

 A Method for Efficient Extensibility Improvements in
Embedded Software Evolution

Takanori Sasaki1,3*, Nobukazu Yoshioka2, Yasuyuki Tahara3, Akihiko Ohsuga3
1 Canon Incorporation, Tokyo, Japan.
2 National Institute of Informatics, Tokyo.
3 University of Electro-Communications, Tokyo.

* Corresponding author. Email: tsasaki@nii.ac.jp
Manuscript submitted July 9, 2015; accepted July 24, 2015.
doi: 10.17706/jsw.10.12.1375-1388

Abstract: Lightweight development processes like Agile have emerged in response to rapidly changing

market requirements. However, software evolution processes including Agile are inadequate for software

in embedded systems, as software undergoes frequent refactoring, targeting only immediate requirements.

As a result, maintainability decreases because the system is not designed to respond to changes in the

associated hardware. In this paper, we propose a method for improving extensibility. We also propose a

technique for detecting and suggesting extension design patterns automatically. Our approach is based on

analyses of the call graph and inheritance structure of source code to identify a layer structure that is

specific to embedded software. These techniques provide us with objective and quantitative information

about extensibility. We applied the proposed method to an actual product’s code continuously and could

verify an improvement in the system’s extensibility.

Key words: Embedded system, agile, extensibility, legacy code.

1. Introduction

In software technology, innovation is accelerating and new product concepts are appearing such as

mobile, cloud, augmented reality, and so on. As a result, the software system is becoming more and more

complex, while market needs are also changing in parallel. Therefore, if the market needs change during

development or immediately after production, it becomes difficult to make a profit using the conventional

processes like the Waterfall Model, in which products are usually made after development process such as

accurately forecasting future market trends, making specifications, making designs, implementing code,

and testing. In response to such challenges, lightweight development processes like Agile [1] are becoming

popular. These processes aim to finish developing only simple features and mechanisms, striving for

shorter time-to-market without needing to forecast future market trends accurately or design mechanisms

in advance. Once feedback from the market is received, additional features are developed. Thereby it

minimizes the gap between market needs and product features. These processes are classified as an

evolutionary software development process. It develops features needed in the next release with

refactoring. Therefore, it needs to improve in the long term [1].

However, an architecture will often be broken by choosing the correct local design in an agile

development process due to the above reason. To prevent this, an agile process also needs

1375 Volume 10, Number 12, December 2015

Journal of Software

high-extensibility design. To design considering extensibility depends on the programmer in the case of

implementing needed features only.

Such a process is especially inadequate for software in embedded systems. As the system is not designed

to respond to changes in the associated hardware, its maintainability gradually decreases. The reason for

such behavior is that embedded software usually has numerous patches in order to accommodate

hardware changes without inflating costs (full-scale refactoring is very costly). For example, some

hardware needs to be initialized in a fixed order or to be accessed with a specialized format/protocol, etc.

Previously, we researched a method for extracting variable structures from legacy code [2]. In this paper,

we propose a method for efficient extensibility improvements in embedded software evolution. Our

approach consists of the following two steps: (1) to analyze the call graph and inheritance structure of

source code and identify extension structures, and (2) to identify the extensibility reinforcement points and

suggest a method to improve them. We applied the proposed method to an actual product’s code and

evaluated the proposed method.

This paper is organized as follows: Section 2 explains the problems in embedded system software

targeted in our scope. Section 3 proposes the method for Efficient Extensibility Improvements. Section 4

describes the experiment using actual code. Section 5 discusses the results in this study. Section 6 provides

the related works. Finally, Section 7 presents conclusions and directions for future work.

2. Problems in Embedded System

2.1. Scope

Embedded systems are being developed and used widely. This paper targets fresh embedded systems:

products for which hardware specifications have not matured, new areas that have unknown market needs,

and systems that have customizable characteristics that should be adapted by variation and improvement.

These systems include wearable computers, humanoid robots, networking home electronic facilities that

are always connected to internet, cooperation systems in homes or offices, automotives with new safety

functions, and so on. These new embedded systems do not yet have closed specifications in the system

inside.

Our target embedded system structure is like that shown in Fig. 1 illustrates a conceptual layered

structure model for an embedded system. The system has at least one controller class that controls the

features sequence [2]. Each class called by the controller class represents a feature tree. The features

consist calling functions, implementing functions, abstracting hardware, algorithms, and so on. Data is

transmitted from the hardware to the algorithm class via the controller class, after processing data is

transmitted back to hardware for output.

The classes that can be reached on the same number of call times from the controller class are defined as

the same layer. The layer nearest to the controller class is called the first layer. The further a layer is from

the controller class, the higher its number.

Our targeted embedded system is implemented in object oriented language.

2.2. Problem

In our target embedded system, because of the swiftly changing market needs, it is difficult to use a

sequential development process like Waterfall that ensures the detailed specification and allows

development without reworking. Therefore, lightweight development process like Agile are easy to apply

without implementing additional mechanisms. These processes achieve products that have shorter

time-to-market while adapting them to changing market needs. However, in such processes, the quality or

maintainability of the system depends on the individual programmers dealing with the code of low

1376 Volume 10, Number 12, December 2015

Journal of Software

abstraction. In this paper, the problems of the following two dependencies on the programmer are targeted.

Fig. 1. Basic layer structure in embedded system.

2.2.1. Problem 1: The difference in recognition regarding low extension points of a
system

Currently, in the case of a system having new features added, whether a programmer recognizes if the

points related to new features have low extensibility or not depends on his/her experience. Thus,

extensibility that is too redundant is often implemented. On the other hand, even when there are more

points that have a higher frequency of changing, these points are sometimes implemented without

extensibility.

2.2.2. Problem 2: The difference in methods to strengthen the low extension points of
a system

Currently, the method to strengthen the extensibility depends on the programmer’s skill because the

general refactoring method explains how to improve the description of the code, not the design. Thus, it is

difficult to know whether the extensibility is strengthened or not by the selected method. Also, we cannot

know how much the cost will be.

3. Method for Extensibility Improvements

3.1. Overview

As shown in Fig. 2, we propose a method that can find points that need to have their extensibility

improved and explain how to improve the extensibility. In the case of identifying a point that needs its

extensibility improved in features assigned to an individual programmer, the programmer can improve

extensibility in accordance with navigation.

Proposed method

Rules for
extensibility

Identify
issues

Suggest

improving method

Code has
extensibility issues

Code extensibility

is improved

Fig. 2. Proposed overview.

3.2. Architecture of Proposed Method

1377 Volume 10, Number 12, December 2015

Journal of Software

As shown in Fig. 3, this method consists of two steps. First, we analyze source code from two points of

view (call graph and inheritance, which are important mechanisms for object-oriented language) and

identify design patterns and inheritance structures in each model by using our previous research method

[2] to understand the extension mechanisms quantitatively. A source code is the only input information due

to the dependency on the programmer being eliminated in this method (Step 1). Next, we compare rules

defining the structure of the extension problem and the extension structures identified in Step 1. Then we

identify the points of the extension problem automatically and output the guidelines for strengthening their

extensibility corresponding to each rule (Step 2).

C-Model

Generate

Identify

extensibility issues

I-Model

Generate

Source
code

Issue points

Inheritance

Controller
model

Inheritance
model

Identify
structures

Step 1 Step 2

Design
pattern

Guidelines for reinforcement

Fig. 3. Architecture of proposed method.

3.3. Identification of the Extension Structures (Step 1)

3.3.1. Extraction of features

The extensibility should be judged for each extracted feature because each feature has different

requirements for changing and frequency of changing. For example, the hardware device depends on the

product planning of each sensor. An algorithm also depends on requirements for changing received from

the market. In particular, an algorithm valuable to a product might increasingly be used. Therefore, features

need to be able to change flexibly. On the other hand, a feature can exist for which changes have not been

forecasted and might not have flexibility, but it is designed for performance (often the case in embedded

systems). Therefore, appropriate structures should not depend on a programmer’s experience or skill but

should be considered on the basis of long term maintenance cost and requirements.

First, we create a Controller Model and an Inheritance Model to extract features [2]. Then we identify each

class called by the controller class and each feature in a Controller model. A feature consists of various

classes that are included in the same inheritance tree in an inheritance model.

Table 1. Extension Structures

 (a) Inheritance.

L a y e r
F e a t u r e

1st Layer 2nd Layer Under 3rd layer

Feature A － SI SI

Feature B MI SI MI

Feature C － － －

Layer
Feature

1st Layer 2nd Layer Under 3rd layer

Feature A － － －

Feature B CU AF ITF

Feature C － － －

 (b) Design pattern.

1378 Volume 10, Number 12, December 2015

Journal of Software

3.3.2. Classification of extension structures in terms of inheritance

We extract inheritance structures and classify them into two types automatically using the controller

model. Table 1 (a) shows an example of classification. SI means simple inheritance structure, and MI means

a different layer inheritance structure [2].

3.3.3. Classification of extension structures in terms of design pattern

We extract five design patterns automatically by using the controller model. Table 1 (b) shows an

example of classification. CU means Mixed Creation and Use pattern, F means Factory pattern, AF means

Abstract Factory pattern, and P means Plugin Factory pattern [2]. ITF means Inverse Template Method

pattern, which we define in 3.4.4.

3.4. Identifying the Points of Extension Problem and Outputting Guidelines (Step 2)

Table 2 defines the rules of improving the extensibility. Also, we can improve the extensibility in

accordance with the guidelines in Table 3 because they are related to the rules for improving the

extensibility.

Table 2. Rules for Improving Extensibility

ID Rules for extensibility Corresponding guide ID

R1 Encapsulate class creation from user G1

R2 Do not access encapsulated class G2/ G3

R3 Encapsulate class creation related to the same devices G4

R4 Remove inverse template method patterns G5/ G6

R5 Implement clarified interface G7

Table 3. Guidelines for Improving Extensibility

ID Guidelines of method for reinforcement

G1 Insert Factory layer

G2 Change to abstract interfaces

G3 Move functions of upper layer to lower layer

G4 Collect using points and introduce Abstract Factory

G5 Introduce Template Method

G6 Change inheritance to delegation

G7 Insert abstract interfaces

The following describes how to use these rules and guidelines.

3.4.1. Encapsulate class creation from user (R1)

As shown in Fig. 4 (a), classes A and B should not be created by the user who uses them. By avoiding this,

the programmer can add new classes without changing the user class.

R1 can be specified when an extension structure in terms of inheritance is detected on the first layer in

Table 1 (a). R1 can also be specified when an extension structure in terms of inheritance is located under a

layer where an extension structure in terms of design pattern is identified as CU in Table 1 (b).

As a guideline for improving the extensibility, insert a factory layer (G1) is effective in both above cases.

G1 suggests that a programmer should create a factory class that can create an abstract class such as A or B.

Then the user class should call it.

3.4.2. Do not access encapsulated class (R2)

As shown in Fig. 4 (b), a user class located in the upper layer of a factory layer should not access concrete

classes such as class A or class B. By avoiding this, the system can regain a lost encapsulation effect.

R2 can be specified when a user class located in the upper layer calls an extension structure in terms of

1379 Volume 10, Number 12, December 2015

Journal of Software

inheritance located under a layer where an extension structure in terms of design pattern is identified in

any pattern in Table 1 (b). As guidelines of improving the extensibility, change an abstract interface (G2) and

move functions of class located in the upper layer to a concrete class located in the lower layer (G3) are

effective. G2 and G3 suggest that the programmer should relocate functions to appropriate classes.

User

A B

Issue of R1
In Controller model

User

A B

Factory

Reinforcement of G1
In Controller model

User

Factory

A B

User

Factory

A B

Issue of R2
In Controller model

Reinforcement of G2/G3
In Controller model

(a) R1. (b) R2.

Fig. 4. Example of R1 and R2.

3.4.3. Encapsulate class creation related to the same devices (R3)

Fig. 5 shows a model in which classes depend on whether the system has a device A or a device B and

changes device. Classes depending on a device should not be dispersed in a system because the change cost

will become higher when a specification is changed for a lot of classes depending on a device.

R3 can be specified when classes with similar names exist in different inheritance trees.

As guidelines for improving the extensibility, collect points that used it and add a factory class (G4) is

effective. G4 suggests that a programmer should create a factory class and an abstract factory class and

relocate functions that depend on a device into appropriate classes.

User

setup

DevA1 DevB1

control

DevA2 DevB2

Issue of R3 In Controller model

User

Factory A

DevA1 DevA2

Factory B

DevB1 DevB2

Reinforcement of G4 In Controller model

setup controlFactory Dev

Fig. 5. Example of R3.

3.4.4. Remove inverse template method patterns (R4)

Generally, a super class can replace an inheritance class for an inheritance structure. Then the template

method pattern is used. As shown in Fig. 6 (a), this inheritance class A should not call a super class. By

avoiding this, the system can be prevented from behaving unexpectedly even if a super class is changed.

R4 can be specified when class A is inherited from super class A in the inheritance model and class A calls

a super class A in the controller model. This case is called an Inverse Template Method (ITF) pattern in this

paper. As guidelines for improving the extensibility, change to the template method pattern (G5) and change

the relationship from inheritance to delegation (G6) are effective. G5 suggests that the programmer should

add virtual functions in a super class and modify these functions in a concrete class. Also, G6 suggests that

the programmer should use delegation instead of inheritance.

3.4.5. Implement clarified interface (R5)

As shown in Fig. 6 (b), similar classes such as factory A and factory B should be inherited. By doing this,

1380 Volume 10, Number 12, December 2015

Journal of Software

duplicate functions can be removed and the system can have explicit interfaces.

R5 can be specified when no extension structure in terms of inheritance is located under a layer where an

extension structure in terms of design pattern is identified as CU in Table 1 (b).

As a guideline for improving the extensibility, add an abstract interface (G7) is effective. G7 suggests that

a programmer should create an abstract class with common methods and add an Abstract Factory pattern.

User

Factory A

A B

Factory B

C D

Super X

A C

Super Y

B D

Inheritance modelIssue of R5
In Controller model

Super A

A Super A

A

Inheritance modelIssue of R4
In Controller model

(a) R4. (b) R5.

Fig. 6. Example of R4 and R5

3.5. Analyzing Tool

We created a tool to analyze part of the proposed process. It can create a controller model diagram and

an inheritance model diagram.

4. Experiments and Result

We conducted experiments using one of the products of Canon Inc. The product is written in C++

language and is developed for a new market area. Part of this code was evaluated by the proposed method.

4.1. The Outline of the Object Code

Table 4 shows a list of object code for our experiment. ID1 to ID3 are consecutive developments for a

same product. On the other hand, ID4 had its extensibility improved using our proposed method.

Fig. 7 shows the code size (NCSS), the number of the classes included in each ID, and the number of the

classes in the controller model by our proposed method. As features increase, NCSS and the number of

classes increase. The proposed method can decrease the number of the classes to display under 50% of all

classes.

Table 4. List of Object Code

ID Target source code status

1 Initial product code from starting experiment

2 Code added to some features in ID1

3 Code added to some features in ID2

4 Code was improved more than ID3 by proposed method

0

50

100

150

200

250

300

350

400

450

500

0

5000

10000

15000

20000

25000

30000

35000

ID1 ID2 ID3 ID4

N
C

S
S

NCSS

number of classes

number of classes in controller
model

Fig. 7. Progress of code size and number of classes.

1381 Volume 10, Number 12, December 2015

Journal of Software

4.2. Identification of the Extension Structure (Step 1)

Fig. 8 shows the results of identification of the extension structures for each ID. These are suddenly

increased in ID3 regarding inheritance (a). The Mixed Creation and Use pattern is suddenly increased in

ID3 regarding design pattern (b). However, in ID4, the Mixed Creation and Use pattern is decreased and

Factory pattern and Abstract Factory pattern are increased by improving the extensibility.

0

2

4

6

8

10

12

14

ID1 ID2 ID3 ID4

Plugin Factory

Abstract Factory

Factory Method

Factory

Mixed Creation and Use

0

5

10

15

20

25

ID1 ID2 ID3 ID4

Multiple Layer
Inheritance

Simple Layer
Inheritance

(a) Inheritance (b) Design pattern

Fig. 8. Change of the extension structures.

4.3. Identification of the Extensibility Reinforcement Point and Reinforcement
Guidelines (Step 2)

Fig. 9 shows changes in the results when extensibility reinforcement points are identified on the basis of

five rules in Table 2. R1 (Encapsulate class creation from user) and R2 (Do not access encapsulated class)

are simply increased from ID1 to ID3. This data indicates that it is easy to degrade the extensibility by

adding features in R1 and R2. On the other hand, R3 (Encapsulate class creation related to the same

devices) and R4 (Remove inverse template method patterns) are identified in only ID3. This means that it is

easy to degrade the extensibility depending on requirements for ID3 and ID4. Reinforcement points are

decreased in ID4 due to the extensibility being improved.

Table 5 shows the difference between ID3 and ID4. In ID4, some classes were added and other classes

from ID3 were modified. These were conducted by using the guidelines of extensibility with corresponding

rules of the reinforcement points.

R1 and R3 have more added classes than modified classes because construction of new encapsulation

structures is mainly a strategy for R1 and R3. For other rules, there are more modified classes than added

classes. We improved the extensibility about 18 points (the sum of ID3’s reinforcement points minus the

remaining points in ID4). About half of all classes in the controller model were changed to improve the 18

points.

0

1

2

3

4

5

6

7

8

9

10

ID1 ID2 ID3 ID4

R1

R2

R3

R4

R5

Fig. 9. Changes in results when extensibility reinforcement points are identified.

1382 Volume 10, Number 12, December 2015

Journal of Software

Fig. 10 shows models before improving the extensibility (ID3), while Fig. 11 shows models after

improving the extensibility (ID4). These models are a controller model and an inheritance model [2].

The following subsections (4.3.1 to 4.3.5) show actual examples in ID3 and ID4 regarding the

identification of the extensibility reinforcement points and reinforcement guidelines.

Table 5. Number of Additional Classes and Modification Classes

ID Guidelines of method for reinforcement Add classes Modify classes

R1 G1 Insert Factory layer 6 1

R2 G2 Change to abstract interfaces 0 12

G3 Move functions of upper layer to lower layer

R3 G4 Collect using points and introduce Abstract Factory 4 2

R4 G5 Introduce Template Method 0 14

R5 G7 Change inheritance to delegation 1 4

amount 11 33

4.3.1. Encapsulate class creation from user (R1)

As shown in Fig. 9, in ID3, nine extensibility reinforcement points are identified. We improved them by

using the extensibility guideline G1. For three points, we created a factory class for each. For four other

points, we performed an Abstract Factory pattern by creating an abstract factory class and two concrete

classes inherited from it because concrete classes have a combination. The two remaining points were false

positive cases like those described below.

Fig. 12 shows the difference between ID3 and ID4 for the inheritance model. In ID3, a controller class is

relevant to a lot of inheritance trees. By reinforcing the extensibility in ID4, relations are divided as shown in

the squares with broken lines. Therefore, a controller class is not a concentration of relations any more.

4.3.2. Do not access encapsulated class (R2)

As shown in Fig. 9, in ID3, five extensibility reinforcement points are identified. We improved them by

using the extensibility guideline G2. First, we changed the dependency of the upper class from using

concrete classes to using abstract classes. Next, we abstracted plural member functions of concrete classes

to call by using an abstractive interface. Furthermore, we moved functions defined at upper classes to

abstract classes or concrete classes by using the extensibility guideline G3.

Fig. 13 shows the difference between ID3 and ID4 for the controller model. In ID3, there are five calls in

which the upper class uses a concrete class. These are described with “X” and should be encapsulated. By

reinforcing the extensibility in ID4, we could remove these calls.

Mixed Creation and Use

Factory

Abstract Factory

Inverse Template Method

Plugin Factory

Call
Inheritance

(a) Controller model (b) Inheritance model

Fig. 10. Models for ID3.

1383 Volume 10, Number 12, December 2015

Journal of Software

Mixed Creation and Use

Factory

Abstract Factory

Inverse Template Method

Plugin Factory

Call
Inheritance

(a) Controller model (b) Inheritance model

Fig. 11. Models for ID4.

4.3.3. Encapsulate class creation related to the same devices (R3)

As shown in Fig. 9, in ID3, one extensibility reinforcement point is identified. We improved it by using the

extensibility guideline G4. First, we gathered the class creation process related to the same device

dispersed in a system in one place.

Fig. 14 shows the difference between ID3 and ID4 for the controller model. In ID3, there are three

dispersed processes, which are circled. These are classes that can be changed depending on device type. By

reinforcing the extensibility in ID4, these classes are gathered in one place. Also, the upper class is changed

from Mixed Creation and Use pattern to Abstract Factory pattern, which is circled with a broken line.

4.3.4. Remove inverse template method patterns (R4)

As shown in Fig. 9, in ID3, four extensibility reinforcement points are identified. We improved them by

using the extensibility guideline G5. First, we added pure virtual functions into classes identified as the

Inverse Template Method pattern. Next, we changed it so that member functions of super classes called by a

derived class call these pure virtual functions. Furthermore, we changed member functions of derived classes

to overwrite the definition of virtual functions instead of calling the function of super classes. This means

that we changed the Inverse Template Method pattern to the Template Method pattern.

Fig. 15 shows the difference between ID3 and ID4 for the controller model. In ID3, there are four Inverse

Template Method patterns in red squares. By reinforcing the extensibility, these classes disappear in ID4.

4.3.5. Implement clarified interface (R5)

As shown in Fig. 9, in ID3, one extensibility reinforcement points is identified. We improved it by using

the extensibility guideline G7. We extracted a common interface from three existing factory classes and

created an abstract factory class. Furthermore, we performed an Abstract Factory pattern. It is made by

changing existing factory classes to classes inherited from abstract factory classes.

Fig. 16 shows the difference between ID3 and ID4 for the inheritance model. In ID3, three classes call

classes inherited by the same super class. By reinforcing the extensibility in ID4, these classes in ID3 are

inherited by the same super class and called from another class.

ID3 ID4
Fig. 12. Change of inheritance model by rule R1.

1384 Volume 10, Number 12, December 2015

Journal of Software

ID3 ID4

Fig. 13. Change of controller model by rule R2.

ID3 ID4

Fig. 14. Change of controller model by the rule of R3.

ID3 ID4

Fig. 15. Change of controller model by the rule of R4.

ID3 ID4

Fig. 16. Change of inheritance model by rule R5.

5. Evaluation

We evaluated the proposed method.

5.1. The Ability of Resolving the Problems

According to subsection 4.3, problem 1 can be resolved by the rule of the extensibility reinforcement that

identifies issues of extensibility automatically and quantitatively. Therefore, users of the proposed method

can recognize low extensibility points without depending on the experience of the programmer. However,

our method outputted two false-positive results. These two cases were points where each class instance

was necessary, not points needing encapsulation for an upper layer. It is difficult to judge whether a

variation point needs encapsulation or not in the case of the proposed method because it is based on the

call relationship of classes and inheritance structures.

Also according to subsection 4.3, problem 2 can be resolved by using the guidelines for the extensibility

reinforcement except in false positive cases. Therefore, users of the proposed method can introduce the

same mechanism against the same issue without depending on the skills of the programmer.

1385 Volume 10, Number 12, December 2015

Journal of Software

5.2. Restriction of Proposed Method and Expansion of Application Area

In this paper, this proposed method is limited to the embedded system in a specific condition. We need to

study whether it can be applied to any other area’s products that already have codes.

In this paper, we deal with object-oriented language [3], which has features like class inheritance,

delegation, and others to capture the designer’s intent. However, there are many projects that use non

object-oriented code in embedded systems. Therefore, we need to study how this proposed method can

deal with non-object-oriented code.

6. Related Work

Walkinshaw et al. [4] proposed an approach to object-oriented feature extraction using a landmark

method and barrier method. This approach extracts features or use cases by slicing the call graph. They

removed unnecessary call graphs to avoid explosions. In this paper, features are extracted by using the call

graph and inheritance graph, not by a slice-based approach. Also, unnecessary classes are reduced in terms

of variability mechanisms.

Keepence and Mannion [5] defined three patterns of class structure design. These patterns are very

similar to the mandatory, alternative, and optional feature properties in the feature oriented domain

analysis. In this paper, five patterns are identified in terms of encapsulation of changing. These patterns

correspond to the degree of flexibility.

Makkar et al. [6] said there is a relationship between depth of the inheritance tree and reusability. As the

depth of the inheritance tree increases, reusability decreases. They also said the threshold is within three

layers. Therefore, they created an equation relating the two quantities. In this paper, we compute the

inheritance tree containing a variability mechanism, which is placed under two layers.

Bansiya and Davis [6] mapped object-oriented design components to design metrics and design quality

attributes. Hudli et al. [8] validated various object-oriented metrics. For object-oriented language, various

evaluation methods have been proposed in terms of design or metrics. This paper described the method for

evaluating design in legacy code in terms of extensibility.

Babar [9] and Bengtsson et al. [10] proposed methods for evaluating software product line architecture.

As they described, a method based on a scenario such as SAAM and ATAM has been established. In this

paper, we propose a method for evaluation by analyzing legacy code.

Kaur and Singh [11] compared the maintainability index calculating the package size and metrics like

complexity of package. The summarized value cannot obtain concrete implemented structures such as

extension structures like in this paper.

Munro [12] modeled the bad smell of code and identified it by using code metrics. He used lines of code,

complexity, and so on. His method improves code when metrics exceed references. In this paper, issues of

extensibility were identified and improvements suggested by evaluating extensions by using code metrics

and extension structures.

7. Conclusion and Future Work

This paper has proposed a method for Efficient Extensibility Improvements in Embedded Software

Evolution. This method is focused on extension structures such as inheritance and design patterns in legacy

software. We applied the proposed method to an actual product’s code, which improved in some times. The

method could detect extensibility reinforcement points automatically and improve the extensibility of the

system. Furthermore, we could verify the efficiency of the proposed method. This proposed method enables

us to improve the extensibility efficiently and consecutively regardless of the programmer’s experiences or

skills, especially in an Agile development process.

1386 Volume 10, Number 12, December 2015

Journal of Software

In the future, we intend to compare the flexibility to change between different embedded systems and

add to the extensibility rules.

Acknowledgments

This work was supported by University of Electro-Communications and National Institute of Informatics.

Canon Incorporation provided the software and computer resources in this work.

References

[1] Ghanam, Y., Andreychuk, D., & Maurer, F. (2010). Reactive variability management using agile software

development. Proceedings of the International Conference on Agile Methods in Software Development (pp.

27-34).

[2] Sasaki, T., Yoshioka, N., Tahara, Y., & Ohsuga, A. (2014). Evaluation of flexibility to changes focusing on

the variable structures in legacy software. Knowledge-Based Software Engineering. Springer

International Publishing.

[3] Breesam, K. M. (2007). Metrics for object-oriented design focusing on class inheritance metrics.

Proceedings of the 2nd International Conference on Dependability of Computer Systems (pp. 231-237).

[4] Walkinshaw, N., Roper, M., & Wood, M. (2007). Feature location and extraction using landmarks and

barriers. Proceedings of the International Conference on Software Maintenance (pp. 54-63).

[5] Keepence, B., & Mannion, M. (1999). Using patterns to model variability in product families. IEEE

Software, 4, 102-108.

[6] Makkar, G., Chhabra, J. K., & Challa, R.K. (2012). Object oriented inheritance metric-reusability

perspective. Proceedings of the International Conference on Computing, Electronics and Electrical

Technologies (pp. 852-859).

[7] Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment.

Software Engineering, 28(1), 4-17.

[8] Hudli, R. V., Hoskins, C. L., & Hudli, A. V. (1994). Software metrics for object-oriented designs.

Proceedings of the IEEE International Conference on Computer Design (pp. 492-495).

[9] Babar, M. A. (2007) Evaluating product line architectures-methods and techniques. Proceedings of the

14th Asia-Pacific Software Engineering Conference.

[10] Bengtsson, P., Lassing, N., Bosch, J., & Van, V. H. (2000). Analyzing software architectures for

modifiability.

[11] Kaur, K., & Singh, H. (2011). Determination of maintainability Index for object oriented systems. ACM

SIGSOFT Software Engineering Notes, 36(2), 1-6.

[12] Munro, M. J. (2005). Product metrics for automatic identification of "bad smell" design problems in

java source-code. Proceedings of the 11th IEEE International Symposium on Software Metrics (pp.

15-15).

Takanor Sasaki is a Ph.D. candidate at the University of Electro-Communications, Tokyo.

He received his B.E. and M.E. degrees in mechanical system engineering from Hiroshima

University in 1997 and in 1999, respectively.

From 1999 to 2008, he was with Mitsubishi Precision Co., Ltd., Japan. Since May 2008,

he has been with canon incorporation, Tokyo, Japan. His research interests include

software engineering, cloud computing, formal verification of software, and software

evolution. He is a member of the Information Processing Society of Japan (IPSJ).

Author’s
formal photo

1387 Volume 10, Number 12, December 2015

Journal of Software

Nobukazu Yoshioka is a researcher at the National Institute of Informatics, Japan. Dr.

Nobukazu Yoshioka received his B.E degree in electronic and information engineering

from Toyama University in 1993. He received his M.E. and Ph.D. degrees in School of

information science from Japan Advanced Institute of Science and Technology in 1995

and 1998, respectively.

From 1998 to 2002, he was with Toshiba Corporation, Japan. From 2002 to 2004 he

was a researcher, and since August 2004, he has been an associate professor, in National

Institute of Informatics, Japan. His research interests include security and privacy software engineering,

cloud computing, agent technology, software engineering, and software evolution.

He is a member of the Information Processing Society of Japan (IPSJ), the Institute of Electronics,

information and Communication Engineers (IEICE) and Japan Society for Software Science and Technology

(JSSST), the Japanese Society for Artificial Intelligence (JSAI) and IEEE CS. He has been a chair of IEEE CS

Japan Chapter since 2015.

Yasuyuki Tahara is an associate professor in the University of Electro-Communications.

He received his BSc and his MSc in mathematics from the University of Tokyo, Japan, and

his PhD in information and computer science from Waseda University, Japan, in 1989,

1991, and 2003, respectively.

He joined Toshiba Corporation in 1991. He was a visiting researcher in City University

London, UK, from 1995 to 1996, and in Imperial College London, UK, from 1996 to 1997.

He left Toshiba Corporation and joined NII in 2003. He left NII and joined the University

of Electro-Communications in 2008. His research interests include formal verification of software and

requirements engineering. He has been working for an education program called Top SE since 2004.

Prof. Tahara is a member of the Information Processing Society of Japan and Japan Society for Software

Science and Technology.

Akihiko Ohsuga received a B.S. degree in mathematics from Sophia University in 1981

and a Ph.D. degree in computer science from Waseda University in 1995.

From 1981 to 2007 he worked with Toshiba Corporation. Since April 2007, he has been

a professor in the Graduate School of Information Systems, the University of

Electro-Communications (UEC). Since April 2012, he has been also a visiting professor in

National Institute of Informatics (NII). He has published more than 210 papers (100

papers at journals and 110 papers at international conferences). His research interests

include agent technologies, web intelligence, and software engineering.

He is a member of the IEEE Computer Society, the Information Processing Society of Japan (IPSJ), the

Institute of Electronics, Information and Communication Engineers (IEICE), The Japanese Society for

Artificial Intelligence (JSAI), and Japan Society for Software Science and Technology (JSSST). He received

the 1986 Paper Award from the Information Processing Society of Japan.

Author’s
formal photo

Author’s
formal photo

Author’s
formal photo

1388 Volume 10, Number 12, December 2015

Journal of Software

