

A Simplified and Efficient LTE RRC Conformance Testing
Adapter

Teng Huang1, Zhizhong Ding1*, Younan Duan1, Yin Chen1, Lu Ding2

1 Institute of Communications and Information Systems, Department of Communication Engineering, Hefei
University of Technology, Hefei, 230009, China.
2 Western Digital Corporation, Irvine, California 92612, USA.

* Corresponding author. Email: zzding@hfut.edu.cn
Manuscript submitted January 26, 2014; accepted October 28, 2014.

Abstract: RRC (Radio Resource Control) protocol belongs to the LTE protocol stack and handles the control

plane signaling of Layer 3 between the User Equipment and E-UTRAN. The specifications of RRC

conformance testing are released by 3GPP in the 36-series documents. RRC test suites are normally

developed by use of the testing language TTCN-3 which has the characteristics of platform independence and

abstract description. As a key component in testing architecture, the adapter propagates the request and

reply operations between tester and SUT (System under Test). In order to fulfill data transmission within a

limited time according to the corresponding protocol, developers have to complete a complicated

configuration of adapter. This paper focuses on the design of the adapter. First it analyzes the main

framework of test system and constructs the concrete structure. Then the mechanism and workflow are

illustrated. Finally, we elaborate how the adapter can achieve better performance to acquire accurate timing

control and to implement multi-protocol communications.

Key words: Adapter, LTE, protocol conformance test, RRC, TTCN-3, TRI.

1. Introduction

Radio Resource Control Test has been one of the significant LTE Protocol Conformance Tests since the

3GPP 36 series specifications were released. Usually the test projects need a reasonable model to build a

testing system. The general structure of the testing system based on TTCN-3 was published by the European

Telecommunications Standards Institute (ETSI). According to the testing system model, the testing developer

needs several basic devices including a Host-PC, a System Simulator (SS) and the User Equipment (UE) which

is regarded as System under Test (SUT). In this solution, the Host-PC and the User Equipment (UE) are

connected with special interfaces of the testing entities. The UE and SS transmit data through the standard

internal interfaces and the LTE air interfaces, but the Host-PC and SS exchange data packets through the

wired channels without defined regulations in the specification. Therefore the testing developers need an

effective adapter as a connection between the TTCN-3 Executable (TE) and SUT. The adapter should have

high efficiency and reasonable mechanism to meet the requirements of the released specifications.

This paper presents an adapter implementation which is able to invoke numbers of interfaces effectively

and select the appropriate protocol. It also needs to support parallel processing. The proposed adapter can

achieve better performance due to that fewer communicating ports and threads are used. Compared with

some commercial tools, the proposed mechanism can avoid to run too many threads so that it can acquire

Journal of Software

127 Volume 10, Number 2, February 2015

mailto:zzding@hfut.edu.cn

better performance. For developers, it can be used to identify the messages to complete the configuration

expediently.

The rest of the paper is structured as follows: In Section 2, we give an analysis of the TTCN-3 general

structure, TTCN-3 Runtime Interfaces specifications and the mechanism of the adapter. In Section 3, we

propose a structure of the adapter, compare it with other solution, and elaborate how to implement it to

meet the qualification of the test procedure. Conclusions and future work are summarized in Section 4.

2. Using TTCN-3 for the Test Project

TTCN-3, shorted for Testing and Test Control Notation version 3, is developed by the ETSI & ITU-T and

widely used in the development of telecommunication test including the LTE protocol conformance test. We

can easily use the TTCN-3 to describe the procedure of the communication test. Both of the message-based

and procedure-based mechanisms are supported since it has some features different from the normal

programming languages. Besides, it has built-in data matching, distributed architecture and a larger type

system than normal language including the verdicts type. The verdicts type returns the result of testing steps

in the procedure. It also has the excellent support for the timers as well as the parallel testing system [1].

There are a few open source tools which can be downloaded from the websites of TTCN-3 developing

organizations. Several commercial development kits as well as the compliers have been released. For example,

TTworkbench developed by the Testing Technology is a commercial integrated development environment

(IDE), which is based on Eclipse framework and provides effective ways to analyze and execute test suites.

The adapter can be loaded into it when executing the test suites released by 3GPP. LoongTesting, a free IDE

developed by USTC TTCN Lab，integrates the TTCN-3 interpreter, complier and basic functions and leaves to

developers more free space and workload to build a testing system due to the lack of ready-made plug-in

units.

2.1. General Structure of Testing Solution

Fig. 1 shows a general structure of a test system that includes several essential parts: TE, adapter and SUT

according to the ESTI specifications. TE communicates with TM, TL, Codec and CH through TCI, and

exchanges data simultaneously with the Adapters through via TRI.

TE: Test Executable

TM TL CH CD

SA

SUT

PA

TM: Test Management

TL: Test Logging

CH: Component Handling

CD: CoDec

SA: System Adapter

PA: Platform Adapter

SUT: System Under Test

TCI

TRI

Fig. 1. General structure of TTCN-3 test system.

As an important part of the test system, the adapter's main functionality is to complete the so-called port

mapping which connects the abstract interfaces of TE with interfaces of SUT. Considering the relationship

between the entities and the abstract ones, we need to implement TRI specified by the specifications and the

interfaces of the SUT. Since we aim to design an adapter of message-based RRC test, all the implementations

should be completed only in SA.

2.2. Test Runtime Interfaces

Journal of Software

128 Volume 10, Number 2, February 2015

The interaction between TE and SA is defined in the interface triCommunication in ETSI structure. The

triCommunication initializes the Test System Interface (TSI) and completes the message transportation. To

sum up, the adapter should have the ability to send data from TE to SUT, to enable TE to receive the feedback

correctly and to check the timeout with the user-defined timer. Some essential interfaces for the RRC

message-based communication test have to be implemented which are shown in the Table 1 [2].

Table 1. Some Essential Interfaces of TRI for RRC
TTCN3

instructions
TRI

instructions
Explanation

Map triMap
Connect the abstract ports and real
ones

Unmap triUnmap
Disconnect the abstract ports and
real ones

Send

triSend
Send the messages from TE to SUT
or in the opposite direction

triSendBC Broadcast commnication

triSendMC Multicast commnication

Execute

triExecute Run the testcase

triStartTimer Start the timer

triEndTestcase End the timer

Timer stop triStopTimer Stop the timer

2.3. Mechanism of the Adapter

The adapter can only process the data encoded by Codec. The abstract data types of test case are converted

into the binary code stream by the Codec. Adapter helps users to map the ports connection and ensure the

data transmission with corresponding communication protocols.

TE

TTCN-3

Abstract

Data Type

SUT

Any special

 Data Type

Adapter

Protocol1
Protocol2

Protocol N-1

Protocol N

Codec

Fig. 2. Mechanism of adapter.

The specific mechanism of adapter is shown in the Fig. 2. No matter the transmission is from TE to SUT or

the inverse direction, the data of messages have to be sent to the Codec for encoding, and the Codec returns

the corresponding binary stream to the sender before delivering to the adapter. The binary streams of

different Abstract Data Types or different abstract interfaces are transmitted over different protocols

according to their bit rate and security requirement. In LTE, for instance, the two different interfaces DRB

(Data Radio Bearer) and SRB (Signaling Radio Bearer) are used to transmit the data and signaling between

TE and SUT over UDP and TCP respectively.

3. Design and Implementation of the Adapter

We choose the Eclipse-based tool, TTworkbench, to develop the adapter, so the language mapping from

IDL (Interface Description Language) to high-level programming language is TTCN-3 to Java. All the special

Journal of Software

129 Volume 10, Number 2, February 2015

methods and data types have been defined in the TRI specification of ETSI.

3.1. Design of the Structure of the System Adapter

Fig. 3. Design of our system adapter.

In this paper, we concentrate on the design of Adapter to satisfy the requirements of LTE conformance test

application.

In order to implement the mechanism shown in Fig. 2, we design a model shown in Fig. 3 to support the

message sending and requests.

The TE has many different ports in 3GPP LTE code, e.g. mtc, ut. These abstract ports belong to different

components. The adapter has many parameters that are mapped with the parameter in the TTCN-3 Test

Suite. Obviously each real port has specific port number.

The messages in LTE test case are sent to the adapter through one of the abstract ports defined in the

project. These messages can be identified by tags after defining and initializing mapping parameters in

TTCN-3 level. Different tag corresponds to different protocol. The parameters in TTCN-3 level and in adapter

are mapped by TRI. The adapter decides which specific port and corresponding protocol will be used.

3.2. Brief Introduction of LTE RRC Test Code

We can get the source code of RRC conformance test (3GPP LTE - Formal Delivery 36.523-3v10.1.0) from

the 3GPP official website. It includes several LTE test cases, for instance the 6-1 Cellreselection.ttcn. In this

huge message-based project, MTC (Main Test Component), PTCs (Parallel Test Components) and more than

twenty ports from different components have been defined well. We regard these ports as abstract ports.

Different type of messages are sent to or received from different abstract ports. For example, when setting

the message of cell power, the TTCN-3 codes of the procedure are as follow:

var template (value)

CellPowerList_Type v_CellPowerList_AtT1 := {

cs_CellPower(eutra_Cell1, tsc_Suitable_NeighbourIntraFreq_CellRS_EPRE),

cs_CellPower(eutra_Cell2, tsc_ServingCellRS_EPRE)

};

f_EUTRA_CellInfo_SetSysInfo_Q_Rxlevmin

(eutra_Cell1, v_Q_Rxlevmin);

f_EUTRA_ModifySysinfoUE_Off (eutra_Cell1);

f_EUTRA_SetCellPowerList (v_CellPowerList_AtT1);

SYS.send(cas_CellConfig_Power_REQ ());

if (v_CnfFlag) {SYS.receive(car_CellConfig_Power_CNF);}

Journal of Software

130 Volume 10, Number 2, February 2015

In the above code segment, template defines two cells, eutra_Cell1 and eutra_Cell2, which are configured

with cs_CellPower. The function f_EUTRA_SetCellPowerList that is a primary TS function in the main

procedure of the LTE RRC test suite named as Cellreslection will change the power value of cells configured

by cs_CellPower. The actual action of above configuring under low level is sending the message by the TE to

the System Simulator that simulates the EPC and E-nodeB. If SS modifies the power to the specified value in

the message, then the SS will reply a message like car_CellConfig_Power_CNF to let TE know the verdicts.

The method Sys.send sent the message cas_Cell Config_Power_REQ(...) to MTC via the SYS port of MTC,

which will be transmitted further with the modified value of v_CnfFlag through the real channel. If the value

of v_CnfFlag is true, the abstract port SYS will receive a message of template car_CellConfig_Power_CNF. The

Sys.receive compares the coming message with the message template to check whether the type of received

message is correct or not. That is so-called built-in data matching mechanism in TTCN-3. The adapter should

have the ability to transmit the message sent by SYS that links with a real port and deliver it to SUT.

3.3. Adapter in Commercial IDE

In the latest version of TTworkbench (v15) released by Testing Technologies, TTplugins TCP and UDP used

as TE adapter are pre-installed in the IDE, and TRI is also implemented in the IDE. Developers should load and

configure the plugins before running the Test Suite. To use TTplugins TCP and UDP, one need to map the

abstract ports of components to the real ports with the same unused port number first, and then select the

transmit protocol. In the adapter, each abstract port, e.g. SYS, is connected with one real port of the operating

system and each real port is mapped with one port of System Simulator.

As shown in Fig. 4, different links are used to transmit data of different abstract port although different

links may use the same communication protocol. If we try to run the whole project 3GPP 36523-3, at least 28

real ports will be used to complete the mapping. TTworkbench allows 25 links. Normally, more than ten

abstract system ports might be used in one RRC test project, that is, more than ten threads will be created. As

the number of links and threads increase, the processing burden and the difficulty to control transmitting

delay will increase while the stability will decrease. In addition, this solution results in inconvenience when

configuring too many port numbers in the plugin.

On the contrary, in our design of the adapter, only a few of threads are necessary since the needed threads

depend on how many protocols should be implemented.

Fig. 4. Workflow of TTplugin.

3.4. Main Parts of the Testing Environment

To realize our adapter of RRC test, we will concentrate on the implementation of the TRI defined by the

specifications, the transaction protocol for message exchange and the selection of multi-protocols. At start,

the main framework is created in the TTworkbench that internally implements TM, TL and CH, while the

Codec and TRI need to be implemented with Java language for user's specific project.

Journal of Software

131 Volume 10, Number 2, February 2015

http://www.testingtech.com/products/ttplugins_tcp.php
http://www.testingtech.com/products/ttplugins_udp.php
http://www.testingtech.com/products/ttplugins_tcp.php
http://www.testingtech.com/products/ttplugins_udp.php

TTCN-3 Executable needs to complete the mapping. After the procedure finishes, it begins to process the

encoded data as well as the data to be decoded, through different TRI according to the encoding rules. Some

interfaces that have to be implemented shown as Table 2 [2].

Table 2. Interfaces and Parameters of TRI
Interface Parameters Explanation

TriStatusType triMap
in TriPortIdType compPortId,

in TriPortIdType tsiPortId

compPortId
identifier of component port
tsiPortId
identifier of system interface port

TriStatusType
triUnmap

in TriPortIdType compPortId

compPortId
identifier of the test component
port to be unmapped
tsiPortId
identifier of the test system
interface port to be unmapped

TriStatusType triSend

in TriComponentIdType componentId,

in TriPortIdType tsiPortId,

in TriAddressType SUTaddress,

in TriMessageType sendMessage

componentId
identifier of sending component
tsiPortId
identifier of system interface port
via which message is sent to SUT
Adaptor
SUTaddress (optional) destination
address within SUT
sendMessage
the encoded message to be sent

TriStatusType
triExecuteTestCase

in TriTestCaseIdType testCaseId,

in TriPortIdListType tsiPortList

testCaseId identifier of the test
case going to be executed
tsiPortList a list of test system
interface ports defined for the test
system

triStatusType
triSAReset()

void

void triEnqueueMsg

in TriPortIdType tsiPortId,

in TriAddressType SUTaddress
,
inTriComponentIdType componentId
,
in TriMessageType receivedMessage

tsiPortId
identifier of system interface port
via which SUT Adaptor enqueues
messages
SUTaddress (optional) source
address within SUT
componentId
identifier of receiving component
receivedMessage
received encoded msg.

TriStatusType
triStartTimer

in TriTimerIdType timerId
,
in TriTimerDurationType
timerDuration

timerId
identifier of timer instance
timerDuration duration of timer
in seconds

TriStatusType
triStopTimer

in TriTimerIdType timerId
timerId
identifier of timer

TriStatusType
triReadTimer

in TriTimerIdType timerId,

out TriTimerDurationType
elapsedTime

timerId
identifier of timer
elapsedTime
value of elapsed time in seconds
since the timer started

void triTimeout in TriTimerIdType timerId
timerId
identifier of timer

The workflow of TRI is shown in Fig. 5 in the next page. Since we only concentrate on the adapter, the

implementation of TTCN-3 interpreter and complier are not in our consideration. It should be noted that we

Journal of Software

132 Volume 10, Number 2, February 2015

can only observe the outputs of SUT interfaces and do not know the details of the components inside SUT.

Therefore, we view SUT as a black box as we implement our adapter [3]. From this point of view, the test suit

has the following structure:

testcase TC_6_1_2_2() runs on MTC_LTE system SYSTEM_LTE {

 timer t_GuardTimer := int2float(600);

 v_EUTRA := EUTRA_PTC.create alive;

 f_MTC_ConnectPTCs_LTE

(v_EUTRA, v_UTRAN, v_GERAN, v_CDMA2000, v_IMS1, v_IMS2);

 v_EUTRA.start(f_TC_6_1_2_2_EUTRA());

 t_GuardTimer.start;

 f_MTC_MainLoop(t_GuardTimer);

 }

The entrance of the adapter is triExecuteTestCase that starts the procedure, as shown in the following:

public TriStatus triExecuteTestcase

(final TriTestCaseId testcase,final TriPortIdList tsiList) {

TAParameterServer parameterServer =

(TAParameterServer) RB.TestAdapter;

remoteIPAddress = getTAParameter(pluginIdentifier, "mtcPort");

remotePortNumber = getTAParameter(pluginIdentifier, "mtcPort");

localPortNumber = getTAParameter(pluginIdentifier, "mtcPort");

 rxSocket = null;

 txSocket = null;

 return TriStatus;

 }

It can be seen from the above code description, the first step is connect operation that connects the ports

of two test components. The port connections in the LTE testing are as follow [4].

connect(p_Eutra:IP, v_IP_PTC:EUTRA_CTRL);

connect(v_ImsPdn1:IMS_CTRL, v_IP_PTC:IMS_CTRL[tsc_Index_PDN1]);

connect(v_ImsPdn1:IMS_Server, v_IP_PTC:IMS_Server[tsc_Index_PDN1]);

 connect(v_ImsPdn1:IMS_Client, v_IP_PTC:IMS_Client[tsc_Index_PDN1]);

connect(v_ImsPdn1:IPCAN,p_Eutra:IMS[tsc_Index_PDN1]);

if(p_Eutra!=null)

{connect(mtc:PTC_Ut[tsc_MTC_PortIndex_EUTRA], p_Eutra:UT);}

The connect in TTCN-3 is an internal procedure. Suppose there are M component ports, a queue could be

created to accommodate the M ports. The TE accesses each element of the queue and maps the ports

between the component and the test system. Some key operations for the ports are defined in the following

codes.

// TRI IDL TriPortIdType

package org.etsi.ttcn.tri;

public interface TriPortId {

public String getPortName();

public String getPortTypeName();

public TriComponentId getComponent();

public int getPortIndex();

Journal of Software

133 Volume 10, Number 2, February 2015

}

public TriStatus triMap(final TriPortId compPortId,

 final TriPortId tsiPortId) {

 //Check the linklist is whether exist

 if (v_PortIndex_exist==false)

 {return TRI_ERROR;

 }

 String ComPortName=compPortID.getPortname();

 String TsiPortType=tsiPort.getPortTypeName();

 //Map the TsiPort to the ComponentPort

 MapPort PortGroup=MapTsiPortId(tsiPortId,compPortId);

 //Add the Group of tsiPort and ComPort into the PortIndex

 which is a LinkList of the Test Execut able

 PortIndex.addlast(PortGroup);

 return TRI_OK;}

Start

triExecuteTestcase

Access M th Group
of TsiPort and

Component Port

Check TsiPort
exist?

Check
Component Port

exist?

Add TsiPort into
the LinkList

(iter=List.begin)

M--

M>0

Iterator=Iter++

Current
TsiPort==List.Iterator

triSend
TsiPort.Send

Read the tag parameter
of the TsiPort

Parameter==
Protocol1

Parameter==
Protocol2

Parameter==
ProtocolN

Thread1 Thread2 ThreadN

Java Socket1 Java Socket2 Java SocketN

Message
successfully

send

Return
TRI_OK

Return
TRI_ERROR

End

T

T

T

T

T

T

T

F F

F

F F

F

T

F

Fig. 5. Workflow of TRI loading.

After the above operations completed, all the messages in the queue wait to be sent by TsiPort. TTCN-3

test suite will send a LTE message that is encoded into binary stream. Adapter starts the traversal cycle until

it finds the correct TsiPort with Java Iterator and then the related variable is set to TRUE.

Test suite executes triSend method of the corresponding TsiPort. TTworkbench provides a method

getTAparameter in the package com.testingtech.ttcn.tri, which enables the adapter to get values from the

TTCN project. Therefore, we define a variable 'tag' to mark each message in the TTCN project. According to

variable ‘tag’ of TsiPort, the adapter is able to know which transmit protocol shall complete the action and

which port is the right one assigned by operating system. The configuration of real ports should be defined

Journal of Software

134 Volume 10, Number 2, February 2015

well in the adapter.

// TRI IDL TriMessageType

package org.etsi.ttcn.tri;

public interface TriMessage {

public byte[] getEncodedMessage();

public void setEncodedMessage(byte[] message);

public int getNumberOfBits();

public void setNumberOfBits(int amount);

public boolean equals(TriMessage message);

}

// TRI IDL TriAddressType

public interface TriAddress {

public byte[] getEncodedAddress();

public void setEncodedAddress(byte[] address);

public int getNumberOfBits();

public void setNumberOfBits(int amount);

public boolean equals(TriAddress address);

}

public TriStatus triSend(final TriComponentId componentId,

final TriPortId tsiPortId, final TriAddress address,

final TriMessage sendMessage) {

// Get the Encoded Message from EDS

try { //Create the sockets in this adapter

 //Transmit the Encoded message from EDS to the Sockets

 // TE may send the encoded Address to the Sockets

 } catch (IOException e) {e.printStackTrace();}

return new TRI_OK;

}

In the above code segment, the core function triSend have parameters componentId, tsiPortId, address and

sendMessage. These four parameters contain the information of sending component, abstract ports in the

3GPP project, destination IP address and binary streams (namely the un-interpreted message data)

respectively.

The specific conduit of information exchange is also established by Java sockets to process the encoded

binary stream [5]. Within the range of the time delay, the Test Executable returns TRI_OK if the stream data is

successfully sent to the right destination. If not, Test Executable will return TRI_ERROR, and then the verdict

of this step will be set fail or inconclusive.

3.5. Transmission Protocol

In our adapter, the procedure of transmission involves two communication protocols TCP and UDP. Data

transmissions over the two protocols are implemented in Java.

TCP is a connection-based Internet protocol and resides at the transport layer. It offers reliable and

ordered data transmission in stream [6]. That is, it accepts data from a stream of octets, divides it into chunks

and adds a TCP header to create a TCP segment [7]. The implemented Java stream operation and Java socket

is as the following.

ServerThread(Socket pSocket) {

 socket = pSocket;

try {

 send = socket.getOutputStream();

 receive = socket.getInputStream();

Journal of Software

135 Volume 10, Number 2, February 2015

 } catch (IOException e) {

 e.printStackTrace();}

byte[] buf=new byte[100];

int len=receive.read(buf);

send.write((BufferedMsg).getBytes());

UDP is a connectionless and transaction-oriented transport protocol. That is, there is no guarantee of

delivery, ordering or duplicate protection when transmit data over UDP [8]. Java.net.Datagram includes

several methods of datagram socket [9].

DatagramSocket server;

 try {

 server=new DatagramSocket(5050);

 byte[] sendBuf;

 byte[] addr =new byte[]{

 (byte)192,(byte)168,(byte)1,(byte)103};

 sendBuf = sendMsgU.getBytes();

 DatagramPacket sendPacket = new DatagramPacket (

sendBuf,sendBuf.length,InetAddress.getByAddress(addr),5051);

 try {

 server.send(sendPacket);

 } catch (IOException e)

{

e.printStackTrace();

 }

 server.close();

 } catch (SocketException e1) {e1.printStackTrace();

 } catch (UnknownHostException e1) {}

3.6. Parallel Transmission

Different port number with corresponding protocol should establish the connections between TE and

System Simulator at first. Different pipeline of data transmission works on different threads of the operating

system. We divide the adapter into two parts, i.e. send and receive, to realize bi-direction communications.

Each part involves different protocols according to the actual testing requirements.

After the links shown in the Fig. 6 are established, the adapter begins to read the parameter, i.e. the port

tag, by the method getTAparameter, and then decides which port the stream should be delivered to.

TCP

UDP

TCP

UDP

Send

Receive

TE SS

TCP

UDP

Send

TCP

UDP

Receive

Stream

Fig. 6. Parallel transmission.

Journal of Software

136 Volume 10, Number 2, February 2015

In Fig. 6, six threads in our adapter need to be created. They are

mainThread of JVM,

TCPSendThread,

UDPSendThread,

TCPReceiveThread,

UDPReceiveThread,

TimingCallBackThread.

However, only two threads run at the same time for message transmission.

TCPSend & UDPSend starts as soon as the send in the TTCN project executes. In order to ensure

conformance and reliability of data reading from EDS, all the variables related to the reading status should be

defined as volatile and the called methods should be defined as synchronized. We set a Boolean variable in the

message struct, whose value can be accessed from the main thread. The sending thread keeps running

before the sending of one message's binary stream is over. When the value of the Boolean variable becomes

TRUE, the function run() of TCPSend & UDPSend will return immediately and then TCPReceive &

UDPReceive will start to wait for the replying messages from SS.

Since the RRC Test is a signaling test process, only one message need to be sent to the destination at one

movement. That means the adapter could work in a half-duplex way in sending message and checking the

feedback from the User Equipment within a limited time. In the 3GPP specification, there are rules about the

limitation of waiting time for each step of the process. For instance, the time limitations specified by the

document 3GPP 36521-3 for some key steps of E-UTRAN cell re-selection in inter frequency case are shown

in the Table 3 [10].

Table 3. Time Limitations of Key Steps for E-UTRAN Cell Reselection

Steps
Timer
value

Messages

SS re-adjusts the
cell-specific reference
signal level of Cell 1

T1 -

Check: Does the UE send a
ConnectionRequest (RRC)
message on Cell 1 within
the next 60s ?

60s
RRCConnectionRequest
TP1

SS re-adjusts the
cell-specific reference
signal level of Cell 1 level

T2
RRCConnectionRequest
TP2

The following code shows, in the test procedure, how long the timer of SS will wait for UE's response and

how the SS will change the cell's power and the physical identity.

var float v_TimerValue := 60.0;

timer t_IdleMode_GenericTimer := tsc_IdleMode_GenericTimer;

if(f_EUTRA_RRC_RRCConnectionRequest_Check

(eutra_Cell1, v_TimerValue)) {

 //verdict fail UE sent RRCConnectionRequest message on Cell 1 within v_TimerValue

 f_EUTRA_SetVerdictFailOrInconc (__FILE__, __LINE__, "Test Case 6.1.2.2 Step 2");}

t_IdleMode_GenericTimer.start; //Step 4

 //Receive RRCConnectionRequest on Cell 1

 f_EUTRA_RRC_ConnectionRequest_Def(eutra_Cell1);

//Stop Idle Mode Geberic Timer

 t_IdleMode_GenericTimer.stop;

Journal of Software

137 Volume 10, Number 2, February 2015

TE SA PA SUT

TriStartTimer

TriStartTimerOK

TriMap

TriMapOK

TriSend
SendMessage

TriSendOK

TriTimerRunning

TriTimerRunningOK

ReceivedMessage

TriEnqueueMessage

TriEnqueueMsgReply

TriUnmap

TriUnmapOK

TriEndTestcase

TriEndTestcaseOK

Fig. 7. Message sequence chart.

In the test suite of 3GPP 36523-3, two timers are defined at the beginning of the procedure. Among the

steps in the test suite, the second step and the fourth step use the timers to set the verdict value.

The TRI mapping between TTCN-3 level and Java level make it possible for the adapter to read, start and

stop the timers, as well as to know the timer's running state. According to the TRI definition, we can

implement the timer mechanism, which is shown in Fig. 7.

package org.etsi.ttcn.tri;

public interface TriPlatformPA {

public TriStatus triPAReset();

public TriStatus triStartTimer(TriTimerId timerId,

TriTimerDuration timerDuration);

public TriStatus triStopTimer(TriTimerId timerId);

public TriStatus triReadTimer(TriTimerId timerId,

TriTimerDuration elapsedTime);

public TriStatus triTimerRunning(TriTimerId timerId,

TriBoolean running);}

TriStatus triStartTimer(TriTimerId timerId,

TriTimerDuration timerDuration){

Monitoring the feedback from SS, If PA receive the feedback frame

{ Switch(timerId){

Case 1: timer1.start(); Thread1.Sleep(timerDuration);

CaseN:timerN.strat();ThreadN.Sleep(timerDuration);}}}

public TriStatus triStopTimer(TriTimerId timerId){

Switch(timerId){

Case 1: timer1.stop();Thread1.interrupt();

Journal of Software

138 Volume 10, Number 2, February 2015

Case 2: timer1.stop();Thread1.interrupt();

CaseN:timerN.stop();ThreadN.interrupt();}}

The adapter in the above code uses multi-threads to implement the message transmission. Before a

message is sent from TE to SS, or in an inverse direction, the receiver should start the timer first and waits

for the message for a few of seconds by sleeping the thread in time Duration seconds. If the message does not

reach the destination during the time limitation, the timer stops and the corresponding thread executes the

interrupt operation, and then the adapter immediately returns TRI_ERROR. Otherwise, it returns TRI_OK.

With the time slice mechanism, the system cannot acquire very high performance in terms of real-time

when many threads run at the same time, due to the characteristics of JRE (Java Runtime Environment). In

our adapter, only a few threads run simultaneously and it has improved timing performance.

Fig. 8 shows four types of delay in data transmission procedure, i.e. SA delay caused by JAVA sockets, delay

of network card, transmission and delay of SS action [11], [12]. Due to the delays, SS does not send data to the

UE immediately when TTCN send executes at T0. In other words, they affect the accuracy of the timer. Since

d4 in Fig. 8 is much larger than d1, d2 and d3, it is reduced remarkably in our adapter by monitoring the

feedback of message transmission. After the adapter receives the feedback frame sent at T1, the timers start.

SA delay (d1)
Network card

driver delay (d2)
Transmission

delay (d3)
SS delay (d4)

T0 T1
Fig. 8. Delays of the data transmission procedure.

As mentioned above, the TimingCallBackThread starts after one message sent from the TE. Considering

the transmission rate, the callback of timing are based on UDP. At T1, SS receives the message and then

returns the actual receiving time instantaneously. In this way, the timer can start at the exact moment.

In actual testing, host PC is connected by an Ethernet cable with SS that is an Integrated Testing Simulation

Instrument for LTE. GFT (Graphical Format of TTCN-3) of signaling message flows in the TTworkbench

shows that designed adapter can satisfy the requirements of the test procedure. It transmits each message

successfully and TE has accurate timing by the use of the timing callback mechanism.

4. Conclusion

In this paper, the proposal is concerned with the design of a reasonable adapter model for the RRC test

based on TTCN-3, which satisfies the requirements of ETSI specification. After elaborating its mechanism

and main functionality in the general structure, we implement the model as running parts of the RRC test

case.

Compared with the adapter plugins of some IDEs, the proposed adapter not only implements the

functionalities that user needs, but also provides convenient usage for the testing developer. By using the real

ports as few as possible, it has better performance because of system load reduction and has better control of

the transmission timing. Furthermore the user can easily identify the signaling messages in the TTCN-3 level

to enable the multi-protocol communication between TE and SS.

The further work may involves improving the performance and functionality of the adapter and using

Realtime TTCN-3 [13] released in TTCN extensions to enhance the capability of synchronization of the

multiple logical channels for the LTE RRC Test Suites.

Acknowledgment

The authors thank Dingliang Wang and Rui Huang for their assistance and appreciate the reviewers'

valuable comments.

Journal of Software

139 Volume 10, Number 2, February 2015

References

[1] Willcock, C., Deib, T., Tobies, S., Keil, S., Engler, F., & Schulz, S. (2005). An Introduction to TTCN-3. West

Sussex PO19 8SQ (pp. 1-4). England: John Wiley & Sons Ltd.

[2] ETSI. (2011). Methods for Testing and Specification (MTS); the Testing and Test Control Notation

Version 3, Part 5: TTCN-3 Runtime Interface (TRI). ETSI Standard, ETSI ES 201 873-5 V4.2.1.

[3] Cao, Y. Q., Nie, S., & Sun, Y. Y. (2012, Feb). The application of TTCN-3 in LTE terminal test. China

Telecommunication Technology Labs, the Ministry of Industry and Information Technology, China.

[4] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved

Universal Terrestrial Radio Access (E-UTRA); and Evolved Packet Core (EPC); User Equipment (UE)

conformance specification; Part 3: Test Suites: 3GPP TS 36.523-3 V10.1.0.

[5] ETSI. (2010). Methods for Testing and Specification (MTS); The Testing and Test Control Notation

version 3-Part 6: TTCN-3 Control Interface (TCI). ETSI Standard, ETSI ES 201 873-6 V4.2.1.

[6] Wikipedia encyclopedia. Transmission control protocol. Retrieved 20 January, 2014 from the Wikipedia

website: http://en.wikipedia.org/wiki/Transmission_Control_Protocol

[7] Tan, J., Chen, X. S., & Du, M. (2012, Jan). An internet traffic identification approach based on GA and

PSO-SVM. Journal of Computers, 7(1).

[8] Wikipedia encyclopedia. User datagram protocol. Retrieved 3 January, 2014 from the Wikipedia website:

http://en.wikipedia.org/wiki/User_Datagram_Protocol

[9] He, K. F., Zhang, Z. J., Chen, J., & Li, Q. (2012, Dec). Ethernet solutions for communication of twin-arc high

speed submerged arc welding equipment. Journal of Computers, 7(12).

[10] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved

Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) conformance specification Radio;

transmission and reception; Part 1: Conformance Testing: 3GPP TS 36.521-1 V10.2.0.

[11] Wang, M. C., Duan, J. T., & Zhang, B. (2013, Jan). TRI and TCI design of HINoc MAC testing software based

on TTCN-3. The State Key Lab of Integrated Services Networks, Xidian University, The Northwest

Institute of Nuclear Technology, China.

[12] Hu, W. M., Lu, Z. H., Liu, H. Z., & Jantsch, A. (2012, July). TPSS: A flexible hardware support for unicast and

multicast on networks-on-chip. Journal of Computers, 7(7).

[13] ETSI. (2013). Methods for Testing and Specification (MTS); The Testing and Test Control Notation

version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing. ETSI Standard,

ETSI ES 202 782 V1.1.1

Teng Huang received his B.E degree in communication engineering from Anqing Normal

University, Anhui province, China. He is currently working toward the master’s degree at

Hefei University of Technology. His research interests include protocol conformance

testing based on TTCN-3 and OFDM system.

Zhizhong Ding was born in Wuhu, China, in 1961. He received his B.E degree in radio

communications from Nanjing University of Aeronautics and Astronautics, Nanjing, China,

the master’s degree in circuit and system from Hefei University of Technology (HFUT),

Hefei, China, and the Ph.D. degree in information and communication engineering from

University of Science and Technology of China. He currently is a professor with the Dept.

of Communication Engineering and with the Institute of Communications and

Journal of Software

140 Volume 10, Number 2, February 2015

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol

Information Systems, HFUT. His research interests include wireless communications, network

communications and information theory.

Younan Duan received his B.E degree in communication engineering from Huaibei

Normal University, Anhui province, China. He is currently working toward the master’s

degree at Hefei University of Technology. His research interests include protocol

conformance testing based on TTCN-3, and hardware implementation of 802.11p protocol.

Yin Chen received his B.S degree in information and computing science from Hefei

University of Technology, Anhui province, China. He is currently working toward master’s

degree at Hefei University of Technology. His research interests include protocol

conformance testing and wireless networks.

Journal of Software

141 Volume 10, Number 2, February 2015

