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Abstract: With the appearance of big data’s era, some problems caused in recommendation systems are 

needed to solve immediately. So it is very useful to design parallel recommendation algorithms. An 

improved parallel item-based collaborative filtering (IP_Item-basedCF) algorithm based on Hadoop is 

proposed in this paper. In order to consider the influence of user’s activity, a new parameter called IUF is 

introduced that can give the active users soft punishment. And the user’s rating is also considered in 

prediction model. Finally, we evaluate the performance of our approach by using two real datasets – 

MovieLens and Douban. The experimental results show that this new parallel algorithm outperforms the 

algorithms existed and has a good scalability and speedup. 
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1. Introduction 

Recommendation system is the system that satisfies the user’s interests and provides personalized 

recommendations for products suiting a user’s taste [1]. The emergence of recommendation system aims to 

win-win between information producers and consumers.  

In the field of data analysis, the MapReduce paradigm and its open-source implementation Hadoop have also 

been widely adopted in industry and academia [2]. It is suitable to process big data. Though many collaborative 

filtering (CF) algorithms [3]-[8] used by recommendation system obtain the excellent predict accuracy, their 

training models still lead to high computational complexity, which are unfit for applying on the large-scale 

dataset. As we all know, a complex computational problem can be processed parallel. With the coming of the big 

data, the researches on efficient parallel CF algorithms have become more and more important in real 

applications. In Ref. [9]. a parallel item-based collaborative filtering (P_Item-basedCF) algorithm based on 

co-factor in Mahout was proposed. Zhou et al. [10]. described a parallel algorithm called 

Alternating-Least-Squares with Weighted--Regularization (ALS-WR). Jiang et al. [11]. proposed the efficient 

partition strategies not only to enable the parallel computation in each Map-Reduce phase but also to maximize 

data locality to minimize the communication cost. Luo et al. [2]. proposed the parallel RMF (P-RMF) model by 

applying the Alternating Stochastic Gradient Solver (ASGD) solver to deal with the parameter training process. 

Karydi et al. [13]. implemented two parallel versions of the collaborative filtering algorithm Slope One, which 

owned advantages such as the efficiency and the ability to update data dynamically. Xu et al. [14] proposed 

SingCF approach aiming at improving the recommendation accuracy, which attempted to incorporate multiple 

singular ratings and to implement collaborative filtering. Li et al. [15] proposed parallel algorithms for SimRank 
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computation on Map-Reduce framework. However, these algorithms did not consider the impacts of user’s 

activities on recommendation results. And most of them evaluated algorithms only on one or two perspectives, 

not on comprehensive perspective such as classification accuracy, prediction accuracy, Coverage etc. But these 

metrics are very important for recommendation system. 

To our best knowledge, most of recommendation algorithms are serial algorithms. With the increasing of the 

amount of data, parallel algorithms have attracted more and more attentions. As the best distributed framework, 

Hadoop can be used to process large data sets. Hence, parallel recommendation algorithms based on Hadoop 

have far-reaching implications. 

In this paper, we focus on designing an efficient parallel Item-based CF algorithm for recommendation system 

on large-scale rating dataset based on Hadoop. An improved parallel item-based collaborative filtering 

(IP_Item-basedCF) algorithm based on Hadoop is proposed. In order to consider the influence of user’s activity, a 

new parameter called IUF is introduced that can give the active users soft punishment. In addition, the user’s 

rating is also considered in our predicting model. 

The rest of this paper is organized as follows. Section 2 presents the preliminary study. Section 3 introduces 

our model that overcomes the weakness of existing distributed item-based CF algorithm. The experimental 

analyses and results are reported in Section 4. In the last section, conclusions have been given and researches in 

the future have been put forward.  

2.   Preliminaries 

This section makes a brief description of the notations used in our paper firstly. Then we analyze the data 

processing based on MapReduce and the feasibility of traditional CF algorithm based on Hadoop. 

2.1. Notations 

Table 1 lists the descriptions of notations used in the paper. Each notation will be defined and explained 

detailed in Section 3. 

 

Table 1. Notations 

Notations Descriptions 

U  The number of users 

I  The number of items 

nI  The Nth item 

aiR  Rating of user a on item i  

p

aiR  The predicted rating of user a on item i  

iR  Average of all UaRai   

)(aN  The set of items that user a has rated 

( )N i  The set of users that like item i  

ijw  Similarity between item i and item j  

T  The co-occurrence matrix 

aP  the preference vector of user a  

a
P  Predicted user’s preference vector 

nnt  Co-factors between item N and item N 

n  The number of recommendations 

2.2. The Feasibility Analysis of Traditional CF Algorithm Based on Hadoop 
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MapReduce [2], [16] is a parallel programming model proposed by Google for parallel processing of large data 

sets. MapReduce includes two main processes: Map and Reduce. Map divided input file into several data blocks, 

and produces a set of output key/value pairs. Reduce merges together these key/value pairs. Obviously, 

key/value pairs are fundamental operations of MapReduce programming model. The computing process of 

MapReduce is as follows in Fig. 1. 

: 1, 1 2, 2Map K V K V    

: (K 2) ReduceShuttle Partitioner   

Re : 2, (V2) 2, 3duce K list K V    

Fig. 1. The computing process of MapReduce. 

In Map phase, each Split, which input data is divided into, has a corresponding Map. After computing, it gets 

zero or more <K2, V2>, which may be different data type. In Shuffle phase, middle output results are transported 

to Reduce. In general, Partitioner decides which key/value pairs are mapped to one certain Reduce by Hash 

value of K. In Reduce phase, final results are written into HDFS. 

 

The feature of MapReduce programming model is to divide the file into blocks, then to compute them 

parallelly. Map function just calculates on a single row or other particular amount of data. 

When computing the Item-User matrix in the phase of Map, we take the itemId as K values, the (userId, itemId, 

rating) as input values V and the (userId, preference) as output values V in our algorithm according to 

MapReduce model. Then in the phase of Reduce, we merge the V values by the same K values, i.e. the same itemId. 

The output values <K, V> are equal to the each row of Item-User matrix. However, the entire Item-User matrix, 

that is the entire file, will be involved while calculating the similarity between items based on Item-User matrix. 

Traditional ItemSimilarity computation need calculate all corresponding user’s rating, for example, a single row 

data just presents one user’s rating record, so the calculation must use several rows information in the matrix 

and the whole matrix needs to be loaded into the memory. When the data size of file is small, it is enough to be 

loaded into RAM. Obviously, it is unsuitable for the Big Data.  

Hence, the traditional CF algorithms are infeasible for MapReduce programming model [17]. directly, which 

requires researchers to design new parallel CF algorithms based on Hadoop.  

3. Parallel Item-Based Collaborative Filtering Recommendation Algorithm 

In Section II, we know that the traditional CF algorithms are not suitable for MapReduce programming model. 

Based on the parallel algorithm in Apache Mahout, this section emphasizes on discussion of our parallel CF 

algorithm. 

3.1. Parallelization Design for Item-Based Collaborative Filtering (P_Item-Basedcf) 
Algorithm 

Apache Mahout is a new open source project by the Apache Software Foundation (ASF) based on Hadoop. 

Parallel item-based collaborative filtering in Mahout is a three-step algorithm which is as following. 

 

In order to convert serial CF algorithm into distributed programming model, user’s preference on items can be 

noted as a vector
T

ananaa RRRR ]  [ 121  , named user vector. Each dimension indicates an item and the value 

represents the preference value. The scale of preference value is from 0 to 5, 0 indicates user has no preference 

on the item. User vector is sparse because lots of users are just interested in few items. 

  

Parallel recommendation algorithms depend on ItemSimilarity implementation as well as Traditional 

Item-based CF recommendation algorithms. Firstly, when designing parallel algorithm, the co-factor which 
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means the number of users who rated the same items simultaneously in their preferences lists is computed to 

replace the traditional similarity calculation such as Pearson correlation coefficient, cosine similarity. The matrix 

consisted of co-factors is called co-occurrence matrix. Obviously, co-occurrence matrix is a symmetric matrix, 

because the similarity between items i and j is the same as the similarity between items j and i . Table II shows a 

simple example for co-occurrence matrix. 

From Table 2, if there are 7 users who express some preference for both Item1 and Item2, then Item1 and 

Item2 co-occurred 7 times, which means their co-factor is 7. If two items never appear together in any user’s 

preferences list, their co-factor is 0. Conceptually, each item co-occurs with itself every time if any user expresses 

a preference for it, its co-factor is defined as 0 because this value won’t be useful in co-occurrence matrix [9]. 

Co-occurrence matrix is much like similarity matrix, the more times two items appears together, the more 

similar they possibly are. So co-occurrence matrix plays a role like ItemSimilarity in the serial item-based CF 

algorithm. 

 

Table 2. The Co-Occurrence Matrix for the Simple Example 

 Item1 Item2 … ItemN-1 ItemN 

Item1 0 7 … 5 1 

Item2 7 0 … 3 2 

… … … … … … 

ItemN-1 5 3 … 0 3 

ItemN 1 2 … 3 0 

 

 

In order to compute recommendations for user a , the user vector, as a column vector, will be multiplied with 

the co-occurrence matrix, as shown in (1). 
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                          (1) 

 

Equation (1), T denotes the co-occurrence matrix, aP denotes the user vector for a ,
'

aP is the recommendation 

result for user a . After sorting from
p

aR 1 to
p

anR , the top n items can be recommended. 

3.2. Disadvantage of P_Item-Basedcf 

The shortcomings of above P_Item-basedCF algorithm mainly include two parts as follows. 

1) As we have already discussed above, the preference list of each user makes a contribution to similarity 

between items. Therefore, co-factors give an equal weight to each of user’s contribution. It will reduce the 

accuracy of recommendation. 

2) While predicting preference for one user, P_Item-basedCF adds up all values after doing multiplication 

between the co-occurrence matrix and the user vector. After sorting by each component in Pa, the top N 

items are recommended to user a. But the values in Pa cannot be described a predicted preference value 

well because they are too large. 

3.3. Improved Parallel Item-Based Collaborative Filtering (IP_Item-Basedcf) 
Algorithm 
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To aim for solving both of disadvantages above, an Improved Parallel Item-based Collaborative Filtering 

(IP_Item-basedCF) algorithm is proposed from two aspects. 

 

Co-occurrence matrix ignores the influence of user’s activity degree, which is just defined according to the 

total number of items rated by each user. Assumed that 100 items are rated by user a , the activity degree of 

user a is 100. The more items are rated by one user, the bigger activity degree he has. But this cannot represent 

high activities of one user. 

John S. Breese [18]. proposed an index called IUF (Inverse User Frequence), which can be used to illustrate the 

user’s activity degree. He considered the contributions to similarity which active user made should be less than 

inactive user. He thought that IUF should be joined in the formula for computing ItemSimilarity.  

                              
( ) ( )

1

( ) ( )

u N i N j

ijw
N i N j





                                   (2) 

Equation (2) is original formula for computing ItemSimilarity. Where N(i) denotes the set of users who like 

item i . After adding
))(1log(

1

uN
IUF


 , (2) can be rewritten as follows. 

                              
(i) (j)

1

log(1 ( ) )

( ) ( )

u N N

ij

N u
w

N i N j

 



                           (3) 

where )()( jNiNu  is equivalent to co-factors in co-occurrence matrix. In fact, IUF gives the active users soft 

punishment. In the previous section, we have already discussed that co-occurrence matrix played a role of 

ItemSimilarity. So in our model, we apply the IUF into the co-occurrence matrix. After modifying, the new 

co-occurrence matrix is as follows. 
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  

Fig. 2 and Fig. 3 describe the parallel process of modifying co-occurrence matrix. 
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Fig. 2. The process of computing co-occurrence matrix. 
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Leftmost grid presents preference list of user A, B and C, in which each line denotes the set of items that one 

user preferred. For the each line item, every two items are set 1 in the new matrices, in the same way, three new 

matrices are produced as shown in the middle grids in Fig. 2. The value of each dimension depends on the 

occurrence times of each pair respectively. At last, after adding up all three matrices in the middle, the 

co-occurrence matrix is obtained as the rightmost. Fig. 3 shows the new co-occurrence matrix obtained after the 

original co-occurrence matrix multiplies the IUF. 
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Fig. 3. The process of modifying co-occurrence matrix by multiplying IUF. 

 

 

Let us review the predicting formula in traditional item-based CF algorithm firstly, it is defined as follow. 
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where ),( KiS denotes the set of top K items similar with i , N(a) denotes the set of items that user a has 

rated, iR denotes average of all UaRai  . Due to the similarities between (1) and (5), we can improve 

prediction model in (1) by introducing the idea in (5). After improving, each component in
'

aP can be a predicted 

rating. 

1) When computing predicted rating, predicting model needs the average rating of each item. Then the average 

rating vector of all items can be described as follows: 

                                  1 2

T

nR R RR                              (6) 

where iR denotes the average rating for item ),,2,1( nii  . 

2) After adding average vector, (1) can be rewritten as follows. 
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3) At last, co-occurrence matrix is replaced with an improved matrix according to (4), and the final prediction 

model can be received in (8). 
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4. Experiments 

In this section, we conduct experiments for evaluating IP_Item-basedCF proposed in Section III. Meanwhile the 

comparison results are also shown between IP_Item-basedCF and P_Item-basedCF through the experiments. 

4.1. Dataset and Evaluation 

In order to evaluate the performance accuracy of our approach, we adopt two real datasets, MovieLens and 

Douban [19]. MovieLens dataset collected 10,000,054 anonymous rating of approximately 10,681 movies made 

by 71,567 MovieLens users who joined MovieLens in 2000. Douban dataset contains 129,490 unique users and 

58,541 unique movie items. Their scales of the ratings are from 1 to 5.  

There are many metrics on performance accuracy in recommendation system [20], [21]. These metrics can be 

roughly classified into two categories: classification accuracy and prediction accuracy. In this paper, we use 

Precision, Recall as classified accuracy, MAE as prediction accuracy. In addition, Coverage metric describes the 

ability of a recommendation system to discover long tail items. Speedup evaluates the efficient and scalable 

performances for parallel algorithms. So we use Precision, Recall, MAE, coverage, speedup as our performance 

metrics.  

4.2. Experimental Results and Analysis 

We do all experiments on a Hadoop cluster which includes 4 nodes, one node as Namenode and Jobtracker, 

and other three nodes as Datanode and Tasktracker. Before doing experiments, ninety percent of user’s data 

were used as training set, and the remaining data were used as test set. In order to evaluate our algorithm, three 

groups of experiments have been done from the perspective of classification accuracy, prediction accuracy and 

Coverage on both datasets. 

From Fig. 4, we can report that the correlation between classification accuracy and the number of 

recommendations is neither positive nor negative on precision and recall. So the number of recommendations 

has great effect on the classification accuracy. But the performance of two algorithms don’t have great difference, 

our algorithm has slightly better accuracy than P_Item-basedCF. 

As aforementioned contents in Section 3, estimated values in '

aP cannot be represented predicted ratings 

accurately because they are too large and the values in '

aP are just weight value. In order to do a comparison 

with P_Item-basedCF, we do a normalization processing for co-occurrence matrix. As shown in Fig.5, our 

algorithm exhibits better performance than P_Item-basedCF when the number of recommendation is 40, 20 

respectively in MovieLens dataset and Douban dataset. Both of them received the lowest MAE when the number 

of recommendation is 50. So prediction accuracy of our algorithm is better than that of P_Item-basedCF. 
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(a) Precision   

 
                                               (b) Recall 

Fig. 4. Comparison in classification accuracy between P_Item-basedCF and our algorithm. 

 

 
Fig. 5. Comparison in MAE between P_Item-basedCF and our algorithm. 

 
Fig. 6. Comparison in coverage between P_Item-basedCF and our algorithm. 

 

Coverage metric describes the ability of digging long tail items in recommendation system. With the number of 
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According to the above comparison and analysis, although the classification accuracy on precision and recall of 

both algorithms are nearly similar, our algorithm has received obvious improvement on prediction accuracy and 

an outstanding performance on Coverage has been obtained especially. Generally, our algorithm has been proved 

effectively through the results of experiments. 

4.3. Efficiency and Scalability 

 
Fig. 7. The speedup of two datasets. 

5. Conclusions 

Collaborative filtering is the most widely used recommendation technology in the personalized 

recommendation system. However, studies about parallel recommendation algorithms are far fewer than those 

of serial traditional CF algorithms. Distributed item-based CF recommendation algorithms existed ignore the 

user’s activity and rating. This paper propose a new parallel item-based collaborative filtering algorithm to 

improve the performance of recommendation based on modified co-occurrence matrix by introducing 

punishments on active user. We also conduct a series of experiments to compare parallel item-based 

collaborative filtering algorithm in Mahout with our proposed recommendation algorithm. According to the 

results of experiments, our algorithm outperforms the existed algorithms. Recently, Context-aware 

Recommendation System [22] (CARS) has been widely studied, and many companies start incorporating some 

contextual information into recommendation engines. The user’s context information [23], [24] such as time 

information [25], [26] can be considered in our future works, which may obtain better performance. 
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