on Networking and Electronic Commerce

Research Conference (pp. 194-220).

[30] Slåtten, V. (2007). Model checking collaborative service specifications in TLA with TLC. Project Thesis,

Norwegian University of Science and Technology.

[31] Efe, K. (1982). Heuristic models of task assignment scheduling in distributed systems.

[32] Trivedi, K. S. (2001). Probability and statistics with reliability, queuing and computer science application,

Wiley- Interscience publication.

Razib Hayat Khan completed his PhD at Department of Telematics, Norwegian

University of Science and Technology (NTNU), Norway. He completed his M.Sc. in

information and communication systems security specialized in security in open

distributed system from Royal Institute of Technology (KTH), Sweden in 2008. He

worked as a visiting researcher at Duke University, Durham, USA and served as a

research engineer, doing multimedia technologies at Ericsson AB, Sweden. He also

worked under VRIEND project as part of his M.Sc. thesis which was sponsored by

Philips, AkzoNobel, Corus, and DSM. He received his B.Sc. degree in computer science and information

technology from Islamic University of Technology (IUT), Gazipur, Bangladesh in 2004. He served as a

lecturer in Stamford University, Dhaka, Bangladesh during the period November 2004 – August 2006. His

research interests include software performance and dependability modeling, Information systems security.

At present he is working with performance and dependability issues in Communication system.

Poul E. Heegaard is currently serving as a professor at Department of Telematics,

Norwegian University of Science and Technology (NTNU). He completed his PhD from

department of Telematics, NTNU in 1998. He served as an associate professor at

Department of Telematics, NTNU, in adjunct position (20%) during 1999-2003,

reduced position (50%) during 2003-2006, and full time position since 2006. He was

research scientist during 1989-1999 and senior research scientist from 1999 at SINTEF

Telecom and Informatics. He also served as a research scientist during 1999-2001 and

senior scientist during 2001-2009 at Telenor Research and Development. He was a visiting researcher

(March, 2007) hosted by Dr. Sandmann at University of Bamberg, Germany. He was also served as a visiting

researcher during Sep 2007 – July 2008 hosted by Prof. Trivedi at Duke University, Durham, NC. He

acquired the position of Departmental head, department of Telematics, NTNU during 2009-2013. His

research interests include QoS evaluation and management in communication systems and services, rare

event simulation techniques, survivability quantification, monitoring, routing and management in dynamic

networks, distributed, autonomous and adaptive management and routing.

Journal of Software

523 Volume 10, Number 5, May 2015

