

Component-Based Verification Model of Sequential
Programs

Pei He1, 2, 3*, Achun Hu1, Dongqing Xie1, Zhiping Fan1
1 School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China
2 Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education,
Beijing 100871, China.
3 School of Computer and Communication Engineering, Changsha University of Science and Technology,
Changsha 410114, China.

* Corresponding author. Email: bk_he@126.com
Manuscript submitted January 10, 2014; accepted March 8, 2015.
doi: 10.17706/jsw.10.11.1319-1326

Abstract: Hoare’s logic helps with program state descriptions, but is difficult to manipulate. Model checking

emerged as a new trend in program verifications is best applied to system designs rather than

implementations. This paper is committed to establish a component-based verification framework that

combines both of them. The method applied consists of two steps: regarding predicates as states and

connecting them with functional components in light of their relationships. Once a framework is set up,

both program generation and verification can be automatically carried out. The principle presented here is

not only applicable to sequential programs, but also to other types of program structures and paradigm

such as iteration, branch structure and grammatical evolution, etc.

Key words: Finite state transition system, grammatical evolution, sequential programs, verification
framework.

1. Introduction

Two major approaches to program reliability are Hoare’s logic [1]-[6] and model checking [5], [7]-[10].

Hoare’s logic is a classical semantic framework easily applied in description of changes of program states,

but difficult to use. Model checking techniques emerged as new trend in verifications of programs are best

applied to system designs rather than implementations [8]. Whether it is practicable to integrate these

systems in a tightly coupled manner and technically how to achieve this end arouse great interest in

computer community.

This paper is a sister work of [11]-[13] that initiated studies on combination of Hoare’s calculus [1],

[3]-[6], model checking [7], [9], automaton [14]-[15] and genetic programming [16]-[18]. In reference

paper [11], we have paid great attention to reusable technologies widely used in mathematics and software

developments, proposing a formal framework to verify and evolutionally construct computer programs.

The measure employed is to construct transition systems over program components in terms of their

semantic relations. Similarly, after introducing these techniques into genetic programming (GP) [18] as

well as its important variant like grammatical evolution [16], [17], we obtained some formal GP

frameworks [11]-[13]. These works make it possible to verify and generate programs in path checking and

path searching technologies. However, to improve the performance of the systems, we should take notice of

1319 Volume 10, Number 11, November 2015

Journal of Software

their structures. This forms the basis of the present work.

In the present paper, we will establish a component-based verification framework combining both of

them. Compared with the work of [11], this system has such advantages as ease for representation, and

convenience with parallel processing. Apart from being useful in program verifications, the presented

model can also be applied to search for correct programs. The paper is organized as follows. Section 2 gives

a brief introduction to Hoare’s logic; sections 3 through 4 introduce the present approach and examples;

finally discussions and the conclusion are summarized in sections 5 and 6.

2. Hoare’s Calculus

Hoare’s logic is a typical framework originally proposed by Hoare in 1969 [1], [5] for partial correctness

of programs. In this system, a Hoare’s formula is of the form {P}S{Q}, where both P and Q are logic formulae,

called pre-/post- condition and S represents a program segment. {P}S {Q} means Q will hold after executing

S on the premise of P. Hoare’s logic includes one axiom and 4 inference rules as given in Fig. 1 [1], [11].

Based on the only axiom for assignment statement, and several inferences, we can verify programs through

calculating on elementary program structures and the whole program. Fig. 2 shows the usage of proof rules

in program verifications.

 Fig. 1. Rules of Hoare’s logic. Fig. 2. Verification process.

3. Component-based Framework

By component based verification framework here, we mean this system just prove those programs

constructed from a given set of trusted components such as functions, Booleans, iterative bodies, etc. If one

doesn’t trust such set of components, he can verify them downwards in the same way.

In this section, we are dedicated to the establishment of a component based verification framework,

which combines both Hoare’s logic and finite state automaton. Based on our consideration on Hoare

system’s modeling behaviour, we find a model equivalent to it.

Definition 1 (Validation Composition) Given two Hoare triples },{}{ QfP }{}{ WgR , fg is a valid

composition if RQ .

Of course, it follows easy the composition of f and g defined here is valid under Hoare’s logic algebra.

Definition 2 (Sequent) Let F be a set of component functions, HF the set of Hoare’s triples for F. A string

1320 Volume 10, Number 11, November 2015

Journal of Software

*F is a sequent, if the composition of any two neighbour functions (if any) in the string is valid.

Particularly, we think of as the identity element under concatenation Thus when in need, we often omit

them.

Definition 3 (L-composite model) Given F, HF as above, a finite state transition graph is called the

L-composite model on both F and HF, denoted by),(HFFM , if it satisfies: sequent} a is |*{)(FML .

Here L(M) is the set of strings concatenated from edge labels along all possible paths in),(HFFM .

Obviously, composite model defines all possible legal computation on F. Note that each computation

satisfies associativity.

Definition 4 (string) A string is what obtained from insertions of the symbol in the original

string *F .

Theorem 1 (Existence) Let n}i1 |{ ifF be a set of component functions, HF a set of Hoare triples

,n}i1 |}{}{{ iQifiP then there exists a composite model),(HFFM .

Proof. Firstly, let us construct the composite model.

By HF, we construct a predicate relation matrix as table 1. Draw a finite state transition diagram with

either P or Q as nodes below.

Draw nodes for each predicate of n}i1 |{ iP n}i1 |{ iQ

1) Draw an arrow from P to Q for each HFQfP }{}{ , and labeling it with a f.

2) Draw an arrow from iR to jR for each pair of (iR , jR) with TRR ji in table 1 , and labeling it

with an . Here xR is either P or Q.

This is the desired model),(HFFM .

Secondly, let us prove: sequent} a is |*{)(FML .

=>: Assuming)(ML be a string concatenated from edge labels along a legal path nvvv 21 in

),(HFFM , where v stands for either some P or Q. By the above mentioned graphic drawing rule, we follow

each edge in the path corresponds to either a Hoare’s triple, when in HF, or an arrow. Thus the

composition of each pair of neighbour functions if and jf is valid under definition 1. In fact, when

if shares a common node with jf , it’s a trivial case; and when there are insertions of arrows between

them, say

qviv
f

pv
*

, we have)(| qviv . Henceforth, is a Sequent.

<=: Let)(ML be a Sequent imfifif ...21 , according to picturing rule, we can easily prove the result

by induction on the length of the arbitrary string .

This completes the proof.

Clearly, the theorem for model existence presents a NFA like transition graph [14]-[15].

Theorem 2 Given F , HF as above, let),(HFFM be a composite model on them, and

*...21 Fimfifif , then }{}{ QP there exists a path in),(HFFM satisfying:

1) The concatenation rlll ...21 of the edge labels along p is a string;

2))()(| 1 QQPP imi . Here 1iP , imQ stand for the pre- and the post-conditions of 1if and imf

respectively.

Proof. =>: let imii fffP 21}{ {Q} be a Hoare’s triple, without losing the generality, also assuming the

pre-/post-conditions of if s are distinct, then to get it by Hoare’s calculus,)()(-| 211 iii PQPP

)(QQim must hold, where HFQfP ijijij }{}{ . According to the picturing rule above, we have

1321 Volume 10, Number 11, November 2015

Journal of Software

a string of from the labels on the path
 21

211
ii f

ii
f

i PQP im
f

im QP im .

Naturally, we get both (1) and (2).

<=: the proof for the necessity is easily. This completes the proof.

Based on the second theorem, we have an algorithm for the construction of a finite state automaton, and

}{}{ QP there exists a path from P to Q such that the construction of labels along the path is a

string. Particularly, the verification is simple if we further make the NFA deterministic.

Algorithm 1 (Verifying linear program) Given }1|{ nifF i , }1|}{}{{ niQfPHF iii and the

solving goal }{}{ QP , we can construct a NFA (see Fig. 3) as follows for verifying }{}{ QP .

1) Construct),(HFFM as proof of theorem 1;

2) Define the temporal initial states: HFWRRI }{}{|{ such that }RP ;

3) Define the temporal terminal states: HFWRWT }{}{|{ such that }QW ;

4) Introduce the initial state P and connect it with all states in I by arrows

5) Introduce the finial state Q and connect all states in T with Q by arrows, which means QW for

all Ws in T;

6) Find out the path from P to Q such that the string recognized is the string of ;

The problem verified is)()(fQXP , where f is the result from the composition operation on edge labels.

Fig. 3. Sketch of the model.

Notice that sequential model can also apply in verification of both branch and iterative structures. If

regarding some if in the sequent nfff 21 as a set of sequences },,,{ 21 mlll (il is a sequent), and

furthermore make the convention niii ffffff 1121 = }{ 121 ifff },,,{ 21 mlll }{ 1 ni ff , we will

get the linear or sequential representation of branch structure. And iterative structure is a composition of

linear and branching ones. Besides, this system can also work like that of [11] in evolutionally generating

reliable programs.

The principle presented here is not only applicable to sequential programs, but also to other types of

program structures and paradigm such as iteration, branch structure and grammatical evolution. For

example, considering generation procedures of programs from the angle of grammatical derivations like

constructing and interpreting sequences of productions, we can manage to obtain a grammatical model of

grammatical evolution. Once a model is obtained this way, both syntactical and semantic calculations can be

combined into a unified formal framework. We will discus them in another paper.

4. Examples

We will delineate the method by using the example of reference paper [11]. Given a set of Hoare triples

and a predicate relation as shown in tables 1 and 2, verifying whether or not the program f4 f1 f3 f2 f4 f1

constructed from the given components is correct with the pre-condition P1 and post-condition P4.

Solution: By theorem2, tables 1 through 2, we get the model of the given triples as shown in Fig. 4.

Obviously, this model consists of three sub-modes: M1= ({P1,P4}, { f1, f3 , f2 , f4, }), M2= ({P2, P5}, { f1, f3 , f2 ,

f4, }), M3= ({P3, P6, P7},{ f1, f3 , f2 , f4, }). Regarding them as transition diagrams, the possible languages

they accept are shown in table 3. Since M1 recognizes the string f4 f1 f3 f2 f4 f1, i.e. there exists a path in

M1 to justify P1 f4 P1 f1 P4 f3 P4 f2 P1 f4 P1 f1 P4 as checked in Fig. 5, {P1} f4 f1 f3 f2 f4 f1 {P4} must be a

1322 Volume 10, Number 11, November 2015

Journal of Software

Hoare triple. So f4 f1 f3 f2 f4 f1 is correct with respect to the pre-condition P1 and post-condition P4

In addition, we can still prove { xzuzy 0u 0u } f1 f3 f2 f4 { xzuzy 0u } as in Fig, 6.

According to Fig. 1, this Hoare triple means { xzuzy 0u } while 0u do {f1 f3 f2 f4 }

{ xzuzy u=0}.

Solution:: by Fig.3 of theorem 2, to prove { xzuzy 0u 0u } f1 f3 f2 f4 { xzuzy 0u }, for

the sake of (xzuzy 0u 0u) xzuzy and (xzuzy 0u 0u) 0u , we should prove

both { xzuzy } f1 f3 f2 f4 { xzuzy } and { 0u } f1 f3 f2 f4 { 0u }. Having completed the proofs,

combining them as shown in Fig. 6 will get the desired result. In this case, the proof concerns with two

sub-models. They can work towards the desired problem in parallel.

Fig. 4. Model of the given components. Unlabeled arrows are ones. Besides, arrows defined over states are

omitted here.

Table 1. Relations between States (or Predicates)

State

P1 P2 P3 P4 P5 P6 P7

S
t
a
t
e

P1: xzuzy T, f4 f1

P2: 0u T, f1, f3 T, f2

P3: 0 zzrqzrx T, f1 f3 T

P4: xzzuy)1(f2 T, f3

P5: 0u T, f4

P6: 00)1(zrzqrx T, f2 f4

P7: 00 zrqzrx T

Table 2. Transition Matrix Represented by Hoare Triples

Transition function
Program component

f1 f2 f3 f4

S

t

a

t

e

P1: xzuzy P4 P1

P2: 0u P2 P5 P2

P3: 0 zzrqzrx P3 P6

P4: xzzuy)1(P1 P4

P5: 0u P5

P6: 00)1(zrzqrx P6 P7

P7: 00 zrqzrx

Table 3. The Languages of Sub-models

 Regular expression
M1 (f2 f4* f1 f3*)* | (f4* f1 f3* f2)* | (f1 f3* f2 f4*)* | (f3* f2 f4* f1)* | f1 f3* | f3* f2 | f2 f4* | f4* f1 | f4*| f3*
M2 (f1 | f3)* f2 f4* | (f1 | f3)* f4*
M3 f1* f3 f2* f4 | f1* | f1* f3 | f1* f3 f2* | f2* f4 | f2* | f3

1323 Volume 10, Number 11, November 2015

Journal of Software

 Fig. 5 Tabular proof of {P1} f4 f1 f3 f2 f4 f1 {P4}. Fig. 6. Proof of {P1 P2 P5 } f1 f3 f2 f4 {P1 P5}.

5. Discussion

Up to now, we have introduced a relatively simpler way to verify and generate computer programs. This

system shares commonness with some of the previous work [11] that combines formal methods [7], [9]

like Hoare’s logic [1], model checking [8]-[10], automaton [14]-[15] within genetic programming

framework [19], but has unique characteristic in depicting the transition structure, and parallelisms.

Traditionally, GP [18] automatically generates computer programs in terms of the principle of software

testing [20], and don’t touch formal semantics which are of concern to GP researchers recently [21] and

recognized as important approaches to software reliability. We have made first research attempt in some of

these areas. In view of the fact that reusability, component-based development method are of increasingly

important topics in computer community, we provided component-based framework in this work and

[11]-[13] for verification and generation of programs. Reference paper [11] is the basis of [12]-[13] which

provide model alternatives to grammar-based genetic programming, applying path searching techniques in

program generations, but it also leaves behind many worthwhile problems. To this end, the present

approach is proposed. The major problems to be solved, as seen in this work, range from reducing the

complexity of states of [11], automatically finding of sub-models, and component-based parallelism of

computations.

6. Conclusion

A component-based verification framework developed under a closed environment is given for a

reflection of Hoare’s semantics embedded in sequential program structure. It can not only be regarded as a

service-oriented model, but also a fundamental model of branches and iterations to be further extended.

Our future work will focus on the model simplification, sub-model discovery, and related application in GP

unification , information security [22], search-based software engineering [19], and some challenge

problems [23], etc.

Acknowledgment

The research work was supported by National Natural Science Foundation of China (Grant No. 61170199,

61503087), the Scientific Research Fund of Education Department of Hunan Province, China (Grant

No.11A004), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313501),

and Guangzhou Teaching Reform Project (2013A022).

References

1324 Volume 10, Number 11, November 2015

Journal of Software

[1] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. CACM, 12(10), 576-583.

[2] Manna, Z. (1974). Mathematical Theory of Computation. New York: McGraw-Hill

[3] Winskel, G. (1993). The Formal Semantics of Programming Languages: An Introduction. Cambridge, MA:

MIT Press.

[4] Zhang, Y. Z., & Xu, B. W. (2004). A survey of semantic description frameworks for programming

language. ACM SIGPLAN Notices, 39(3), 14-30.

[5] Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modeling and Reasoning about System.

Cambridge: Cambridge University Press.

[6] Manna, Z. (1971). Mathematical theory of partial correctness. Journal of Computer and System Sciences

(JCSS), 5(3), 239-253.

[7] Clarke, E. M., Wing, J. M. et al. (1996). Formal methods: state of the art and future direction. ACM

Computing Surveys, 28(4), 626-643.

[8] Havelund, K., & Visser, W. (2002). Program model checking as new trend. International Journal on

Software Tools for Technology Transfer, 4(1), 8-20.

[9] Quemada, J. (2004). Formal description techniques and software engineering: Some reflection after 2

decades of research, LNCS 3235, pp. 33-42.

[10] Rus, T., & Wyk E. V. (2002). Tom Halverson. Generating model checker from algebraic specification.

Formal Methods in System Design, 20(3), 249-284.

[11] He, P., Kang, L. S., Johnson C. G., & Ying, S. (2011). Hoare logic-based genetic programming, Science

China Information Sciences, 54(3), 623-637.

[12] He, P., Johnson, C. G., & Wang, H. F. (2011). Modeling grammatical evolution by automaton. Science

China Information Sciences, 54(12), 2544-2553.

[13] He, P., Deng, Z. L., Wang, H. F., & Liu, Z. S. (2015). Model approach to grammatical evolution: Theory

and case study, Soft Computing.

[14] Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007). Compilers: Principles, Techniques, and Tools (2nd

ed.). Pearson Education, Inc.

[15] Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2008) Automata theory, languages, and computation (3rd

edition). Pearson Education, Inc.

[16] O’Neill M., & Ryan, C. (2001). Grammatical evolution. IEEE Transactions on Evolutionary Computation,

5(4), 349-358.

[17] Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2013). Grammatical evolution hyper-heuristic for

combinatorial optimization problems. IEEE Trans on Evolutionary Computation, 17(6), 840-861.

[18] Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural

selection. Cambridge, MA: The MIT Press.

[19] Harman, M., Mansouri, S. A., & Zhang, Y. Y. (2012). Search-based software engineering: trends,

techniques and applications. ACM Computing Surveys, 45(1), 11:1-11:61.

[20] Juristo, N., Moreno, A. M., & Vegas, S. (2004). Reviewing 25 years of testing technique experiments.

Empirical Software Engineering, 9(1-2), 7-44.

[21] Vanneschi, L., Castelli, M., & Silva, S. (2014). A survey of semantic methods in genetic programming,

Genet Program Evolvable Mach, 15(2), 195-214.

[22] Li, J, Huang, X. Y, Li, J. W., Chen, X. F, & Xiang, Y. (2014). Securely outsourcing attribute-based

encryption with checkability. IEEE Transactions on Parallel and Distributed Systems, 25 (8), 2201-2210.

[23] Hoare, T. (2003). The verifying compiler: A grand challenge for computing research. In G Hedin (Ed.),

CC2003, LNCS 2622, 262-272.

1325 Volume 10, Number 11, November 2015

Journal of Software

Pei He received the M.S. degree in computer science from Institute of Software, Academia

Sinica, and the B.S. and Ph D degrees in computer architecture and computer software and

theory from Wuhan University, China in 1986 and 2008 respectively. He is currently a

professor at Guangzhou University, China and a member of Guangdong Advisory Board on

Higher School Computer Teaching. Before joining Guangzhou University, he was with

school of computer and communication engineering at Changsha University of Science and

Technology, China from 1989 to 2013. Prof. He Pei works on artificial intelligence, formal methods, and

evolutionary computation, and has published many scientific papers in these areas.

Achun Hu is a librarian at Guangzhou University, China. She graduated from Hunan

Normal University, majoring in linguistics and library & information. From 2002 to 2013,

Ms Hu was with Changsha University of Science and Technology. Her work ranges from

acquisition, cataloguing, information retrieval, to knowledge service, etc. Up to now, Ms Hu

has published several papers. Her current interests center on knowledge representation

and recommendation service.

Dongqing Xie received the B.S. and M.S. degrees in applied mathematics and computer

software from Xidian University, China in 1985 and 1988 respectively, and the Ph D.

degree in applied mathematics from Hunan University in 1999. He is currently a

professor at Guangzhou University, China. His interests are in applied mathematics,

network security, cryptography, etc. Prof. Xie is the dean at school of computer science

and educational software, Guangzhou University, a member of advisory board on

information security under Chinese ministry of education, a senior member of Chinese Institute of

Electronics. He has published many scientific papers.

Zhiping Fan received the Ph D degree in agricultural electrification and automation from

South China Agricultural University and the M.S. degree in computer technology from Sun

Yat-Sen University in 2011 and 2005 respectively. He is currently an associate professor

at Guangzhou University, China. He works on artificial intelligence, wireless sensor

networks, and has published many scientific papers in these areas.

1326 Volume 10, Number 11, November 2015

Journal of Software

