

Command-Triggered Microcode Execution for Distributed
Shared Memory Based Multi-Core Network-on-Chips

Xiaowen Chen1, 2,*, Zhonghai Lu2, Axel Jantsch3, Shuming Chen1, Yang Guo1, Shenggang Chen1,
Hu Chen1, Man Liao1

1 College of Computer, National University of Defense Technology, 410073, Changsha, Hunan, China.
2 Department of Electronic Systems, KTH-Royal Institute of Technology, 16440 Kista, Stockholm, Sweden.
3 Institute of Computer Technology, Vienna University of Technology, 1040 Vienna, Austria.

* Corresponding author. Tel.: +86 135 0848 1483; email: xwchen@nudt.edu.cn
Manuscript submitted January 10, 2014; accepted March 28, 2014.

Abstract: Technology advance enables integration of a lot of resources on multi-core Network-on-Chips

(NoCs). In such complex system, memories are preferably distributed and supporting Distributed Shared

Memory (DSM) is essential for the sake of re-using huge amount of legacy code and easy programming.

Besides, the design complexity of multi-core NoCs results in long time-to-market and high cost. Motivated by

these two considerations, we propose a hardware/software co-design, called “command-triggered microcode

execution”. It guides a Dual Microcode Controller (DMC) to look for a flexible DSM support under multi-core

NoCs. This paper describes hardware/software co-operation, command type, work model, work flow and

microprogramming development flow in our proposed hardware/software co-design. Microcodes of basic

DSM functions are implemented and their performance evaluations are discussed. Experimental results show

that, when the system size is scaled up, the delay overhead incurred by the DMC may become less significant

in comparison to the network delay. In this way, the delay efficiency of our hardware/software co-design is

close to that of hardware solutions on average but our co-design still has all the flexibility of software

solutions.

Key words: Command, microcode, microprogramming, hardware/software co-design, distributed shared
memory, multi-core network-on-chips.

1. Introduction and Motivation

The rapid development of integrated circuit and computer architecture technology enables more and more

computing resources and storage elements to be integrated on a single chip [1]. It is a trend that the

high-performance single-chip computing architecture is evolving from single-core to multi- and many cores

[2], [3]. Network-on-Chip (NoC) [4]-[6] is recognized as the scalable solution to interconnect and organize so

many cores and hence has attracted significant attentions over the last ten years since various buses do not

scale well with the system size. Another trend is that, due to technology advance, the embedded memory

content in System-on-Chips (SoCs) increases from 20% ten years ago to 85% of the chip area today and will

continue to grow in the future [7]. Technologies such as high density embedded memory (e.g. Z-RAM from

Innovative Silicon [8]) and 3D integration, high bandwidth and parallel access to memory are becoming

feasible and preferable. For instance, G. Loh proposes a 3D-stacked memory architecture where each core has

its own memory bank with significant performance gains [9]. It’s convinced that such many on-chip

memories are preferably to be distributed for medium and large scale system sizes because centralized

Journal of Software

142 Volume 10, Number 2, February 2015

memory has already become the bottleneck of performance, power and cost. Following the two trends, a key

question for such multi-core, distributed memory architectures is what kind of communication paradigm,

shared variable or message passing, to support? In our view, we envision that there is an urgent need to

support Distributed but Shared Memory (DSM) because of the huge amount of legacy code and easy

programming. From the programmers’ point of view, the shared memory programming paradigm provides a

single shared address space and transparent communication, since there is no need to worry about when to

communicate, where data exist and who receives or sends data, as required by explicit message passing API.

A multi-core NoC chip integrates a number of resources and may be used to support many use cases. Its

design complexity results in long time-to-market and high cost. As we know, performance and flexibility are

paradoxical. Dedicated hardware and software-only solutions are two extremes. Dedicated hardware

solutions can achieve high performance, but any small change in functionality leads to re-design of the entire

hardware module and hence the solutions suffice only for limited, static cases. Software-only solutions

require little hardware support and main functions are implemented in software. They are flexible but may

consume significant cycles, thus potentially limiting the system performance. Microcode approach is a good

alternative to overcome the performance-flexibility dilemma. Its concept can be traced back to 1951 when it

was first introduced by Wilkes [10]. Its crucial feature offers a programmable and flexible solution to

accelerate a wide range of applications [11].

Along the aforementioned consideration, we propose a hardware/software co-design, called

“command-triggered microcode execution”. It guides a Dual Microcode Controller (DMC) [12] to look for a

flexible DSM support under multi-core NoCs, aiming for the performance of hardware solutions but

maintaining the flexibility of software solutions. The DMC is a programmable coprocessor, flexibly supporting

various functions implemented in microcode. Functions are triggered by requests from main processors in

form of command. In this paper, our proposal shows an entire hardware/software co-design flow targeting

DSM based multi-core NoCs with such DMC modules. It describes in detail hardware/software co-operation,

command type, work model, work flow as well as microprogramming development flow. As microcode

examples, basic DSM functions (Virtual-to-Physical address translation, shared memory access and

synchronization) are implemented by following the proposed hardware/software co-design flow.

Performance analysis and experimental results show that, when the system size is scaled up, the delay

overhead incurred by the controller may become less significant when compared with the network delay. In

this way, the delay efficiency of our hardware/software co-design is close to that of hardware solutions on

average but the co-design still has all the flexibility of software solutions.

The remainder of the paper is organized as follows. Section 2 discusses the related work. Section 3

describes our DSM based multi-core NoC architecture with DMC modules. In Section 4, we present the

hardware/software co-design: Command-triggered Microcode Execution in detail. Section 5 evaluates the

performance of the proposed hardware/software co-design by realizing basic DSM functions in microcode.

Section 6 shows the application experiment results. Finally we conclude in Section 7.

2. Background and Related Work

The crucial feature of microcode approach offers a configurable and programmable solution to accelerate a

wide range of applications [11]. It’s a good alternative to overcome the performance-flexibility dilemma. We

note that up to today there are few researches on using the microcode approach as the basis of

hardware/software co-design method to support DSM, especially on multicore interconnected computing

chips and systems. The Alewife [13] machine from MIT addresses the problem of providing a single

addressing space with integrated message passing mechanism. This is a dedicated hardware solution, and

does not support virtual memory. Both the Stanford FLASH [14] and the Wisconsin Typhoon [15] use a

Journal of Software

143 Volume 10, Number 2, February 2015

programmable co-processor (the MAGIC in the FLASH, the NP in the Typhoon) to support flexible cache

coherence policy and communication protocol. However, both machines were developed not for on-chip

network based multi-core systems. The MAGIC only hosts one programmable coprocessor handling requests

from the processor, the network and the I/O. The NP also uses one programmable coprocessor to deal with

requests from the network and the CPU. If two or more requests come concurrently, only one can compete to

be handled while the others have to be delayed, resulting in contention delay. Furthermore, the MAGIC and

the NP organize memory banks to form a cache-coherent shared memory. Memory accesses are handled by

the programmable coprocessor to hit the right memory banks in local or remote nodes. However, this causes

larger processing time, compared with dedicated hardware solution. It also forces the local processor to

spend more time even on the data only used by itself. The SMTp [16] exploits SMT in conjunction with a

standard integrated memory controller to enable a coherence protocol thread used to support DSM

multiprocessors. The protocol programmability is offered by a system thread context rather than an extra

programmable coprocessor. It utilizes the main processor’s resources and hence deepens the burden of the

main processor.

The microcode execution mechanism of the three researches above [14]-[16] are different with ours. In

our hardware/software co-design, functions implemented in microcode are corresponded to a certain

command. Command-triggered microcode execution enhances coupling degree of the hardware/software

co-operation. Similarly, in [17], [18], Schmidt also uses the concept of command to define his message

frames. The message frames make his programmable controller to respond requests from external devices.

However, his inventions have nothing to do with supporting DSM and his commands are only used in the

networks to enable dialogue with external devices. In our design, commands are coupled with their

corresponding microcodes. This coupling is part of our proposed hardware/software co-design and

supported by necessary hardware.

3. The Multi-Core NoC Architecture

Following [12], this section presents our Distributed Shared Memory (DSM) based multi-core

Network-on-Chip (NoC) architecture with Dual Microcoded Controllers (DMCs).

3.1. Distributed Shared Memory

Fig. 1. a) A 16-node mesh multi-core NoC, b) processor-memory node.

In our Multi-core NoC, memories are distributed at network nodes but shared. Fig. 1. a) shows an example

of our McNoC architecture with DSM. The system is composed of 16 Processor-Memory (PM) nodes

interconnected via a packet-switched mesh network, which is a most popular NoC topology proposed today

[19]. Note that a node can also be a memory node without a processor. As shown in Fig. 1. b), each PM node

contains a processor, for example, a LEON3 [20], hardware modules connected to the local bus, and a local

memory. The module, which connects the processor, the local memory and the network, is the Dual

Journal of Software

144 Volume 10, Number 2, February 2015

Microcoded Controller (DMC), which features two microcoded controllers that can simultaneously serve

requests from the local core and the remote cores via the network.

In our memory organization, we do not treat all memories as shared, though all local memories can

logically form a single global memory address space. As illustrated in Fig. 1. b), the local memory is

partitioned into two parts: private and shared. Two addressing schemes are introduced: physical addressing

and logic (virtual) addressing. The private memory can only be accessed by the local core using physical

addressing. All of shared memories are visible to all nodes and organized as a DSM addressing space and they

are virtual. The philosophy of this organization is to speed up frequent private accesses as well as to

maintain a single virtual space. For shared memory access, there requires a virtual-to-physical (V2P) address

translation. Such translation incurs overhead but makes the DSM organization transparent to application,

thus facilitating software programming.

3.2. Dual Microcoded Controller

Fig. 2. Architecture of the dual microcoded controller.

As shown in Fig. 2, a DMC mainly consists of six components, namely, Core Interface Control Unit (CICU),

Network Interface Control Unit (NICU), Control Store, Mini-processor A, Mini-processor B, and

Synchronization Supporter. As their names suggest, the CICU provides a hardware interface to the local core,

and the NICU offers a hardware interface to the network. The two interface units receive commands from

and sent replies to the local and remote cores. The two mini-processors, which are the core of the DMC, are

the central processing engine. The Control Store, which connects with the CICU, the NICU, the

mini-processor A and B and the Local Memory, is a local storage for microcode, like an instruction cache. It

dynamically uploads microcode from the Local Memory. It feeds microcode to the mini-processor A through

port A, and the mini-processor B through port B. The Synchronization Supporter coordinates the two

mini-processors to avoid simultaneous accesses to the same memory address and guarantees atomic

read-and-modify operations. Both the Local Memory and the Control Store are dual ported: port A and B,

which connect to the mini-processor A and B, respectively.

The DMC is microcoded because of the two programmable mini-processors. The execution of the

miniprocessors is triggered by requests (in the form of command) sent from the local and remote cores

through the two interface units, specifically, local requests through the CICU and remote requests through the

NICU. The existence of two mini-processors increases cost but enhances performance since it enables to

concurrently process requests from the local and remote cores. If there is only one mini-processor, the

essence of the DMC does not change but the processing of simultaneous requests has to be serialized. A

command is related to a certain function, which is implemented by a microcode. A microcode is a sequence of

microinstructions with an “end” microoperation at the end. A microprogram is a set of microcodes.

Journal of Software

145 Volume 10, Number 2, February 2015

Microprogram is initially stored in the Local Memory and will be dynamically uploaded into the Control

Store and then be executed in the miniprocessors on the demand of commands during the program

execution. Synthesis results show that the implementation of the DMC design can run up to 455 MHz

consuming 51K gates (without counting the area of the Control Store) in 0.13 m technology.

4. Hardware/Software Co-design: Command-Triggered Microcode Execution

In this section, we present the detail of our proposed hardware/software co-design.

4.1. Coupled Hardware/Software Co-operation

Fig. 3. Coupled hardware/software co-operation.

As shown in Fig. 2, the two interface units are coupled with their corresponding mini-processors (the

CICU the mini-processor A; the NICU the mini-processor B) to support the command-triggered

microcode execution. The two interface units are pure hardware modules responsible for receiving

commands from the local CPU core and remote cores via the on-chip network, respectively, and then

triggering the execution of the two mini-processors. The two mini-processor are microprogrammable. Fig. 3

illustrates the coupled hardware/ software co-operation. As shown in the figure, there is a command queue

as well as a Command Lookup Table (CLT) in each interface unit. The command queue buffers commands

from the CPU core or remote cores via the on-chip network, if the command queue isn’t empty or the

mini-processor is working. If both the command queue is empty and the mini-processor is idle, the

command bypasses the command queue to reach the CLT directly.

Fig. 4. a) Command Lookup Table (CLT) and b) Microcode segments.

The Command Lookup Table (CLT) reflects the correspondence of a command and a microcode. The CLT is

indexed by the command to output the start address of the command’s corresponding microcode. The start

Journal of Software

146 Volume 10, Number 2, February 2015

address is forwarded to the mini-processor, so the miniprocessor is able to know where the current

microcode execution starts. Fig. 4. a) shows how the CLT looks like. The “Symbol” is mnemonic. The

command “Number” has a one-to-one correspondence with the “Start_Addr” of the related microcode. Fig. 4.

a) lists several commands we have implemented and Fig. 4. b) illustrates the snapshots of three microcodes.

As we can see, “LOAD HWORD” command with its command No. of 4 is responsible for loading a half word

from the local memory. The start address of its related microcode is 24, so in the CLT we have an item

recording the relationship between “LOAD HWORD” command and its microcode. It’s the same for “BURST

STORE BYTE” command which stores 7 continuous byte data into the local memory. Its command No. and

start address are 12 and 51, respectively. “TEST AND SET LOCK” command implements the read-and-modify

operations to guarantee mutex access on a synchronization variable. The CLT stores its command No. (16)

and start address (67).

From Fig. 4. a), we can see the command No. starts from 3 not 1. This is because Command No. 1 and 2 are

two special commands (see below).

4.2. Command Type

We define two types of commands:

i) Special Command

There are two kinds of special commands. The one, named “CLT command” with command No. of 1, is

used to update the Command Lookup Table. Users can use this command to add, modify or delete a

command-microcode correspondence in the CLT. The other, named “MDL command” with command No. of 2,

is used to upload a microcode from the Local Memory to the Control Store. These two special commands are

not stored in the CLT and are usually used together.

ii) Generic Command

A generic command is user-defined to implement a function. Users use “CLT command” to add a new

generic command into the CLT and use “MDL command” to upload the corresponding microcode from the

Local Memory to the Control Store. The correspondence between a generic command and its microcode is

stored in the CLT. The command No. of a generic command is equal to or greater than 3.

4.3. Work Model

The behavior of command-triggered microcode execution is categorized into two kinds of work model.

1): If the corresponding microcode is in the Control Store.

During the run-time, the two interface units respond to commands from CPU core or remote cores via the

on-chip network and then trigger mini-processors to execute the corresponding microcodes.

2): If the corresponding microcode isn’t in the Control Store.

Due to the limited size of the Control Store, a few microcodes can be stored in it. To some extent, this

limitation causes inconvenience of software development. Therefore, our hardware/software co-design

provide users with the support of adding a new microcode into the Control Store and deleting an old

microcode out of the Control Store during the system is running. During the situation that the command

responded to by two interface units is not in the CLT (that also means the corresponding microcode isn’t in

the Control Store), (1) if the Control Store have enough space to store the corresponding microcode, “CLT

command” is used to add this command into the CLT and “MDL command” is used to upload the

corresponding microcode from the Local Memory to the unused space in the Control Store; (2) if the Control

Store doesn’t have enough space to store the corresponding microcode, one or more “CLT command” are

used to delete one or more old commands out of the CLT in order to release enough space for the

corresponding microcode, and then “CLT command” is used to add this command into the CLT and “MDL

command” is used to upload the corresponding microcode from the Local Memory to the space in the

Journal of Software

147 Volume 10, Number 2, February 2015

Control Store of those retired microcode related to the deleted commands.

Fig. 5. Examples of command-triggered microcode execution.

Fig. 5 shows an example of the behavior of command triggered microcode execution. As we can see, each

microcode is related to a function, which is implemented by a microcode. A microcode is a sequence of

microinstructions with an “end” microoperation at the end. A microprogram is a set of microcodes. There are

a number of commands. Each command is related to and triggers a microcode. As shown in the left part of

Fig. 5, Command i is related to the leftmost microcode in the second line, Command i+1 is related to the

second microcode in the first line, and Command i + 2 is related to the rightmost microcode in the second

line. Users define their command and write the microcode of what function they want to implement. Then,

they use “CLT command” and “MDL command” to update the CLT and transfer the microcode from the Local

Memory to the Control Store.

Fig. 6. Work flow.

Regarding the situation that the corresponding microcode isn’t in the Control Store, as shown in the left

part of Fig. 5, the microcode which is marked with 1) and related to Command i + 2 is now located in the

Journal of Software

148 Volume 10, Number 2, February 2015

Control Store, while the microcode which is marked with 2) and related to Command k is located in the Local

Memory. At this time, Command k will be used soon while Command i+2 won’t be used in a near future.

Thus, as shown in the bottom picture of Fig. 5, the microcode marked with 1) is replaced out of the Control

Store while the microcode marked with 2) has a copy in the Control Store.

4.4. Work Flow

As illustrated in Fig. 6, the DMC works as follows (Microprogram is initially stored in the Local Memory):

1) The CICU/NICU receives a command from the local or a remote core.

2) A command will trigger the uploading of its microcode from the Local Memory to the Control Store.

The Control Store has limited storage. If there is no space available when uploading the microcode to

the Control Store, a replacement policy will be activated to replace a microcode with the currently

activated one.

3) Then the mini-processor A (for commands from the local CPU core via the CICU) or B (for commands

from other CPU cores via the NICU) will generate addresses to load the microinstruction from the

Control Store to the datapath of the mini-processor.

4) The mini-processor A or B executes the microinstructions of the microcode.

This procedure is iterated over the entire execution period of the system.

4.5. DMC Library

Fig. 7. DMC library.

As shown in Fig. 1, we adopt LEON3 as the processor core. To support programming under LEON3

software development environment, we provide a set of DMC library functions, as shown in Fig. 7. The DMC

library bridges the DMC’s microprogramming and the LEON3’s programming. It contains two parts: System

Functions and User-defined Functions. In the first part, DMC initialization() initializes the DMC when the

entire program begins. Write CLT() is offered to users to add or update a generic command. Microcode

Uploading() uploads the microcodes from the Local Memory to the Control Store. The last two system

functions, time_cal_starts() and time_cal_ends(), allows users calculates the execution time of their

programs. Users can define their own functions in the second part. Fig. 1 shows two examples:

test_and_set() and unlock(). They correspond to the “TEST_AND_SET_LOCK” command and “UNLOCK”

command, respectively.

4.6. Microprogramming Development Flow

Fig. 8 depicts the entire flow of microprogramming the DMC. The flow consists of 6 steps.

1) The user specifies the function to be implemented in the DMC.

Journal of Software

149 Volume 10, Number 2, February 2015

2) A new generic command is defined according to the function specification.

3) A newly defined command is added into the CLT or an existing command is updated or removed by

the “CLT command”.

Fig. 8. Microprogramming development flow.

4) The user writes a microcode in the DMC assemble language for the specified function, then interpret it

into executable binary code by the DMC assembler.

5) The binary microcode is uploaded from the Local Memory into the Control Store.

6) The DMC Library has to be updated in order for the newly defined command to be supported by the

compiler and used by application programs.

Users can follow this flow iteratively to add, update and delete commands of different functions. For

instance, as shown in Fig. 8, our function specification is implementing a function to store a half word into

the Local Memory. In Step 2, we define a new generic command with Command Symbol of STORE_HWORD,

Command No. of 7 and the start address of 55. The start address is obtained in Step 4 after the corresponding

microcode is written and interpreted. In Step 3, the newly defined command is added into the Command

Lookup Table (see the red dashed box) using “CLT command”. The binary code of the newly written

microcode is uploaded from the Local Memory to the Control Store using “MDL command”. Finally, write a

user-defined function to add the information of STORE_HWORD into the DMC Library. Afterwards, the

command STORE_HWORD can be used successfully.

5. Microcode Examples and Performance Evaluations

To evaluate the hardware/software co-design, we used microcode to implement basic DSM functions: V2P

address translation, shared memory access and synchronization. Performance analysis is performed. We also

performed experiments to evaluate the proposal in terms of execution overhead in a multi-core NoC

platform. We constructed a DSM based multi-core NoC experimental platform as shown in Fig. 1. The

multi-core NoC has a mesh topology and its size is configurable. The network performs dimension-order XY

routing, provides best-effort service and also guarantees in-order packet delivery. Besides, moving one hop in

Journal of Software

150 Volume 10, Number 2, February 2015

the network takes one cycle. Finally, two applications are performed. In all experiments, commands’

corresponding microcodes have already uploaded into the Control Store.

Fig. 9. a) Microcode including V2P address translation, b) Microcode for memory access, and c) Microcode for

synchronization.

5.1. Microcode Example 1: V2P Address Translation

5.1.1. Microcode implementation

To maintain a Distributed Shared Memory environment, each time the command from the local core or a

remote core comes, the Virtual-to-Physical address translation is always performed at first to obtain the

physical address. And then, the target microcode related to this command will be executed. Fig. 9. a) shows

this procedure. In the figure, the microinstructions above the red dash line is used to translate the logic

address into the physical address. Conventional page lookup table [21] is used to implement the V2P address

translation. The translation takes 11 cycles. The remainder microinstructions distinguish whether the target

microcode is local or remote. If local, the execution jumps where the target microcode is; if remote, a

message-passing is started up to request the execution in the remote destination node. Since the V2P

translation is always executed before the Shared Memory Access (see Example 2 in Subsection V-B) and

Synchronization (see Example 3 in Subsection V-C) microcodes, its performance analysis is combined with

that of the Shared Memory Access and Synchronization microcodes.

Journal of Software

151 Volume 10, Number 2, February 2015

Table 1. Time Calculation of Memory Access and Synchronization

5.2. Microcode Example 2: Shared Memory Access

5.2.1. Microcode implementation

Shared memory access is implemented by microcode. We categorize it into two types: (1) Local shared

access; (2) Remote shared access. Because shared memory access uses logical addressing, it implies a V2P

translation overhead. Here, burst reads and writes are used as an example. Fig. 9. b) shows the microcode for

memory read and write of a burstiness of n words.

5.2.2. Performance analysis

Table 1 summarizes the shared memory access performance. We use read transaction to illustrate the

performance of the two types of memory access. If the address is local, the DMC performs local access.

Otherwise, the DMC starts remote access. For a remote read transaction (α=1), its delay (Trss and Trsb)

consists of seven parts: (1) V2P translation latency: Tv2p= 13 cycles (Tf+11), (2) latency of distinguishing

whether the read is local or remote: Td=2 cycles, (3) latency of launching a remote request message to the

remote destination node: Tm=2 cycles, (4) communication latency: Tcom = Tcsd (from source to destination) +

Tcds (from destination to source), including network delivery latency for the request and waiting time for

being processed by the mini-processor B of the destination DMC, (5) latency of filling the pipeline at the

beginning of microcode execution: Tf=2 cycles, (6) latency of branching where the memory read microcode is:

Tb=2 cycles, and (7) latency of executing the memory read microcode: 3 cycles for single read and

1+2×(nb+1)+1 cycles for burst read of nb words. (1), (2) and (3) are in the mini-processor A of the source

DMC, while (5), (6) and (7) are in the mini-processor B of the destination DMC. To facilitate discussions in

synthetic experiment results, we merge (2), (3), (5), (6) and (7) into one part, calling it TMemAcc_without_v2p,

which is the time for executing the memory access microcode excluding the V2P translation time.

Fig. 10 illustrates the execution and time of shared single and bursty read memory accesses. In this

example, the three nodes, #k, #l, and #m execute concurrently. Node #k first performs a local bursty read

followed by a local single read. Meanwhile, node #l performs a remote single read from node #k, and node #m

a remote bursty read from node #k. As shown in the figure, the two miniprocessors A and B in node #k deal

with local and remote read requests concurrently. The mini-processor B in node #k first handles the single

read request from node #l, and then the burst read from node #m.

5.2.3. Synthetic experiment results

Since reads are usually more critical than writes, we use read transactions for all traffic. For a read with nb

words, one request is sent from the source to read nb words from the destination. For uniform traffic, a node

sends read requests to all other nodes one by one. Initially all nodes send requests at the same time. A new

request will not be launched until the previous transaction is completed. For hotspot traffic, a corner node (0,

0) is selected as the hot spot node. All other nodes send read requests to the hotspot node. Simulation stops

after all reads are completed.

Journal of Software

152 Volume 10, Number 2, February 2015

Fig. 10. Examples of single and bursty reads.

Fig. 11. Average read transaction latency for uniform and hotspot traffic.

Fig. 11 illustrates the effect of transaction size. It plots the average read transaction latency for uniform and

hotspot traffic versus burst length in a 8×8 mesh multicore NoC. The burst length varies from 1, 2, 4, 6 to 8

words. For the same transaction size, the overhead of TmemAcc_without_v2p is the same. For the single reads, the

DMC overhead TDMC (TDMC = Tv2p + TmemAcc_without_v2p) equals to 24 cycles (13 + 11). Under uniform traffic,

the communication latency Tcom is 24.52 cycles. So the total time Ttotal (= Tcom + TDMC) is 48.52 cycles (24 +

Journal of Software

153 Volume 10, Number 2, February 2015

24.52). In this case, the DMC overhead is significant. However, under hotspot traffic, the network delivery

time significantly increases because of increased contention in the network and waiting to be processed by

the mini-processor B in the destination DMC. In this case, the DMC overhead is little. When increasing the

transaction size, TmemAcc_without_v2p and Tcom are increased, resulting in the increase of Ttotal. For all hotspot

traffic, Tcom dominates Ttotal. To compare the per-word latency (Ttotal/nb), we draw two lines, one for uniform

and the other for hotspot traffic. We can observe that, while increasing transaction size increases Ttotal, the

per-word latency is decreasing for both uniform and hotspot traffic.

Fig. 12. Burst read latency under uniform and hotspot traffic.

Fig. 12 illustrates the effect of network size. It plots burst read latency under uniform and hotspot traffic.

With respect to the same transaction size (nb = 8), the DMC overhead (TDMC) of a remote read is a constant,

41 cycles (Tv2p=13, TmemAcc_without_v2p=28) for different system sizes, while TDMC of a local read for the single

core is 37 cycles (Tv2p=13, TmemAcc_without_v2p =24) since there is no microcode execution in the destination

node. As the network size increases, Ttotal increases because the average communication distance increases.

For uniform traffic, the increase in Ttotal is rather linear, and for hotspot traffic, the increase goes nearly

exponentially. This is due to balanced workload in uniform traffic in contrast to centralized contention in

hotspot traffic. We also plot the average per-word latency (Ttotal/nb) for the two traffic types. The per-word

latency for both traffics increases with the network size but much smoother. This suggests it is still

advantageous to use larger transaction size, especially for larger size networks.

5.3. Microcode Example 3: Synchronization

5.3.1. Microcode implementation

The Synchronization Supporter provides underlying hardware support for synchronization. It works

with a pair of special microoperations (ll and sc) to guarantee atomic operation. Based on them, various

synchronization primitives can be built. We implement a synchronization primitive: test-and-set(), as

shown in Fig. 9 c). If an acquire of lock fails, the related command will be placed to the tail of the command

queue in the CICU/NICU to wait for the next execution. This avoids incurring additional network traffic and

won’t block other commands for a long time.

5.3.2. Performance analysis

Table 1 lists the synchronization performance. Synchronization is categorized into two types: (1) Local

shared; (2) Remote shared. For acquiring a remote lock, its delay (Tsync_r) consists of seven parts (similar

Journal of Software

154 Volume 10, Number 2, February 2015

with shared memory access): (1) V2P translation latency: Tv2p= 13 cycles (Tf+11), (2) latency of

distinguishing whether the read is local or remote: Td=2 cycles, (3) latency of launching a remote request

message to the remote destination node: Tm=2 cycles, (4) communication latency: Tcom = Tcsd (from source

to destination) + Tcds (from destination to source), including network delivery latency for the request and

waiting time for being processed by the mini-processor B of the destination DMC, (5) latency of filling the

pipeline at the beginning of microcode execution: Tf=2 cycles, (6) latency of branching where the memory

read microcode is: Tb=2 cycles, and (7) latency of executing test-and-set(): 8 cycles. The (5), (6) and (7) are

multiplied by the acquire times: nl. We also merge (2), (3), (5), (6) and (7) into one part, calling it

Tsync_without_v2p, which is the time for executing test-and-set() excluding the V2P translation time.

Fig. 13. Examples of synchronization transactions.

Fig. 13 illustrates synchronization execution procedure. Assume that the lock is on node #k. As we can

see,

the mini-processor A and B in node #k concurrently deal with lock acquire commands from the local

node and the remote node, respectively. The mini-processor A acquires the lock previously, so the

mini-processor B fails. The command re-enters into the command queue in the NICU in node #k. Since there

are no other commands in the queue, the mini-processor B is activated again by this command to acquire

the lock again. This procedure continues until the mini-processor A in node #k accepts the release

command to release the lock. Then, the acquire of the lock by node #l succeeds and the success message is

returned to node #l.

5.3.3. Synthetic experiment results

To experiment on synchronization latency, we use our microcoded test-and-set() primitive, which

performs polling at the destination. For uniform traffic, all nodes start to acquire locks at the same time.

After the acknowledgement (successful acquire) returns, each node sequentially acquires a lock in the next

node following a predefined order. For hotspot traffic, all nodes try to acquire locks in the same node (0, 0).

Simulation stops after all locks are acquired. Since locks in the same node acquired by different nodes can

be the same or different, we distinguish the same lock and different locks for both uniform and hotspot

traffic, resulting in 4 scenarios: (1) uniform, different locks, (2) hotspot, different locks, (3) uniform, same

lock, and (4) hotspot, same lock.

Journal of Software

155 Volume 10, Number 2, February 2015

Fig. 14. Synchronization latency under uniform and hotspot traffic.

Fig. 14 illustrates the effect of network size. It plots the synchronization latency for different network

sizes under the four scenarios classified into Type A for different locks and Type B for the same lock. Note

that, due to the huge latency for the hotspot cases, we use the Log10 scale for the Y-axis. The DMC overhead

(TDMC) is a constant, 29 cycles (Tv2p=13, Tsync_without_v2p=16) for different system sizes, while TDMC for the

single core is 25 cycles (Tv2p=13, Tsync_without_v2p=12) since there is no microcode execution in the destination

node. We can observe that: (1) As the network size is increased, the DMC overhead is gradually diluted; (2)

As expected, the synchronization latency acquiring the same lock (Type B) creates more contention and

thus more blocking time for all cases than acquiring the different locks (Type A).

6. Application Experiments

In this section, we map three applications, matrix multiplication 2D radix-2 DIT FFT and Wavefront

Computation, manually over the LEON3 processors, based on our proposed hardware/software co-design

flow. The matrix multiplication calculates the product of two matrices, A[64; 1] and B[1; 64], resulting in a

C[64; 64] matrice and doesn’t involve synchronization. We consider both integer and floating point matrix

multiplication. The data of the 2D radix-2 DIT FFT are equally partitioned into n rows storing on n nodes

respectively. The 2D FFT application performs 1D FFT of all rows firstly and then does 1D FFT of all

columns. There is a synchronization point between the FFT-on-rows and the following FFTon- columns.

Wavefront Computations are common in scientific applications. In Wavefront Computation, the

computation of each matrix element depends on its neighbors to the left, above, and above-left. If the

solution is computed in parallel, the computation at any instant form a wavefront propagating toward in

the solution space. Therefore, this form of computation get its name as wavefront.

Taking the code segment of matrix multiplication as an example, Fig. 15 illustrates how to write a C code

based on our proposed hardware/software co-design flow. From the figure, we can see that, the program

firstly initializes the DMC by invoking DMC_initialization() followed by Write_CLT() functions. After using

Microcode_Uploading() function to upload the microcode from the Local Memory to the Control Store, the

computation of matrix multiplication begins.

Journal of Software

156 Volume 10, Number 2, February 2015

Fig. 15. Code segment of matrix multiplication.

Fig. 16 shows the performance speedup of the three applications. From this figure, we can see that the

multicore NoC achieves fairly good speedup. When the system size increases, the speedup (Ωm =

T1core/Tmcore, where T1core is the single core execution time as the baseline, Tmcore the execution time of m

core(s).) goes up from 1 to 1.983, 3.938, 7.408, 10.402, 19.926 and 36.494 for the integer matrix

multiplication, from 1 to 1.998, 3.985, 7.902, 13.753, 27.214 and 52.054 for the floating point matrix

multiplication, from 1 to 1.905, 3.681, 7.124, 13.726, 26.153 and 48.776 for the 2D radix-2 DIT FFT, and

from 1 to 1.815, 3.542, 6.735, 12.663, 19.735 and 21.539 for the Wavefront Computation. To make the

comparison fair, we calculate the per-node speedup by Ωm/m. As the system size increases, the per-node

speedup decreases from 1 to 0.992, 0.985, 0.926, 0.650, 0.623 and 0.570 for the integer matrix

multiplication, from 1 to 0.999, 0.996, 0.988, 0.860, 0.850 and 0.813 for the floating point matrix

multiplication, from 1 to 0.953, 0.920, 0.891, 0.858, 0.817 and 0.762 for the 2D radix-2 DIT FFT, and from 1

to 0.908, 0.886, 0.842, 0.791, 0.617 and 0.337 for the Wavefront Computation. This means that, as the

system size increases, the speedup acceleration is slowing down. This is due to that the communication

latency goes up nonlinearly with the system size, limiting the performance. We can also see that the

speedup for the floating point matrix multiplication is higher than that for the integer matrix multiplication.

This is as expected, because, when increasing the computation time, the portion of communication delay

becomes less significant, thus achieving higher speedup. Wavefront Computation is

synchronization-intensive. Its speedup increases more slowly than Matrix Multiplication and 2D DIT FFT,

because synchronization overhead and communication delay become dominating as the network size is

scaled up.

Journal of Software

157 Volume 10, Number 2, February 2015

Fig. 16. Speedup of matrix multiplication and 2D radix-2 DIT FFT.

7. Concluding Remark

In multi-core Network-on-Chips (NoCs), memories are preferably distributed and it’s essential to support

Distributed Shared Memory (DSM) for the sake of re-using huge amount of legacy code and ease of

programming. The design complexity of multi-core NoCs results in long time-to-market and high cost.

Therefore, in this paper, we propose a hardware/software co-design, called ”command-triggered

microcode execution”, in order to explore a flexible microcoded method to support DSM under multi-core

NoCs. The “command-triggered microcode execution” guides a microcoded co-processor, named Dual

Microcode Controller (DMC), in our multi-core NoC platform, purchasing the performance of hardware

solutions but maintaining the flexibility of software solutions. The hardware/software co-design is fully

described with its hardware/software co-operation, command type, work model, work flow as well as

microprogramming development flow. We implemented basic DSM functions (Virtual-to-Physical address

translation, shared memory access and synchronization) as microcode examples. Performance analysis and

experimental results shows that, when the system size is scaled up, the delay overhead incurred by the

controller may become less significant in comparison with the network delay. Application experiments

show that our multi-core NoCs (with the controller in each node) achieves good performance speedup with

increasing system size. Therefore, we can conclude that our hardware/software co-design is a viable way

and its delay efficiency is close to hardware solutions on average but still have all the flexibility of software

solutions.

Acknowledgment

The research is partially supported by the Hunan Natural Science Foundation of China (No. 2015JJ3017),

and the Doctoral Program of the Ministry of Education in China (No. 20134307120034).

References

[1] International Technology Roadmap for Semiconductors. (2013). ITRS 2013 Document. Retrieved 2014,

from http://www.itrs.net/Links/2013ITRS/Home2013.htm.

[2] Horowitz, M., & Dally, W. (2004). How scaling will change processor architecture. Proceedings of the

Journal of Software

158 Volume 10, Number 2, February 2015

International Solid-State Circuits Conference (pp. 132-133).

[3] Borkar, S. (2007). Thousand core chips: A technology perspective. Proceedings of the 44th Design

Automation Conference (pp. 746-749).

[4] Jantsch, A., & Tenhunen, H. (2003). Networks on Chip. Kluwer Academic Publishers.

[5] Bjerregaard, T., & Mahadevan, S. (2006). A survey of research and practices of network-on-chip. ACM

Computer Surveys, 38(1), 1-51.

[6] Owens, J. D., & Dally, W. J. (2007). Research challenges for on-chip interconnection networks. IEEE

MICRO, 27(5), 96-108.

[7] Marinissen, E., Prince, B., Keltel-Schulz, D., & Zorian, Y. (2005). Challenges in embedded memory design

and test. Proceedings of Design, Automation and Test in Europe Conference (pp. 722-727).

[8] Innovative Silicon. (2010). Z-RAM. Retrieved from http://en.wikipedia.org/wiki/Z-RAM.

[9] Loh, G. (2008). 3D-stacked memory architectures for multi-core processors. Proceedings of the 35th

Annual International Symposium on Computer Architecture (pp. 453-464).

[10] Wilkes, M. V. (1951). The best way to design an automatic calculating machine. Proceedings of

Manchester University Computer Conference (pp. 16-18).

[11] Vassiliadis, S., Wong, S., & Cotofana, S. (2003). Microcode processing: Positioning and directions. IEEE

MICRO, 23(4), 21-30.

[12] Chen, X., Lu, Z., Jantsch, A., & Chen, S. (2010). Supporting distributed shared memory on multi-core

network-on-chips using a dual microcoded controller. Proceedings of Design, Automation and Test in

Europe Conference (pp. 39-44).

[13] Agarwal, A. & Bianchini., R. (1995). The MIT alewife machine: Architecture and performance.

Proceedings of the 22nd Annual International Symposium on Computer Architecture (pp. 2-13).

[14] Kuskin, J. & Ofelt, D. (1994). The Stanford flash multiprocessor. Proceedings of the 21st Annual

International Symposium on Computer Architecture (pp. 302-313).

[15] Reinhardt, S. K., Larus, J. R., & Wood, D. A. (1994). Tempest and typhoon: User-level shared memory.

Proceedings of the 21st Annual International Symposium on Computer Architecture (pp. 325-336).

[16] Chaudhuri, M., & Heinrich, M, (2004). SMTP: An architecture for next-generation scalable

multi-threading. Proceedings of the 31st Annual International Symposium on Computer Architecture (pp.

124-135).

[17] Schmidt, O. S. Programmable controller processor module having multiple program instruction. United

States Patent (No. 5212631).

[18] Schmidt, O. S. Processor for a programmable controller. United States Patent (No. 5265005).

[19] Pande, P., Grecu, C., Jones, M., Ivanov, A., & Saleh, R. (2005). Performance evaluation and design

tradeoffs for network-on-chip interconnect architectures. IEEE Transactions on Computer, 54(8),

1025-1040.

[20] Aeroflex Gaisler (2013). LEON3 Processor. Retrieved from http://www.gaisler.htm.

[21] Hennessy, J. L., & Patterson, D. A. (2007). Computer Architecture: A Quantitative Approach (4th ed.).

Elsevier Incorporation.

Xiaowen Chen received two B.S. degrees in microelectronics and computer science,

respectively, from the University of Electronic Science and Technology of China (UESTC) in

2005, and received his PhD in microelectronics from National University of Defense

Technology (NUDT).

Currently, he is a research assistant in microprocessor design. His research interests

Author’s formal
photo

Journal of Software

159 Volume 10, Number 2, February 2015

include computer architecture, microarchitecture, VLSI design, system-on-chips, network-on-chips,

distributed shared memory.

Zhonghai Lu received BSc. from Beijing Normal University, China in 1989. Since then he

had worked extensively in industry for several electronic, communication and embedded

systems companies as a system engineer and project manager for eleven years. Afterwards,

he entered the Royal Institute of Technology (KTH), Sweden in 2000. From KTH, he received

MSc. And PhD. in 2002 and 2007, respectively.

He is currently a researcher at KTH. Dr. Lu has published over 25 peer-reviewed technical

papers in journals, book chapters and international conferences in the areas of networks/systems on chips,

embedded real-time systems and communication networks. His research interests include computer

systems and VLSI architectures, interconnection networks, system-level design and HW/SW co-design,

reconfigurable and parallel computing, system modeling, refinement and synthesis, and design automation.

Axel Jantsch received a Dipl. Ing. (1988) and a Dr. Tech. (1992) degree from the Technical

University Vienna. Between 1993 and 1995, he received the Alfred Schrdinger scholarship

from the Austrian Science Foundation as a guest researcher at the Royal Institute of

Technology (KTH). From 1995 through 1997, he was with Siemens Austria in Vienna as a

system validation engineer. Since 1997, he is with the Royal Institute of Technology,

Stockholm, Sweden.

Since December 2002, he is a full professor in electronic system design. A. Jantsch has published over 140

papers in international conferences and journals in the areas of VLSI design and synthesis, system level

specification, modeling and validation, HW/ SW co-design and co-synthesis, reconfigurable computing and

networks on chip. At the Royal Institute of Technology, A. Jantsch is heading a number of research projects,

in the areas of system level specification, design, synthesis, validation and networks on chip.

Shuming Chen received the BSc., MSc. and PhD degrees from National University of Defense

Technology (NUDT), Changsha, China, in 1982, 1988 and 1993, respectively. Since then he is

with School of Computer, National University of Defense Technology (NUDT).

Currently, he is a full professor in microprocessor design. His research interests include

processor architecture, high performance circuits, custom design for reliability, and SOC. S.

Chen has published over 110 papers in conferences and journals in the area of

microarchitecture, VLSI design, and digital signal processor. As a chief architect, he designed more than ten

microprocessor chips in recent years.

Yang Guo received the BSc., MSc. and PhD degrees from National University of Defense

Technology (NUDT), Changsha, China, in 1992, 1996 and 2001, respectively. Since then he is

with School of Computer, National University of Defense Technology (NUDT).

Currently, he is a full professor in VLSI design and test. His research interests include

microarchitecture, VLSI design and VLSI test methodology. He has published over 60 papers

in conferences and journals in the area of microarchitecture, VLSI design, and VLSI test

methodology.

Author’s formal
photo

Author’s formal
photo

Author’s formal
photo

Author’s formal
photo

Journal of Software

160 Volume 10, Number 2, February 2015

Shenggang Chen received his the BSc., MSc. and PhD degrees from National University of

Defense Technology (NUDT), Changsha, China, in 2004, 2006 and 2010, respectively. He

works in the School of Computer, National University of Defense Technology (NUDT) from

the beginning of the year 2011. His main research interests include VLSI design, digital

signal processor and video encoding.

Hu Chen received the BSc., MSc. and PhD degrees from National University of Defense

Technology (NUDT), Changsha, China, in 2004, 2006 and 2011, respectively. He works in the

School of Computer, National University of Defense Technology (NUDT) from the beginning

of the year of 2011.

His main research interests include high performance microprocessor design and video

encoding.

Man Liao received the MSc. degree from Zhongnan University of Economics and Law

(ZUEL), Changsha, China, in 2009, and 2012, respectively. She works in the School of

Computer, National University of Defense Technology (NUDT) from 2011 June. Her main

research interest is VLSI design.

.

.

Author’s formal
photo

Author’s formal
photo

Author’s formal
photo

Author’s formal
photo

Journal of Software

161 Volume 10, Number 2, February 2015

