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Abstract: Software change impact analysis (or impact analysis) plays a crucial role in software 

maintenance and evolution. Impact analysis aims at identifying the possible effects of a source code 

modification. It is often used to evaluate the effects of a change after its implementation. However, more 

proactive approaches use impact analysis to predict the effects of a change before it is implemented. In this 

way, impact analysis provides useful information that can be used, among others, to guide the 

implementation of the change and to support regression tests selection. This paper aims at proposing a 

change impact analysis model for Java programs. The model was designed to support predictive impact 

analysis. It includes several impact rules based on the Java language constructs. We performed an empirical 

evaluation of the model using several Java programs. In order to assess the model prediction quality, we 

used two measures (precision and recall). The reported results show that the model is able to achieve high 

accuracy. 

 

Key words: Software maintenance, software evolution, change, ripple effect, impact analysis, predictive 

analysis, model, impact rules, and empirical analysis. 

 
 

1. Introduction 

As software systems are used for a long period of time, software evolution is inevitable. Indeed, software 

systems need to continually evolve for various reasons including: adding new features to satisfy user 

requirements, changing business needs, introducing novel technologies, correcting faults, improving quality, and 

so forth. So, as software evolves, the changes made to the software must be carefully managed. It is particularly 

important to ensure that modified software still verifies its specification and whether new errors were 

introduced inadvertently [1]-[3]. It is, therefore, crucial to find where changes occur and to identify parts of the 

software that are possibly affected by the changes, parts that must be correctly retested. Indeed, for obvious 

reasons, retesting all the software after instantiating a change is inefficient, costly, and unacceptable in practice 

[4]. 

Software evolution faces many challenges [5]-[8]. Software maintenance is, in this context, a vital activity [9]. 

It is, however, costly [10], [11]. Several experts agree that two of the most important activities of software 

maintenance are: understanding the software and evaluating the potential effects of a change [12]-[16]. The 

second activity is closely related to the first one. Indeed, to understand the effects of a given change, it is 

necessary to understand the system beforehand [17]. The software design, particularly the dependencies 

between its components, can make this task difficult. A change to a system, however minor, can lead to several 

unintended effects (ripple-effect). One effective way to deal with this important issue is to develop models (and 

techniques) that can be used to support the evaluation of the potential effects of a change. This can be used to 

Volume 10, Number 4, April 2015441

Journal of Software

doi: 10.17706/jsw.10.4.441-453

Linda Badri*, Mourad Badri, Nicolas Joly

Software Engineering Research Laboratory, Department of Mathematics and Computer Science, University of 
Quebec, Trois-Rivières, Québec, Canada G9A 5H7

Manuscript submitted November 18, 2014; accepted March 3, 2015.
* Corresponding author. Email: Linda.Badri@uqtr.ca



  

guide the decision-making of software development managers seeking to produce high quality software.  

Software change impact analysis (or impact analysis) plays a crucial role in software maintenance and 

evolution. Bohner [18] defined change impact analysis as “the process of identifying the potential consequence of 

a change, or estimate what need to be modified to accomplish a change”. Impact analysis allows, indeed, 

developers assessing the possible effects of a given source code modification [17]-[27]. Impact analysis can be 

used to support various maintenance tasks such as: planning changes, assessing the cost of changes, 

implementing changes, tracking the effects of changes and regression tests selection [20], [28], [29]. 

We present, in this paper, a new static change impact analysis model for Java programs. The model, including 

several impact rules based on the Java language constructs, was designed to support predictive impact analysis. 

We performed an empirical evaluation of the model using several Java programs. We used, in fact, two types of 

programs: simple Java examples (programs developed by a group of students) and design patterns. We 

considered in the study different changes. In order to assess the model prediction quality, we used two measures 

(precision and recall). In addition, we evaluated the proposed approach using the properties of the Framework 

proposed by Li et al. [23] characterizing impact analysis techniques. 

The rest of the paper is organized as follows: Section 2 presents an overview of the main related work. Section 

3 introduces the impact analysis model we propose. Sections 4 presents the empirical study we conducted in 

order to assess the performance on the proposed model. Section 5 gives a conclusion and some future work 

directions. 

2. Related Work 

Many criteria have been proposed in literature for classifying existing impact analysis techniques (e.g., [23, 30-

33]). These techniques addressed, in fact, various specific tasks of software maintenance. Existing impact 

analysis techniques can be static and/or dynamic (e.g., [17, 20, 23, 34-36]), based on the source code of the 

program and/or on models (e.g., [34], [35]). Static impact analysis techniques include structural static analysis, 

textual analysis, and historical data analysis [33], [35], [37], [38]. Impact analysis techniques can be divided in 

two major classes: impact analysis techniques that support predictive analysis - pre-change (e.g., [34], [39], [41]) 

and impact analysis techniques that support retrospective analysis - post-change (e.g., [24], [42]). Predictive 

impact analysis techniques are used before the change is implemented, and aim mainly at predicting the 

potential effects of a change, which allows assessing the effort required for its implementation. Retrospective 

impact analysis techniques are used after a change has been implemented. These techniques aim mainly at 

supporting the correction of potential errors that are introduced by changes, and regression testing (e.g., [23], 

[24], [28], [29], [42]). 

Lee et al. [17] proposed a static impact analysis technique for object-oriented systems (OOS). The technique is 

based on control flow and data flow graphs. Horwitz et al. [43] used a system dependencies graph. Law et al. [20] 

proposed a dynamic impact analysis technique (PathImpact) based on execution paths (whole path profiling). 

This technique requires an instrumented code to capture execution traces. Compared to other techniques, such 

as the transitive closure of calls and static slicing graphs, this technique gives more accurate results. Orso et al. 

[29] present a comparative experimental study between dynamic impact analysis techniques CoverageImpact 

[28] and PathImpact [20]. Weiser [44] introduced a slicing technique based on call graphs. St-Yves et al. [34] 

proposed a predictive impact analysis technique based on control call graphs, which are a reduced form of 

traditional control flow graphs. Control call graphs are, in fact, more precise models than traditional call graphs. 

The authors also showed the limitations in terms of accuracy of impact analysis based solely on direct call graphs. 

Abdi et al. [45] proposed an approach based on Bayesian networks to analyze and predict change impact in OOS. 

Li et al. [23] proposed a Framework for characterizing code-based impact analysis techniques. The Framework 

includes seven main properties including the objective of the impact analysis, the type of the supported analysis, 

the language support, and so forth. This Framework has been designed from a survey on several studies on the 

subject. 
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Chaumun et al. [27, 39] developed an impact analysis technique for C ++ programs. The authors identified a set 

of unit changes, that can be made on the code of a C ++ program, affecting the structure of classes. The 

considered unit changes may occur at different levels: class level (e.g., adding a class, deleting a class, etc.), 

method level (e.g., adding a method, deleting a method, etc.), or attribute level (e.g., adding an attribute, deleting 

an attribute, etc.). Chaumun et al. established a list of 19 class-level changes, 35 method-level changes and 12 

attribute-level changes for a total of 66 changes. For each change, the authors proposed an impact rule defined 

according to the relations between classes. The considered relations are aggregation (G), association (S), 

invocation (I) and inheritance (H). The authors also included the specific relationship "friendship" (F) of the C ++ 

language and the local self-reference (L) when the impact is found within the class where the change occurred. 

Kabaili et al. [42] have extended the work of Chaumun et al. by adapting the model for the Java language. This 

resulted in 15 class-level changes, 25 method-level changes and 12 attribute-level changes for a total of 52 

changes. The 14 unit changes that have been removed from the original model correspond, in fact, to the notion 

of virtual class of the C++ language and the relationship "friendship" (F); notions not existing in Java. Kabaili et al. 

also discussed the use of Chaumun’s impact analysis model, adapted to Java, to support ripple effect analysis 

(several levels of impact: direct and indirect). As Chaumun’s model, adapted for Java by Kabaili et al., is the most 

complete and the most similar to the model presented in this work, we will use it as a baseline. 

3. Change Impact Analysis Model 

We present in this section the IMC ((Impact analysis Model for Changes in Java) model that we propose in this 

paper. The model specifies for each type of change a set of impacts, providing useful information for analyzing 

the impact on several levels (cascading impact). The model includes various atomic changes. An atomic change is 

the smallest unit of change that cannot be decomposed into other changes. Atomic changes are divided in two 

distinct groups: structural and non-structural changes. 

3.1.     Types of Change: Structural and Non-Structural Changes 

A structural change is a change that affects the structure of the class and is visible in a class diagram; for 

example the addition or removal of a method. A non-structural change is a change that does not affect the 

structure of the class and is not visible in a class diagram. Non-structural changes are, in fact, possible within the 

method bodies; for example, adding or removing a method call. The IMC model includes 44 structural changes 

divided into three levels (for more details, see Appendix A): 8 class-level changes (e.g., adding a class, deleting a 

class, etc.), 23 method-level changes (e.g., adding a parameter, changing a return type, etc.) and 13 attribute-level 

changes (e.g., adding an attribute, changing an attribute visibility, etc.). The IMC model includes also a total of 26 

non-structural changes (adding a declaration, removing a declaration, adding an attribute initialisation, 

removing an attribute initialisation, adding a call to an inherited method, removing a call to an inherited method, 

etc.). For the complete list of non-structural changes, see Appendix B. 

3.2.        Concept of Certainty 

The IMC model uses the notion of certainty, a concept which does not exist in the Chaumun model (MC). The 

notion of certainty allows basically mitigating the information provided by the impact analysis using the IMC 

model. To illustrate this concept, let us consider two simple examples. As a first example, let us consider the 

atomic change “removing a class attribute". This removal will impact all uses of this attribute. To compile the 

code after removing the attribute, we must also remove all its uses. In this case, we are talking about an impact 

that is certain (certainty of the impact). Let us take as a second example the atomic change "add a class attribute". 

Normally, if we add an attribute to a class, it is that we intend to use it. Otherwise, it would be an unnecessary 

change, but which nevertheless remains possible. So, we can expect an impact related to the addition of the use 

of this attribute. In this case, we are talking about an impact that is uncertain (uncertainty of the impact). The 

IMC model is based on several impact rules, which make the distinction between the impacts that are certain and 

the impacts that are uncertain. So, the IMC model makes a difference between what will be impacted and what 
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could possibly be impacted. The MC model does not make this distinction in its impact rules. 

3.3.     Relationships between Classes 

For the IMC model, the relationships between classes are the basis for the definition of the change impact rules. 

These rules aim at specifying each impact and its location in the code. Four relationships between classes were 

considered: the association relationship (noted A), the inheritance relationship (noted H), the ancestor-

descendent relationship (noted Hs - when the ancestor is impacted by the descendent) and the pseudo-

relationship L (class in question). Classes can have more than one relationship between them. 

3.4.      Impact rules 

The IMC model has been designed to support both predictive and retrospective analyzes. It is important to 

notice, however, that some impacts are only identifiable in retrospective analysis. Also, in predictive analysis, 

there are some impacts that cannot be evaluated because the model does not take into account the intentions of 

the change. This is due primarily to the concept of certainty of the model. For example, let us consider the change 

"add a class", which has the impact rule " [ Mpa (A )] + [Aa (A) ] + [ Nad (A)] " that is, adding parameters (class 

type), adding class attributes and adding object class declarations in associated classes. If we add a class, it is that 

we have the intension to use it (in general). In predictive analysis, however, we cannot apply this rule because 

the only premise that we have is the addition of the class. No further information on classes that will eventually 

have a relationship with the added class is provided (available), which prevents the prediction of the slightest 

impact. It is in that sense that some impacts (all impacts in the case of adding a class) cannot be identified in 

predictive analysis. To better understand the structure and the use of impact rules, we give in what follows a few 

simple examples (see Appendix C for the rest of the rules). 

As a first example, let us consider the addition of a method: « Ma    Ma {Rr} (O: Sab) (H) + [Nam (L, A, H)] », 

« Ma » is the element of change and arrow «    » is the impact rule. In the impact rule, each impact member is 

separated by the plus sign « + ». To add a method, we have two impact elements: adding a method « Ma » and 

adding call (s) to this method « Nam ». Brackets « [] » around the impact element « Nam » mean uncertainty. For 

the impact element « Ma », the « Rr » indication is found between braces « {} ». Braces mean a specification of the 

impact element, « Rr » means « redefinition ». Therefore, the impact element « Adding a method » will be a 

redefinition of the method added. « O: Sab » indicates that this impact element will be mandatory « O » (certain) 

if the added method is abstract, « Sab » otherwise optional (uncertain). « (H) » and « (L, A, H) », corresponding 

respectively to the impact elements « Ma » and « Nam », are indicators of relationships between classes. In this 

case, the impact will correspond to adding a method in classes that inherit « H », and to adding method calls in 

classes that inherit « H », classes that are associated « A », and the class itself « L » (local). If we take a complete 

reading of the rule, this means that when adding a method the impact will be: (1) to redefine this method, in 

classes that inherit, with certainty only if the added method is abstract, and (2) to add call (s) to the method 

added with uncertainty in the class itself, the associated classes and inheriting classes. 

As a second example, we will partially interpret the impact rule of an attribute that goes from static to non-

static « Atsn     Mtsn {Ru} (L) || Nra {Rms} (L) + Nra (A) ». The impact « Mtsn {Ru} (L) || Nra {Rms} (L) » means that 

methods using the class attribute will go from static to non-static « Mtsn » or « || »  the attribute is removed in 

static methods « Nra » class. In some rules, we find the sign « && » instead of « || », which means that we have 

two changes in the impact element, not one or the other. The complete list of structural and non-structural 

changes is given in Appendix A and Appendix B. The list of impact rules is given in Appendix C. 

4. Empirical Evaluation 

In order to evaluate the ability of the IMC model to accurately predict the impact of changes, we conducted an 

empirical study in two stages. As a first stage, we evaluated the model based on simple examples. This first series 

of experiments was essentially designed to make a comparison between our model and the MC model. We used 

simple Java programs. As a second stage, we evaluated the IMC model using some design patterns. The goal this 

Volume 10, Number 4, April 2015444

Journal of Software



  

time was to evaluate the performance of the IMC model. A part of these experiments were performed by 

including the MC model. In order to measure and compare objectively the performance of both models, we used 

in this study two measures: precision and recall. In addition, we considered the following six changes: removing 

an attribute, changing an attribute from public to a private, changing an attribute from static to non-static, 

changing an abstract class to a non-abstract class, changing a static method to a non-static method and changing 

the type of a parameter of a method. 

4.1.      Metrics 

To evaluate the quality of the prediction of the impact analysis models, we used two well-known measures [46, 

47]: recall and precision. Impact analysis may, in fact, have some false positives (elements in the impact set that 

aren’t really impacted) and false negatives (elements really impacted that aren’t identified in the impact analysis) 

[23]. In the evaluation, we obtained three types of results: the number of actual impacts due to a change, the 

number of impacts predicted by a model and the number of impacts correctly predicted by a model. The recall, 

which is an inverse measure of false negatives, is the ability of a model to predict all real impacts (percentage of 

actual impacts). This allows assessing whether the rules of the impact model predict all real impacts. The 

precision, which is an inverse measure of false positives, is the ability of the model to predict the impacts 

correctly (percentage of predicted impacts corresponding to reality). This indicates whether the model is 

accurate enough to predict only the real impacts and also validate the recall. If it is too high than the precision, 

this means that the model predicts too many impacts. A perfect model would be a model having a recall of 100% 

and a precision of 100 %. The model succeeds in this case only to predict the actual impacts and to predict them 

all. 

4.2.     Simple Experiments 

In this section, we used a set of similar programs, which have been developed by students in one of the 

programming courses of the Bachelor of computer science in our department. We selected, in fact, a group of six 

students who achieved the best ratings. We had 39 Java classes in total. 

At first, we evaluated the impact of 21 different changes on the first version of the code (compilable), using the 

two models IMC and MC. Then, a second version of compilable source code is obtained from the first version by 

instantiating the considered changes. Finally, we compared the two versions of the programs in order to 

determine the actual impacts due to the changes we applied. For purposes of comparison of the two models, the 

results for this series of experiments were calculated in terms of number of impacted classes given that the MC 

model focusses only on impact at class level. Results are given in Table 1. CP indicates the number of classes 

predicted by a model, CR indicates the number of really impacted classes and CC indicates the number of classes 

correctly predicted by a model. As it can be seen from Table 1, the recall and the precision of the IMC model are 

both equal to 100%, meaning that our model predicted only real impacts and has predicted them all. The MC 

model obtains a recall of 57% and a precision of 48%. 

 CP CC CR Recall 
Precisi

on 

IMC 35 35 
35 

100% 100% 

MC 42 20 57% 48% 

4.3.       Advanced Experiments 

In this section, we used the code of some design patterns to evaluate the IMC model. We considered 

particularly the following design patterns: abstract factory, adapter, bridge, builder, chain of responsibility, 

command, composite, decorator, façade, interpreter and memento. The code of the selected design patterns 

varies in terms of number of classes between 4 and 10 classes. We considered this time 35 different changes in 
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total. As for the first series of experiments, the considered changes have been instantiated. In some cases, there 

has been a ripple effect of changes. For purposes of comparison between the two models, each impact 

causing a ripple effect was treated as a new change. This second series of experiments was conducted in two 

steps. 

Number 
of 

changes 

Accuracy 

Reality IMC MC 

35 55/71 27/41 57 

Recall  96,49% 47,93%  

Precision  77,46% 65,85%  

 

In a first step, given that the evaluation also focused on the MC model, and to facilitate comparison, the 

evaluation of the IMC model was also performed by considering only the impact at class level. Table 2 shows the 

results obtained. For the 35 changes we considered, there were 57 impacted classes. The IMC model predicted 

71 impacted classes of which 55 were actually impacted. In fact, 16 predicted classes were not really impacted. 

The IMC model in this series of experiments has a precision of 77.46% and a recall of 96.49%. The MC model, 

meanwhile, predicted 41 impacted classes of which 27 were actually impacted. The MC model, in this series of 

experiments, has a precision of 65.85% and a recall of 47.93%. As it can be seen from Table 2, results indicate a 

better overall performance of the IMC model compared to the MC model. Until now, for comparison purposes, 

the results were obtained according to the level of precision of the MC model (class level). We wanted to 

know particularly if the models predict correctly the impacted classes. 

Number of 
changes 

IMC 

Precision Real 

35 50/51 - 18/56 71 
Precision 
(certain)  98,04%   
Precision 

(uncertain)  32,14%  
Recall 95,77%  

 

In a second step, we focused on the evaluation of the IMC model alone. Table 3 shows the results obtained. The 

impacts predicted with certainty by the IMC model are 50/51 (predicted 51 impacts of which 50 were actually 

impacted), with a precision of 98.04%. It is in the uncertain impacts predicted by the IMC model where we found 

erroneous predictions. Only 32.14% (18/56 - 56 predicted impacts of which 18 were actually impacted) of 

predicted impacts with uncertainty have actually occurred. Uncertain impacts represent for almost half of the 

total predicted impacts (56 of 107 (51+56)). All the erroneous predictions are made by the prediction of 

uncertain impacts and only one by the prediction of impacts that are certain. In total, 26% of the impacts 

predicted correctly by the IMC model were predicted by the uncertain impacts (18 of the 68 (50+18) correctly 

predicted impacts). 

4.4.      Discussion 

Table 4 summarizes the differences between the two models IMC and MC. From Table 4, it can be seen that the 

models have some differences according to the four criteria: structural changes, non-structural changes, impact 

rules and impact level. The non-structural changes are absent from the MC model, which is due to the fact that 

the MC model focuses only on the class-level, contrary to the IMC model which focuses on the two levels: class 

and method. Moreover, various changes (such as adding an attribute, changing the visibility of an attribute from 

protected to public, private to public and private to protected, etc.) has no impact in the case of the MC model. 
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The other weakness of the MC model is in relation with its interpretation. The MC model indicates, in fact, only 

which classes will be impacted after the instantiation of a change. The model does not give any detail on the 

nature of the impact. According to the model, if a change made in a class A has an impact on a class B, it does not 

tell if there is one or more changes to be made in class B. 

 

 

Criterion  IMC MC 

 
Structural 
changes 

41 52 

Non-structural 
changes 

26 0 

 
Impact rules 

41 33 

Impact 
(accuracy) 

level  

 
Method and Class  

 
Class  

 

Furthermore, according to its authors, the MC model predicts also the impacts that are uncertain. If we 

combine, for the IMC model, the results corresponding to the impacts that are certain and the results 

corresponding to the impacts that are uncertain, we obtain a precision of 63.55%, slightly lower than the 

precision of the model MC. It should nevertheless understand that the imprecision comes from the fact that 

the IMC model makes the difference between the impacts that are certain and those that are not. So, overall, 

the IMC model is not more accurate than the MC model (if we consider that the MC model predicts also the 

impacts that are uncertain), but it allows contrary to the MC model making the difference explicitly 

between what it is certain and what it is uncertain. It is, however, important to notice that the slight 

different in terms of precision between the two models may vary according to the performed tests. The IMC 

model, however, presents a recall (95.77%) that is much higher than the recall of the MC model (47.93%). 

This means that the IMC model identifies almost all the real impacts and the double of the real impacts 

identified by the MC model. So, we can say that despite the fact that the overall precision of the two models 

are comparable, the IMC model is superior in its ability to identify the real impacts. 

The different experiments we conducted show that the IMC model achieves results close to reality. 

However, these experiments also showed that the model has some limitations, in particular when adding a 

new class. The reason of this weakness is simply due to the fact that the IMC model (the MC model also) 

seeks impacts in classes that have any relationship with the modified class (added class). But, in this case, 

when adding a new class (with no relationships with any classes), it is necessary to know with what classes 

it will create links to make prediction. 

In addition, the IMC model as mentioned above offers a greater accuracy in the impacts (in terms of impacts 

and their location). This allows a better support for the different tasks that can be associated with a given change. 

Moreover, with the MC model, it is difficult to analyze the ripple effect (cascading impact) efficiently because, 

even if it correctly predicts that a class will be impacted, the model do not give any information on the nature of 

the impact. In other words, if for example the real impact was the change in a signature of a given method, the 

model only precise the impacted class, class containing the impacted method, without any other information (in 

this case the method impacted and how it is impacted). The IMC model, by clearly specifying what change is 

expected after a given initial change, can make the link between the different impacts and predict the ripple 

effect. To better illustrate this dimension, let us consider the following example given in Fig. 1. 

If the « count » attribute of class A is removed, the MC model predicts that class A will be impacted (the 

rule is « S + L »). Knowing that there is an impact on A, the MC model does not predict the impact that will 
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take place later on classes B and C. In the case of the IMC model, if the « count » attribute is removed from 

the class A, the model predicts an impact: « the withdrawal of the accessor ». The impact being accurate, 

and not just the name of a class as predicted by the MC model, we can use again the IMC model and predict 

that class B will be impacted. The IMC model, by clearly specifying what change is expected after a given 

initial change, can make the link between the different impacts and predict the ripple effect. 

 

public class B extends A 
{ 

          public void count( ) 
          {  int val = 10 - getCount();} 

} 
 

public class C extends A  
{} 

  
public class A 
{ 

         private int count; 
         public A(int count) 
           {  this.count = count;} 
         public int getCount( ) 
           {  return count;} 

} 
 

Fig. 1. A simple example for cascading impact. 

5. Conclusions and Future Work 

Software change impact analysis plays a crucial role in software maintenance and evolution. Impact analysis 

can be used, in fact, to support various important tasks such as: planning changes, assessing the cost of changes, 

implementing changes, tracking the effects of changes and regression testing. We presented, in this paper, a new 

change impact analysis model for Java programs. The model includes several impact rules that are based on the 

Java language constructs. The model was designed to support in particular predictive impact analysis. 

We performed an empirical evaluation of the model using several Java programs. We considered different 

types of (structural and non-structural) changes. The quality of the prediction of the model has been evaluated 

using two well-known measures:  precision and recall. Results show that the model is able to achieve high 

accuracy. In particular, the proposed model presents a high recall (more than 95% in all cases), which means 

that the model identifies almost all the real impacts. Moreover, it allows a better support for cascading 

impact analysis. Furthermore, the proposed technique satisfies five of the seven properties of the Framework 

proposed by Li et al. [23] characterizing impact analysis techniques. These properties are: object- the change set 

and the source analysis, impact set- the impacted elements of the system, type of analysis- static analysis or 

dynamic analysis,  intermediate representation, language support- support various programming paradigms, tool 

support, and empirical evaluation. 

The performed study should be replicated on many other Java programs in order to draw more general 

conclusions. The findings in this paper should be viewed as exploratory and indicative rather than conclusive. As 

future work, we plan: 1) to develop a tool supporting the proposed technique, which should allow us to 

experiment the model on large Java programs, 2) to improve the precision of the model, 3) to explore the 

integration of machine learning methods to improve the global accuracy of the model, and finally 4) to replicate 

the study on various Java programs to be able to give more general conclusions. 
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Appendix A   Structural Changes

Change Meaning Change Meaning

Class level Mpct Parameter : type change

Ca Add a class Mpcn Parameter : name change

Cr Remove a class Mwa Throws : add

Cia Interface : add Mwr Throws : remove

Cir Interface : remove Mrvo Return : void to Object

Cha Inheritance :add Mroo Return : Object to Object’

Chr Inheritance :remove Mrov Return : Object to void

Ctna

Type : non-abstract to 
abstract Ma Method : add

Ctan

Type : abstract to non-
abstract Mr Method : remove

Method level Class attributes level

Mvui

Visibility : public to 
private Avui Visibility : public to private

Mvuo

Visibility : public to 
protected Avuo Visibility : public to protected

Mviu

Visibility : private to 
public Aviu Visibility : private to public

Mvio

Visibility : private to 
protected Avio Visibility : private to protected

Mvou

Visibility : protected to 
public Avou Visibility : protected to public

Mvoi

Visibility : protected to 
private Avoi Visibility : protected to private

Mtna

Type : non-abstract to 
abstract Atsn Type : static to non-static

Mtan

Type : abstract to non-
abstract Atns Type : non-static to static

Mtsn

Type : static to non-
static Atfn Type : final to non- final

Mtns

Type : non-static to 
static Atnf Type : non-final to final

Mtfn Type : final to non- final Aa Attribute : add

Mtnf Type : non-final to final Ar Attribute : remove

Mpa Parameter : add Ata Attribute type change

Mpr Parameter : remove

Appendix B.   Non-Structural Changes.

Change Meaning

Nad Adding a declaration

Nrd Removing a declaration

Nai Adding initialisation

Nri Removing initialisation

Nas Adding the  «super » keyword

Naah Adding the use of an inherited attribute

Namh Adding call to inherited method

Nrah Removing the use of an inherited attribute

Nrmh Removing call to inherited method

Nrs Removing the «super » keyword

Nrm Removing method call

Nam Adding method call

Nrcm Removing method body (replaced by  «; »)

Nacm Adding method body (replacement of «; »)

Nrms Removing call to static method

Nams Adding call to static method

Natc Adding a  «try/catch »

Nrtc Removing a «try/catch »

Nar Adding a «return »

Nrr Removing a «return »

Naa Adding attribute use

Nra Removing attribute use

Naf Adding assignment statement

Nrf Removing assignment statement
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Appendix C.   IMPACT RULES.

Change Impact Rules

Ca [Mpa(A)]+[Aa(A,L)]+[Nad(A,L)]

Cr Mpr(a,H)+Ar(a,H)+Nrd(a,H)+Nri(a,H)

Cia Ma{Rr}(L)

Cir Mr{Rr}(L)

Cha
Ma{Rmah}(L)+[Nas(L){Rc}]+[Ma{Rr}(L)+^Nas(L){Rr}]+[Naah(L,A,

H)]+[Namh(L,A,H)]+[Avuo(Hs)]+[Avio(Hs)]

Chr
Nrah(L)+Nrmh(L)+Nrs(L)+[Mr{Rmah}(L)]+[Mr{Rr}(L)]+[Avou(Hs)]

+[Avoi(Hs)]

Ctna Nri(A,H)

Ctan Mtan{Rma}(L)+[Nai(L,A,H)]

Mvui Nrm(A,H)

Mviu [Nam(A’H)]

Mvio [Nam(A,H)]+[Nas{Rr}(H)]

Mvoi Nrm(A,H)+Nrs{Rr}(H)

Mtna Nrcm(L)+Ma{Rr}(H)+Ctna(L)

Mtan Nacm(L)+[Mr{Rr}(H)]

Mtsn Nrms(A,H)+[Nam(A,H)]

Mtns Nrm(A,G)+[Nam(A,G)]

Mtfn [Ma{Rr}(h)]

Mtnf Mr{Rr}(H)

Mpa Mpa ||Ma(O:Sab){Rr}(H)+Nrm&&Nam(A)+[Ua](L)

Mpr Mpr||Ma(O:Sab){Rr}(H)+Nrm&&Nam(A)+Ur(L)||Nad(L)

Mpct Mpct||Ma (O:Sab){Rr}(H)+Nrm&&Nam{Rh}(A,L)

Mwa Mwa{Rsm}(Hs)+Mwa||Natc{Rmc}(A,L,H)

Mwr [Mwr{Rsm}(HS)]+[Mwr||Nrtc{Rmc}(A,H,L)

Mrvo Nar(L)+Mrvo{Rr}(H)+[Nrm&&Nam{Rmc}(A,H,L)]

Mroo Mroo{Rr}(H)+Nrm&&Nam{o:Rh}(A,H,L)+Nrr&&Nar{Rr}(L)

Mrov Nrr(L)+ Mrov{Rr}(H)+Nrm&&Nam{Rmc}(A,H,L)

Ma Ma{Rr}(O:Sab)(H)+[Nam(L,A,H)]

Mr [Mr(H)]+Nrm(L,A)+[Nrm(H)]

Avui Nra(H,A)+[Ma{Rmu}(L)]+[Ma{Rac}(L)]

Avuo Nra(A)+[Ma{Rac}(L)]+[Ma{Rmu}(L)]

Aviu [Naa(H,A)]+[Mr{Rmu}]+[Mr{Rac}(L)]

Avio [Naa(H)]+[Mr{Rmu}(L)]+[Mr{Rac}(L)]

Avou [Naa(A)]+[Mr{Rmu}(L)]+[Mr{Rac}(L)]

Avoi Nra(H)+[Ma{Rmu}(L)]+[Ma{Rac}(L)]

Atsn {Ru}(L)||Nra{Rms}(L)+Nra(A)

Atns [Mtns{Ru}(L)]

Atfn [Naf(L,H,A)]+[Ma{Rmu}(L)]

Atnf Nrf(L,H,A)+Mr{Rmu}(L)

Ata Mroo{Rac}(L)+[Nra&&Naa{Rh}(A,H,L)]+[Mpct{Rh+Rmu}(L)]

Aa [Ma{Rac}(L)]+[Ma{Rmu}(L)]+[Naa(L,H,A)]

Ar Mr{Rac}(L)+Mr{Rmu}(L)+Nra(L,H,A)+[Mpr{Rc}(L)]
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