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Abstract: Augmented Reality (AR) interfaces typically involve the overlay of virtual imagery onto the real 

world. 3D interaction with the virtual scene is a key feature to explore the full potential of AR. Despite the 

large number of interaction techniques that have been proposed to enable for intuitive 3D interaction in AR 

environments, little effort has been done to compare these techniques. In addition, many techniques have 

been arbitrarily used without formative evaluation or without considering the requirements of different AR 

applications. This paper discusses three interaction techniques with 3D content in AR environments and 

reports on an experiment that we conducted to compare them. These techniques are: 1) manipulation of 

hand-held fiducial markers, 2) free hand interaction, and 3) a keypad controller. 18 participants were 

recruited and asked to perform a series of tasks which involved the manipulation of a 3D object. The study 

sheds the light on the strengths and limitations of the studied techniques and when it is appropriate to use 

each of them. We believe that the reported results will help inform the design and customization of 3D 

interaction techniques for AR applications. 
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1. Introduction 

Augmented Reality (AR) is an emerging technology that enables to augment the real world with computer 

generated content. In simple terms, AR allows digital content (e.g. 2D and 3D objects) to be overlaid and 

integrated into our perceptions of the real world. In AR, users look at the live image of the video camera (i.e. the 

reality) and the scene that they see is augmented by computer-generated objects. Individuals can seamlessly 

perceive the real-world scene, along with the added objects, as a single environment. Although the concept of AR 

technology has been introduced many years ago, only recently has AR become accessible to the masses. The 

popularity of hand-held devices and tablets allowed AR applications to be common in many aspects of our lives. 

Hand-held fiducial markers have been widely used in AR systems (see Fig. 1.a). The performance of the AR 

system depends on the tracking of the visual marker and its pose information (e.g. position and orientation). 

Once the marker is detected by the vision system, the virtual object will be embedded inside the scene and 

overlaid over the marker. Subsequently, any transformations applied on the marker will be applied on the 

associated object. Knowing that, the user can manipulate the virtual object by simply manipulating its marker. It 

is assumed that such an AR setting offers tremendous potential for applications in areas such as cultural heritage, 

entertainment, education and tourism. For example, Fig. 1.b depicts our perception of an AR system as integrated 

into lecture rooms to support interactive learning: While a teacher is holding and manipulating a fiducial marker, 

a special tracking system augments the LCD projected view to integrate a 3D learning model. As the teacher 
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manipulates the fiducial marker, the pose of the 3D model will be updated respectively.  

 
(a). Fiducial markers. 

 

 
(b). Our perception of augmented Reality as integrated into lecture rooms. 

Fig. 1. Augmented Reality by using fiducial markers. 

 

With the great advances that have been achieved in AR technologies, there has been a considerable interest in 

facilitating user interaction with the AR content. AR applications should enable users to interact with virtual 

objects in an intuitive and feasible fashion. Previous research on AR has presented various interaction 

techniques including the use of tracked objects [1], pen and tablet [2], and mouse and keyboard. Despite the 

large number of interaction methods that have been proposed, little effort has been done to compare these 

techniques. In addition, many manipulation techniques have been arbitrarily implemented without formative 

evaluation or guidelines. Considering the growing attention in AR technology in our daily life, it is necessary to 

investigate interaction metaphors that offer the best support and ease of use for end users.  

This paper reports on an experiment that we conducted to compare three different techniques to interact with 

3D content in AR environments. These techniques are: 1) manipulation of hand-held fiducial markers, 2) free 

hand interaction, and 3) the keypad controller. These techniques were chosen because they are commonly used 

for interaction in AR applications [3]-[5], and thus should be carefully investigated to reveal their strengths and 

limitations. In addition, it should be noted that the settings of AR systems can significantly vary based on the 

supported display technology (e.g. handheld devices, tabletop display, head mounted displays), whereas each of 

these technologies has different interaction modalities. Our investigation is limited to AR systems that are based 

on hand-held fiducial markers and where the AR scene is projected on walls or screens such as the system shown 

in Fig. 1.b. This particular setting was used because it is easily-configurable and widely adopted by the common 

AR applications in education and entertainment, and thus may be demanding to explore the best techniques to 

interact with 3D content in this setting. In our experiment, users were recruited and asked to perform a series of 
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tasks which involved the manipulation of 3D content in an AR environment. Based on the results obtained from 

our study, we discuss a set of design recommendations for the developers of AR applications. We believe that 

these recommendations will help to inform the design and customization of interaction methods for AR 

applications.  

2. Related Word 

This work comes at the intersection of two research areas which are discussed in the following sub-sections:  

2.1. Interaction Techniques for AR environments 

A sizeable amount of research has explored the manipulation of virtual objects in AR environments. Voida et al. 

[6] presented a study on the manipulation of 2D objects in AR environments. They compared different 

interaction techniques including voice commands, touching, pointing and grapping gestures. Other efforts have 

presented and evaluated a variety of techniques to interact with 3D objects in AR applications [7-9]. Most of 

these efforts, however, focused on the selection or grasping of objects without considering 3D transformations 

(e.g. rotation, translation and scaling). In addition, the proposed techniques were applied to AR environments 

based on head mounted displays where the user’s hand is often represented by a virtual hand floating in 3D 

space. However, it is not clear whether these techniques are appropriate for the projector/camera-based AR 

systems where the AR scene can only be overlaid on walls or surfaces of furniture. 

To ease the user interaction with AR content, some studies proposed the use of physical objects or props such 

as paddle-, cup-, or box-shaped props, to interact with 3D objects [10], [11]. The markers, which are associated 

with the pose of the 3D objects, are fixed on these props or physical objects. 

With the enormous use of touch devices such as smart phones, tablets, and tabletop displays in the past few 

years, there has been an increasing interest in developing AR applications that are tailored for touch devices 

[12]-[14].  Since the characteristics of touch devices provide only 2D data for manipulation, researchers have 

been exploring a wide range of hand-based interaction metaphors to adapt touch gestures for 3D object 

manipulations [15].  

While the focus in the previous studies was on the design of interaction techniques, which are often 

customized for the hardware or device characteristics, our work reports on an empirical study that compares 

different interaction techniques using hand-held markers. The purpose is to explore how users can most 

naturally interact with 3D projected objects using hand-held fiducial markers.  

2.2. Interaction Techniques in 3D Space 

In the field of 3D user interfaces, a number of research projects have studied and compared handed selection 

and interaction techniques in 3D space. For example, Ulinski et al. [16] proposed two-handed selection 

techniques for volumetric data visualizations. They compared between bimanual symmetric interaction, in 

which both hands perform the same action, and bimanual asymmetric interaction in which hands perform 

different actions. Stellmach et al. [17] described an investigation of basic hand gestures for the exploration of 

large information spaces. A set of pan-and-zoom alternatives using two-handed gestural controls has been 

implemented and compared using Google Earth. Malik and Laszlo [18] presented a vision-based input device that 

allows for two-handed interactions with desktop PCs, laptops, or large wall displays. Lee et al. [19] presented a 

3D vision-based natural hand interaction method based on skin color segmentation, feature point finding and 

hand direction. They also described how their hand tracking approach was applied in various AR applications.  

Despite the various studies that explored the handed-interaction in 3D space, AR environments have some 

special characteristics that pose additional requirements for user interaction: In AR environments, the position 

and orientation of the virtual object is often associated with the marker tracked by a vision system, and the user 

interacts with the virtual object by manipulating its associated marker. It is unclear whether the existing 

interaction techniques in 3D space are still applicable in an AR environment with hand-held markers. This work 

explores how the user can manage the manipulation of markers to interact with 3D objects using 
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handed-interaction.   

Hand gesture recognition has been an active research field for a long time, and many different approaches can 

be found in the literature. Many different types of visual features have been proposed for hand gesture 

recognition. One type of features is based on the skeleton structure of the fingers [20], [21]. Other approaches 

are based on the segmentation of hand regions [22], [23]. In this work, we adopt the second approach where a 

depth camera was used to identify and segment the hand region. 

3. Interaction Techniques with 3D Content in AR Environments 

This section presents the three interaction techniques we propose for interaction with 3D content in AR 

environments and briefly explains their implementations. The potential limitations of these techniques are 

discussed from our perspective. Finally, we report on the experiment conducted to compare these techniques. 

The prototype AR system used in this work was implemented using NyARToolkit1, a Java-based software 

library for prototyping AR applications. For the imaging processing tasks and interaction with the Kinect sensor, 

we used javaCV2 and Java wrappers for the Kinect libraries3 respectively.     

3.1. Manipulation of Hand-Held Markers 

This is the simplest form of interaction in AR environments in which a user can inspect a virtual object by 

manipulating it to a reference fiducial marker in the real world using bare hands. The role of the AR system is to 

establish the camera pose relative to this marker in order to render the object correctly in 3D space (see Fig. 2).  

However, this interaction mode has some restrictions: the pattern of the marker should be constantly visible 

by the AR system so that it can render the virtual object correctly. If the marker is occluded or obscured while 

being manipulated, the virtual object will not be rendered correctly. This adds cognitive load on the user as she 

needs to continually think of the visibility of the marker. The pattern of the marker may also become invisible if 

it is manipulated to certain positions or angles. For example, if the marker is positioned horizontally relative to 

the camera, the process of pose estimation will be impossible. Another limitation of manipulating hand-held 

markers is the difficulty of handling some geometric transformations. For example, scaling the virtual object up 

and down (e.g. stretching or shrinking the object) can be done by moving the marker towards or away of the 

camera view. However, this may require the user to move along distance away or close to the camera so that the 

marker’s size, and hence the object’s size, changes significantly. Similarly, it may be difficult to rotate the object 

360 degrees due to the nature of hand wrist.  

It is clear from the above discussion is that the direct manipulation of markers, while being intuitive and 

commonly used in AR applications, poses certain restrictions for the free interaction with objects in the 3D space. 

Thus, it is necessary to explore other interaction methods to overcome these restrictions.   

 

 
Fig. 2. Interaction with AR content using a hand-held marker 

 
1 http://www.artoolworks.com/products/open-source-software/nyartoolkit/ [Accessed on 8/20/2014] 
2 https://code.google.com/p/javacv/ [Accessed on 8/20/2014] 
3 http://fivedots.coe.psu.ac.th/~ad/kinect/ [Accessed on 8/20/2014] 
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(a). Grapping and rotating the object with hand fist.     (b). Scaling the object by moving fist along z axis. 

 
(c). Releasing the object by opening the hand fist. 

Fig. 3. Free hand interaction with 3D content. 

3.2. Free Hand Interaction 

To overcome the limitations of direct manipulation of markers, we explore an approach that is based on 

two-handed interaction: while one hand is used to hold the marker and keep it steady, the other hand is used to 

apply 3D transformations on the object. The user grabs the marker with one hand. This is where the virtual 

object will be rendered and positioned. Meanwhile, the other hand can be used to rotate/scale the virtual object 

as the following (see Fig. 3):  

 Close/Open hand fist to start or stop manipulating the object. 

 Move hand left or right to rotate the object in yaw (around the y axis). 

 Move hand up and down to rotate object in pitch (around the x axis). 

 Move hand towards and away from the camera to scale the object up and down respectively (move along 

the z axis). 

 Move the marker in any direction to reposition the object.  

The proposed hand-based interaction imposes a separation between two tasks: the visibility of the marker’s 

pattern, which is essential to construct the AR scene, and the 3D interaction with the object. This separation is 

achieved by assigning each task to a different hand. We oversee that this separation allows the user to focus on 

the interaction with the object without worrying about the visibility of the marker. The marker remains 

permanently visible as the user does not need to rotate or scale the marker. Thus, the rendering of the virtual 

object will not be disrupted. Meanwhile, the virtual object can be fully rotated and scaled by moving the other 

hand along x, y and z axes, without worrying about the visibility of the marker. In addition, unlike the direct 

manipulation of markers, the 3D transformations are not constrained by the limitation of the human wrist.   

To avoid making the virtual object responsive to unintentional hand movements, the above hand actions will 

take effect only if the hand is closed. Performing the above gestures while closing the hand will cause the virtual 

object to respond respectively, while opening the hand will release the object. Using the “grab” and “release” 
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gestures to enable or disable object manipulation is essential to avoid the ambiguity resulting from moving 

hands for other purposes. 

It is obvious that the proposed free-hand interaction requires efficient and accurate tracking of hand 

movement as well as detection of hand posture (open/closed hand). While the literature in computer vision 

proposed different techniques for hand detection and tracking (see [24] for a survey of these techniques), most 

of these techniques lack the desired ease of use and robustness. To address the drawbacks of previous 

approaches, this work benefited from the recent advances in camera technologies by using the depth camera of 

the Kinect device, which can achieve robust and accurate tracking of the human skeleton and the joints of human 

body in real time. Once the skeleton is detected, we can identify the hand joint and its location within the camera 

scene. 

 
Fig. 4. Hand regions as detected by our depth camera (fist and open hand). 

 

   
(a). Arrow buttons to rotate object around x and y axes. (b). Zoom buttons to scale object up and down. 

Fig. 5. Interaction with AR content using a keypad controller. 

 

Our approach also utilizes the capability of the Kinect camera in detecting 3D depth information to enable the 

movement of the object along the z axis. The camera provides information of the location of hand joints in the 3D 

space. Therefore, the virtual object can be translated along the z axis by moving the hand joint close or away 

from the camera.  

Until the time of writing this paper, the available Kinect interface does not support finger detection or 

open/closed hand. Therefore, we used the following unsupervised technique which utilizes the depth 

information and the detected skeleton joints to recognize open/closed hands as the following: 

 Hand segmentation: Hand segmentation deals with separating the user’s hand from the background in the 

image. We first used the depth information obtained from the depth camera to plot the depth histogram. A 
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depth histogram typically shows the pixels’ distances from the camera. By identifying the depth at which 

hand joint is located using the Kinect sensor, we can then segment the hand region by extracting points 

located at that depth. Fig. 4 shows the result of depth-based hand segmentation. Hand segmentation using 

depth information provides better results than other techniques that are based on color or intensity-level 

thresholding [25].  

 Perform connected-component labeling: regions extracted from Step 1 may contain, beside the hand 

segments, other objects that are located at the same depth. To filter these objects out, we perform 

connected-component labeling, which is an operation that classifies connected pixels as disjoint objects 

with unique identifiers. Hand segments are the connected regions whose centroids are nearby the hand 

joints of the skeleton. Other connected regions whose centroids are far from the hand joints by a predefined 

threshold distance are ignored. 

 Apply convex hull and convexity defects methods: The convex hull of a set of points is the smallest convex 

set that contains all the sets of the given points. Convex hull is drawn around the contour of the hand, such 

that all contour points are within the convex hull. Subsequently, we detect convexity defects. A convexity 

defect is present wherever the contour of the object is away from the convex hull drawn around the same 

contour (see Fig. 4).  Convexity defect gives the set of values for every defect in the form of vector. This 

vector contains the start and end point of the line of defect in the convex hull. The hand status (closed/open) 

can then be determined by counting the number of large defects that result from the gap between fingers. A 

closed hand contains less convexity defects than an open hand. 

3.3. Keypad Controller 

Another approach we present to interact with 3D objects in AR environments is by using a keypad controller 

along with the hand-held fiducial marker. A keypad, which also resembles the use of a standard keyboard, is 

shown in Fig. 5, and consists of a set of virtual buttons rendered on the scene:  hovering the hand fist over the 

left or right buttons causes the object to rotate about the y axis while hovering the hand fist over the top or 

bottom buttons causes the object to rotate about the x axis.  The zooming buttons are used to scale the object up 

and down by moving it along z axis. Similar to the free hand interaction, the rotate and scale transformations are 

independent of the marker which should be permanently visible. The interaction with the keypad can be done 

using a desktop mouse, which is useful if the user interacts with the AR scene using a standard PC. Alternatively, 

the user can use the keypad from a distance by pressing/unpressing buttons using hand actions. Approaching 

the hand fist to any button and closing it will apply the corresponding action on the object. Hand-based 

interaction with the keypad releases the user from the restrictions of desktop environments and allows for 

remote control of the virtual object. The user can use one hand to hold the marker while using the other hand to 

interact with the keypad.  

The intention of proposing the keypad- based interaction is to resemble the use of traditional keyboard and 

mouse controls, and to compare this interaction paradigm with other techniques. Our hypothesis is that while 

the keypad approach offer less natural interaction, it allows for more fine-grained and precise manipulation of 

the controlled object. For example, a simple button action may cause the object to rotate by a 1-degree angle. 

Such a precise rotation is difficult to perform when hand is used as a rotation device. 

4. Experiment 

In the following sections, we report on an empirical study that compares the user experiences when using the 

three techniques discussed above. We conduct the study with the following questions in mind: 

 What are the advantages and limitations of each technique? and what are the user preferences? 

 Are there particular situations where some techniques may be preferred over the others? 

 How can these different techniques inform the design of AR applications? 

4.1. Participants 
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18 volunteers (16 males, 2 females, aged between 19 and 27) participated in the study. All of them were 

recruited from the local university and were right-hand dominated. They were all frequent-computer users but 

no one had prior experience with AR applications.  

4.2. Apparatus 

Equipment used for our experiment is shown in Fig. 6. We used a 42 inch TV, which was connected to a PC, to 

view the AR generated scene. For object tracking, we used a Kinect camera that was mounted in front of the TV. 

The virtual object we used was a 3D model of a house (see Fig. 2). The object is associated with a fiducial marker 

with a specific pattern. During tasks, each participant was asked to stand 2.5 meters away from the TV (the 

practical ranging limit of the Kinect sensor is 1.2-3.5 meters) and raise the marker until the virtual object is 

detected and rendered on the AR scene. 

We have chosen this experimental setting because it resembles the commonly-used AR setting for many 

applications. In this setting, the user stands in front of a camera which continuously tracks predefined patterns 

and renders virtual content inside the scene. The augmented scene is then projected on a wall or displayed on a 

screen. 

 
Fig. 6. Experimental apparatus. 

4.3. Tasks 

The tasks were planned to explore the degree to which users of a marker-based AR system can effectively 

manipulate virtual objects in the 3D space. The virtual object used for our experiment is the house model shown 

in Fig. 6. Each participant should hold a fiducial marker until the house model is successfully integrated into the 

AR scene.  

Each participant was instructed to perform two different tasks in sequence, each of which required 

manipulating the house model in a different way: the first task required the participant to rotate the house model 

360 degrees around the y axis in counter-clockwise direction. The second task involved a combination of rotate 

and scale operations (scale the model to twice its original size, rotate it 45 degrees around the x-axis in clockwise 

direction, followed by rotating it 90 degrees around the y axis in clockwise direction). When the model reached 

its target position, orientation and scale, it was frozen and a message indicating the end of the task was 

displayed. 

Note that the first task required executing a single 3D transformation while the latter required the execution 

of multiple transformations. The intention was to observe and analyze the execution of both single as well as 

multiple 3D transformations. Previous research  [26] indicated that while users may perform a single 

transformation (e.g. rotation) easily, they may encounter difficulty when combing multiple transformations (e.g. 

a sequence of rotate, scale and translate actions). 
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At the beginning of each task, participants were shown the target status of the house that they should achieve, 

but without being told the operations they had to do. The goal was to explore the extent to which participants 

can find out the sequence of actions they should perform.      

4.4. Experimental Design 

We used a within-subject, full-factorial repeated measure design for the experiment. For all tasks there was a 

single independent variable which is the interaction mode (manipulation of markers, free hand interaction and 

keypad controller). Each participant performed every task using the three interaction modes. There were 3 trials 

arranged for each task. Thus, a total of 3 (tasks)  3 (interaction modes)  3 (repetitions) = 27 test trials were 

collected from each participant.  

The order of interaction modes was counterbalanced across participants. For the three interaction modes, 

there were 6 possible orders. Therefore, participants were split into 6 groups of three. Each group performed the 

tasks using a different order (for example, one group performed the tasks starting with the marker mode, 

followed by the free hand interaction, ending with the keypad controller). The aim of creating a group for each 

possible order is to avoid the order effect. After completing each of the three tasks, each participant rated the 

three interaction modes according to their overall feelings. Before the experiment started, the three interaction 

modes were demonstrated to all participants. Participants were also given time to practice with the interaction 

modes. 

4.5. Metrics 

We used the following metrics to compare between the three modes: 

 Completion Time: this is the time elapsed between the beginning and the end of interaction with the 3D 

object. The trial does not end until it has been successfully completed. 

 Number of Deviations: A “deviation” occurs when a participant performs a wrong 3D manipulation that 

causes the object to miss the desired transformation or disappear from the scene. For example, a participant 

may rotate the object about a wrong access, scale the object down rather than up or apply useless 

manipulations that do not contribute towards the task completion. A deviation also includes any action that 

hinders the vision system from continually tracking the marker. From example, if the marker is positioned 

so that it becomes invisible by the camera, this will cause the attached virtual object to disappear. The 

number of deviations provides indication of the difficulty of the interaction mode and the dispersion it 

causes. 

5. Results 

We performed a one-way, within-subjects ANOVA for each task.  

 

Table 1. Completion times in tasks 1 and 2 

 

5.1. Completion Time 
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Table 1 and Fig. 7 summarizes the average completion times for the two tasks. For the first task, ANOVA 

showed that the interaction mode had a significant effect on the average completion time [F(1,23)= 102.95, 

p<.0001]. Post-hoc pairwise comparisons also showed significant differences between every pair of interaction 

modes. These results collectively suggest that participants completed the first task fastest with 

hand-manipulated markers, slower with the two-handed interaction, and slowest when using the keypad 

controller. 

 
Fig. 7. Completion times in tasks 1 and 2. 

 

In the second task, which required doing multiple 3D operations, ANOVA also revealed that the main effect of 

the interaction mode was significant on the completion time [F(1,17)=79.86, p<.0001]. However, pairwise mean 

comparison showed that there was no significant difference between the marker mode and the free hand mode.  

Similar to the first task, participants took more time to complete the task with the keypad mode than with the 

other two modes. However, the difference in completion time between the marker mode and free hand mode 

was marginal. 

Among the three modes, the keypad mode took the highest completion time. This is due to the fact that, with 

the keypad, only one button can be activated at a single time. Thus, participants were forced to perform 

operations one by one. As revealed from the recordings, they had to complete one operation (e.g. rotation) 

before starting the following operation (e.g. scaling). In contrast, participants could generally perform more than 

one operation at a time when using the other two modes (e.g. rolling the marker as well as moving hand forward 

and backward).  Besides, the speed of manipulating the object in the keypad mode is limited by the precision of 

the controller: the smaller the change resulting from a button press on the keypad, the more time it takes to 

complete the task.  

5.2. Number of Deviations 

Table 2 and Fig. 8 show the average number of deviations made across the two tasks. In the first task, which 

involved a single rotate action, ANOVA showed that the main effect of the interaction mode on the number of 

deviations approached statistical significance [F(1,17)=5.61, p=0.0055]. Results showed that participants 

deviated least when using the keypad controller, followed by the free-hand mode and then the marker mode. 

Post-hoc pairwise comparisons also showed significant differences between all possible pair of modes. 

Looking at this result in conjunction with the average completion time, we found that participants spent less 

time using both the marker and the free hand modes but they made more deviations. In contrast, the keypad 

controller took more time but less number of deviations. 

To explore the rationale behind this result, we traced video recordings in order to identify the deviations and 

their causes in each interaction mode. We identified the following issues that often hindered the user interaction: 

Loss of object tracking: in the case of the marker mode, rotating the marker by 360 degree cannot be directly 

done using a single hand due to the limitation of the hand wrist. Thus, participants had to move the marker from 

one hand to another to do the full rotation. Due to this transition, participants sometimes failed to keep the 
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marker constantly visible, causing the vision system to temporarily lose the tracked marker, and hence to 

withhold the virtual object from the scene. This observation supports our hypothesis about the limitation of the 

marker mode for interaction in 3D space. 

 

Table 2. Number of Deviations in Tasks 1 and 2 

 

 
Fig. 8. Number of deviations in tasks 1 and 2. 

 

Inaccurate object grasping and release: Looking at the user behavior when using the free hand mode, most 

erroneous actions happened due to the participants missing to open or close hand at the right time. As explained 

earlier, the user should close the hand fist to grab the virtual object before moving it. At the end of the task, the 

hand fist should be open to release the object being manipulated, and thus stop it from responding to hand 

movements. Most deviations in this mode resulted from the participants forgetting to close or open hand at the 

right time, causing the virtual object not to respond to their hand movements. Similarly, many participants also 

forgot to open hand when the virtual object reached its target transformation, causing the object to keep 

responding to unintentional hand movements. 

On the other hand, controlling the 3D object using the keypad resulted in more robust interaction. This is 

because the visibility of the marker’s pattern remains intact during interaction. It also does not involve actions 

for object grasping and release as in the free hand mode. In addition, the keypad mode resulted in precise 

positioning of the object. This precision can be explained by the fixed and rigorous changes that results from 

pressing the controller buttons. Hand moves, on the other hand, are often less accurate, as a small hand move can 

cause a big change in the position of controlled object.  

5.3. Subjective Comments 

Participants were asked about their preference of the interaction modes after they completed the tasks. In 

general, results showed that they were divided:  11 out of 18 participants preferred the manipulate marker 

mode while 7 participants preferred the free hand mode. No participant gave preference to the keypad mode. 

This result indicates that participants, in general, preferred interaction modes that offer more “natural” 
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interaction. Three participants who preferred the marker mode explained that it resembles the real interaction 

as if the real object was physically present in their hands.  

Participants who preferred the hand mode agreed that they had no problem to mirror their hand actions to 

the target object without being distracted or overwhelmed. They also indicated that the open/close hand action 

gave them more control to halt and resume contact with the object during the task. This allowed them to fix the 

target object on a specific orientation/position by simply opening the hand fist to release the target object. 

Regarding the keypad mode, most participants found it more “artificial” and less natural that the other modes. 

Two participants indicated that it is more close to the traditional keyboard/mouse interaction. 

5.4. Implications of Results 

Looking at results from both tasks, we can highlight the following differences between the three interaction 

modes. In what follows, we present these differences and discuss how they inform the design of AR applications: 

On average, the direct manipulation of markers achieved the best completion time and ease of use. However, 

there are many circumstances where this mode becomes impractical: The fact that the user directly manipulates 

the physical marker, which should be permanently trackable by the vision system, can increase the difficulty of 

interaction and restrict the degree of freedom. This was evident as participants were attempting to keep the 

marker constantly visible to the camera during interaction, a thing that can increase the cognitive load on them. 

In addition, some 3D manipulations can never be applied at all because it will cause the marker to be invisible.  

For example, it is impossible to position the house model in the previous experiment to be perfectly horizontal as 

this will cause the marker’s pattern to be invisible by the camera. The above result also suggests that the 

manipulated marker mode, which is a prevalent interaction paradigm in AR applications, can very often be less 

efficient than other modes, and may be inadequate for AR applications that demand flexible positioning or 

viewing of 3D object. 

The free hand interaction and keypad controller modes are different in that they impose separation between 

the tracked object (e.g. the marker) and the interaction with the virtual object: participants hold the marker in 

one hand while manipulating the virtual object with the other hand. Therefore, the interaction was less 

error-nous because participants can focus on the interaction without worrying about the continuous visibility of 

the marker.  

The keypad controller mode was not a preferable choice for participants. In general, participants preferred the 

other two modes of interaction as they were more intuitive and resembled the interaction with real objects. 

However, we cannot ignore the fact that using the keypad offered the highest precision and less-deviated 

manipulation. Therefore, designers should consider using the controller mode for AR applications in which the 

precision of interaction is a priority. Examples of these applications include medical/surgical training or flight 

simulations.   

We also suggest that the separation between the object tracking and 3D interaction has the potential for 

further functionalities that can be useful for AR technology. Using both hands in AR environment (one hand for 

holding the marker and one hand for interacting with content) gives the opportunity to extend interaction in 

various ways. For example, a user can apply a hand gesture (e.g. swipe or point) with one hand while holding the 

virtual object with the other hand. The applied gesture can change the virtual object in different ways such as 

splitting, annotating, replacing or transforming it. Furthermore, free hand interaction offers the ability to 

perform two different independent transformations on the same object, such as changing its position with one 

hand while inspecting it from all sides by rotating with the other hand. In contrast, these capabilities are difficult 

to achieve in the marker mode where the whole interaction is restricted to a single hand that holds the marker 

and manipulates the object at the same time. 

The above results suggest that there is no ideal mode of interaction for AR applications, and that what was 

thought to be common and easy to use in some situations can be impractical in other situations. Therefore, it is 

necessary for the designers of AR applications to consider the specific requirements of their applications in order 

to choose the best interaction technique. 
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6. Conclusion and Future Work 

 In this paper, we presented different techniques to interact with 3D content in AR environments. We also 

reported on an experiment that systematically examined the use of these techniques in practice. Guided by the 

results of our experiment, we discussed the strengths and limitations of these techniques as well as the 

circumstances in which each technique can be advantageous over the others. 

While this work focuses primarily on object manipulation in 3D space, we will explore other interaction 

techniques in AR environments such as object annotation and 3D navigation. We also plan to focus on the design 

of AR applications for educational purposes, similar to the one shown in Fig. 1.b, and to examine the potential of 

the proposed interaction techniques for instruction in the classroom. We believe that the outcomes of this work 

will guide us to design effective interaction techniques to demonstrate and manipulate 3D learning material in 

AR environments. 
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