
Design a Jini-based Service Broker for Dynamic

Service Combination Framework

Hsu, Kuo-Wei
kuowei.hsu@gmail.com

Abstract—The increased use of electronic service has

invented a new term Service-Oriented Architecture. In a

typical distributed environment consisting of many

independent devices and services, it is practically required

to apply a framework of dynamically combining service.

The goal in developing such a framework is to add variety of

functional operations as well as interaction among services,

share data of software modules, and force devices and

services working together in a coordinated fashion. This

paper proposes a dynamic service combination framework

coupled with a Service Broker for Jini, and explains how to

achieve the behavior coordination of services. The major

contributions of this paper are: first, the concept of

combined service is abstracted into a number of cooperative

services; second, it provides a programming framework that

allows us not only to combine services dynamically but also

to generate the combined service automatically.

Index Terms—Service-Oriented Architecture (SOA), Jini,

dynamic service combination framework, service broker

I. INTRODUCTION

Service-Oriented Architecture (SOA) has gained much

attention in recent years with the coming of technologies

such as Jini and Web Service, which both include three

elementary roles, service provider, service consumer, and

service naming directory [1-8]. A typical SOA is shown

in Fig. 1.

In SOA, the interface of the service is defined in a

fixed way, but the implementation of the service can be

changed according to future requirements. The proposed

Service Broker performs a dynamic service combination

framework and makes it possible to maintain

environments in a spontaneous and incremental way by

adopting standard protocols as well as a simple

combination process. It allows developers easily to

incorporate hardware devices and software modules into

a system. In promoting the home networking feature,

with the framework proposed in this paper, it is possible

for developers logically to decompose a general

information appliance into specialized functional units for

reducing the development complexities.

Figure 1. Service-Oriented Architecture.

This paper proposes a Jini-based Service Broker for

achieving service combination. A service in Jini can be

realized to represent a physical device (hardware), a

program (software) or a combination of both [18-19].

Also, this paper extends the meaning of a Jini service to a

set of services. In the scenario of this paper, service

combination is coordinated by a special service that

manages the discovery, combination and execution of the

combined service. The key features of the proposed

Service Broker are as follow. First, one component is

treated as a service available on a network. Second, the

concept of combined service is abstracted into several

cooperative services. Third, it provides a programming

framework that allows for the dynamic combination of

services.

The organization of this paper is as follows. The

second section of this paper will supply background

information on Service-Oriented Architecture and a brief

introduction to Jini Technology. Following that, the

architectural overview of the proposed dynamic service

combination framework and the Jini-based Service

Broker will be discussed in the third section. Later, the

fourth section will present more advanced design issues,

while the fifth section will demonstrate a practical

example. Finally, a conclusion will be given in section six.

II. TECHNICAL BACKGROUNDS

A. Service-Oriented Architecture

E-service can be defined in general as an aggregation

of electronic devices. Examples are Sun Microsystems'

Jini [18] and Web Service [5, 7, 8]. The increased use of

32 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

E-service has opened a new horizon of proliferation in

software engineering and has invented a new term

Service-Oriented Architecture. Here, a service is a

functional module that is self-described, self-managed,

and independent. Further, a Service-Oriented

Architecture (SOA) is a design philosophy that is based

on a collection of services, each of which communicates

with others through specific protocols. In other words,

SOA is a software topology that allows registered

services and consumers to be in a loosely coupled

relationship.

SOA is not a whole new concept. The prior

technologies for SOA include CORBA [24, 25] and

DCOM [26, 27]. Unfortunately, neither CORBA nor

DCOM provides an efficient solution to deal with the

rapidly changing networks. Contrarily, both Jini and Web

Services technology give developers a better chance to

handle the changeable networks and to approach the ideal

plug-and-play systems. However, there is another we

have to note here: Web Services technology and SOA are

not synonymous. More precisely, SOA is a design

principle while Web Services technology is one of the

implementation technologies realizing SOA, and so does

Jini.

The most important aspect of SOA is that it divides a

service into two parts: "what" and "how" – the former

means the interface and the latter means the

implementation. A service consumer does not care about

how the service works for satisfying its request. Besides

service provider and consumer, a service registry plays a

pivotal role in a typical SOA environment, as shown in

Fig. 1. A service registry acts like a directory maintaining

access information of all registered services.

Before analyzing the detail of SOA, it is important to

first explore software architecture, which describes

components of a system and the way they interact with

one another. These components are abstract software

modules deployed as a functional module on servers, and

further services are self-describing components offered

by service providers. They are responsible for obtaining

and maintaining the implementations of services and

providing descriptions for services. Service descriptions

provide the basis for the binding, discovery and

combination of services.

SOA promotes loose coupling between service

consumers and service providers [5]. Coupling refers to

the number of dependencies among modules. Loosely

coupled modules have a few well-known dependencies.

Contrarily, tightly coupled modules have many unknown

dependencies. If a service consumer knows the details of

a service provider, they are more tightly coupled. On the

other hand, if the consumer does not need the detailed

knowledge of the service before using it, they are more

loosely coupled. The consumer does not depend directly

on the implementation of the service but only on the

contract (interface) the service supports. Although the

coupling between service consumers and service

producers is loose, the implementations of services can be

tightly coupled with implementations of other services,

for example, a set of services is tightly coupled if they

have access information about implementation.

The main idea behind SOA is to take an appropriate

modularity so developers can build a system in which

components are not tightly coupled with others. In the

programming methodology of SOA, a service consumer

is not tied to a particular service provider, instead, the

service providers are interchangeable [3, 6]. One

characteristic of SOA programming is that services are

dynamic in nature and they can be registered to and

unregistered from the service naming directory at any

moment and service consumers have to prepare to cope

with this situation. The second one is that a service

consumer must be prepared to cope with situations where

no services are found or multiple matching services are

found. Finally, the third characteristic is that service

consumers do not know whether they are interacting with

a common service implementation or other particular

implementations.

B. Jini Technology

Jini is designed to turn a network into an easily

managed environment on which consumers can find

services in a flexible and robust fashion. Jini is unique in

that it introduces the idea of transmitting a proxy object

(remote reference) to the consumer where it is used as an

agent to the corresponding service entity. The service

simply has to encode its well-known location within its

proxy. Any client (service consumer) can call methods on

the proxy of interested service entity without having any

knowledge of the actual location of that service. Fig. 2

illustrates operations in a Jini federation.

A collection of Jini services forms a Jini federation

where services coordinate with others. One main module

is the Jini Lookup Locator (JLL in Fig. 2) providing the

Lookup Service (LS in Fig. 2), which maintains dynamic

information about all available services in a Jini

federation. More precisely, the JLL maps interfaces of

services indicating the functionalities provided by

services to several sets of objects that implement services.

In addition, descriptive attributes associated with a

service allow more accurate selection of services

according to attributes. Every service has to discover one

or more JLL before it can be allowed to enter a federation.

The location of the JLL could be built-in or discovered

using multicast at run time (line 1 and 3 in Fig. 2). When

a Jini service wants to join a federation, its provider

discovers at least one JLL first and then uploads the

service implementation code, i.e., a set of Java classes, to

the JLL (line 2 in Fig. 2).

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 33

© 2006 ACADEMY PUBLISHER

Figure 2. Operations in a Jini federation.

In a Jini federation, a service consumer uses a service

proxy to contact some service entity. A consumer

attempting to search for a service first launches a

multicast-based query to find out the JLL in the network.

If a JLL exists, the corresponding JLS service proxy is

downloaded into the consumer’s JVM (Java Virtual

Machine). The consumer then uses this proxy to run the

lookup procedure and find out wanted services.

Jini adopts Java RMI (Remote Method Invocation) to

implement such a service proxy. Java RMI is based on

remote reference, which is the local representative of the

remote object involved in the method invocation [20-23].

Rather than making a copy of the implementation object

in the receiving JVM, Java RMI passes a remote

reference for a remote object. The client-side remote

references are "stubs", while those in the server are

"skeletons".

A representative Java RMI architecture is represented

in Fig. 3. Fundamentally, the stub or skeleton layer

includes the client-side stub and the server-side skeleton.

The remote reference layer handles the behavior of

remote reference, such as invoking an object. The

transport layer initializes and manages connection, the

remote reference, and the remote object tracking. A stub

implements the same interface as the remote skeleton it

relates to. Further, it forwards method invocations

received from clients to the appropriate skeleton provided

by the service provider. A skeleton waits for a remote

method invocation, and sends it to the corresponding

objects. Moreover, the service consumers can use the

service stub to contact the Jini service and invoke

methods on that service.

Figure 3. RMI architectural overview.

Because service consumers only interact with the

service stubs based on Java, the nature described

previously allows various types of services to be accessed

in an uniform fashion. For searching for a service, a

consumer first launches a multicast-based query to find

out the JLL in the network (line 3 in Fig. 2). If a JLL

exists, the corresponding LS service stub is downloaded

into the consumer’s machine. The consumer then uses

this stub to run the lookup procedure and find out the

wanted service (line 4 in Fig. 2). The service consumer

makes a request for some services by specifying a Java

type, specific attributes, or the interface that wanted

services have to implement. Besides, in Jini, service

discovery is done by Java interface or attribute matching.

Once a candidate service is found, the stub registered by

the service provider is copied to the consumer’s machine

using Java RMI (line 5 in Fig. 2). Consumers take the use

of the stub to interact with the service.

III. ARCHITECTURE OVERVIEW

A. Dynamic Service Combination Framework

Service combination is an important and active area of

research, and has been studied widely for wired as well as

wired and wireless networked services. Many researchers

are working on distributed computing with SOA. Their

outstanding achievements show that SOA is a practical

approach for combining components. Using SOA,

distributed systems can share various components and

processes. Developers can utilize SOA to build

distributed systems more easily.

Jini’s dynamic nature enables services to be added or

withdrawn from a federation, a group of services. The

proposed process of combining component consists of the

following steps:

1. Specify possible combination rules, at design time.

2. Specify components as services, at design time.

3. Make them participate into a Jini federation, at run

time.

4. Generate the combined service when appropriate

ingredient services available on the Jini federation,

at run time.

5. Mount the newly generated virtual service in the Jini

federation, at run time.

6. Allow the combined service to be discovered and

accessed by other Jini-enabled applications or even

services, at run time.

In this scenario, service combination is coordinated by a

special service that manages the discovery, combination

and execution of the combined services.

Here are two significant features. First, the concept of

a service is extended from an entity to a set of entities – a

combined service is actually a set of cooperative services

or components. To clarify, the proposed framework

enlarges the service provider from the solid-line box to

the dash-line box in Fig. 1 such that various services are

bundled as a service seamlessly and transparently.

Therefore, from the service customer’s view, a combined

service acts just like an ordinary service. On the other

hand, from the viewpoint of a service registry, a

34 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

combined service is not different from a normal service.

The second feature is that, it provides programming

interface that allows for dynamically combining services

at run time.

From a device developer’s or software architect’s point

of view, the combination of components or services in a

complex distributed environment will face many design

issues and development problems. Examples are

protocols compatibility, absence of the API of the

required service on time of compilation. Also, there will

be problems of configuration and dynamic deployment, a

set of problems related to the absence of certain

information about services or components in a distributed

environment at run time, and many others.

The reason we adopt Jini instead of Web Services

technology here is that, a web is a program that hides

behind a web server. It is activated by a web server when

a request is coming. So, it is safe to say that Web

Services technology is stateless, which means when a

request comes, a service wakes up, takes the responses

accordingly, and finally returns to the waiting status.

Because of such a characteristic, using Web Services

technology to combine services dynamically and then

generate the combined service is harder or more

expensive than using Jini to do those. Jini views each

service as an object so we can generate a combined

service as we create a new object and further we can

monitor each service by its state.

Another reason we do not employ Web Services

technology but Jini is that, Jini has built-in security

mechanism since it was born. Further, from version 2.0,

Jini supports a more comprehensive security mechanism.

To explore this more, a security manager is any class

whose ancestor is the jaba.lang.SecurityManager class. A

customized security manager allows developers to build a

user-defined security policy for a specified service. Once

the security manager is activated, every access will be

checked with the security policy, and every invocation

will be allowed only after the customer gets the

permission from the service provider. In addition, a Jini

service could specify which customer is allowed to

invoke which method it provided. The security policy is

used to grant "stub" (dynamically downloaded code)

permission to do something, or not to do anything, which

means it is the access control, and a solution to the

authorization problem.

B. Service Broker

The spurt of SOA has increased the importance of

service combination. Service combination enables the

users to integrate existing services to satisfy complex

requests that require cooperation of multiple services.

One direction of SOA research aims in developing

architectures that enable service composition [8, 14, 15].

These architectures presume a workflow specification of

a composite service and perform the task of discovering,

integrating and executing the services.

Service combination refers to the technique of creating

complex services with the help of smaller, simpler and

easily executable services or components. In a home

network, for example, a Bluetooth-enabled Digital Video

Recorder (DVR) carrying video files could be a service

providing AV (audio/video) data in various formats. The

notion of integration has been proposed to describe such

dynamic combinations of devices and services. It

embodies both software and physical concepts of

composition and de-composition. In particular, it supports

combination of heterogeneous services and highly

dynamic shifts in which services are available; properties

which are characteristic of ubiquitous computing. So, a

service combination is of the use-oriented (service-on-

demand) concept: a combination of services or devices is

considered as a conceptual whole by its user. In a

distributed system supporting plug-and-play connectivity,

first, the centralized design approach of the combination

engine in a wired network is prone to single point of

failure, especially since all nodes are not so reliable due

to their inherent nature. Second, service topology

(distribution of services on various ad hoc nodes) changes

because of dynamically entering and exiting the network.

The service combination architecture should be able to

use the spatial distribution of services to optimize service

combination and execution.

This paper introduces a process of brokering to

combine services. In this paper’s scenario, a union

service is a combined service consisting of various

component services, and further, a component service

provides specific functions and is an ingredient of a union

service. For brokering services, initially the broker finds

all component services and then employs them to create a

union service according to the corresponding

combination rule defined in a database or a knowledge

base. In this scenario, it suggests the automatically

generated union service is a virtual service in reality. A

service consumer directly accesses a union service and is

not aware that underlying component services cooperate

to get the work done.

The proposed architecture mainly consists of a Broker

Engine as well as a Knowledge Base and is presented in

Fig. 4. The Broker Engine is responsible for combining

component services and automatically generating a union

service with the help of the Knowledge Base that keeps

track of rules of combination processes.

In Fig. 4, the usManager class manages the union

services. The BorkerService interface provides a proper

definition of the brokering service, while the BrokerAgent

class is the core element that performs the combination

process. Further, an instance of usThread class

corresponds to a union service, which is a virtual but

workable Jini service. The ServiceFinder class is a helper

class used to find the specified component services.

The BrokerService interface defines two methods,

addUnionService and delUnionService. The former is

used to add a new union service and the latter is used to

delete an existing union service. To realize the

BrokerService and make it a standard Jini service, an

implementation class named BrokerServiceImpl is

provided. Surely the stub of an instance of

BrokerServiceImpl can be downloaded by consumers

attempting to use the brokering service.

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 35

© 2006 ACADEMY PUBLISHER

 Figure 4. Proposed Jini-based Service Broker

The BrokerAgent class manages several data structures

to keep track all the union services. Also, it exports the

current status of the brokering service into a file, and

importing the previous status from a file as well. Such a

capability can encourage the automatic initialization

through default setup file.

The UnionService class is a super class of all union

service implementations. To make this virtual service

look like a real Jini service, an instance of UnionService

has to properly set the value of related attributes. Further,

each instance of usThread class presents a thread running

a unionService instance. The usThread class is not

restricted to any particular union service. Operations

taken in the run method of the usThread class are

straightforward. In the first step, it finds all component

services in a rolling manner. In the second step, it creates

and then initializes the corresponding UnionService

object with the help of Java reflection API and

java.lang.ClassLoader that loads specified Java classes

dynamically.

IV. ADVANCED ISSUES

A. Leasing Mechanism

In distributed systems, the most common failure

scenario is one in which some system modules cannot be

accessed. Therefore, Jini introduced distributed leasing to

help developers address the resource management issues

that partial failures present. To ease the development of

applications built on the proposed architecture, we make

good use of the Jini leasing mechanism. For the proposed

architecture, the leasing model is demonstrated in Fig. 5.

Figure 5. Leasing mechanism

The leasing mechanism enables distributed

components to explicitly limit the duration of their agreed

cooperation. This removes any possible ambiguity about

when such agreements are terminated and allows modules

to safely reclaim resources that had been associated with

them. In the Jini network, a lease is used to establish an

agreement about how long the JLL will maintain a record

in the naming directory that is for the corresponding

service. Since the resources belong to it, the JLL grants

the lease to the developer’s service. Besides, the duration

of each agreement can be specified independently. The

responsibility for initiating a lease renewal request

belongs to the original lease requestor. If a service would

like the JLL to continue registering its availability, it must

request the JLL renew its service registration lease before

its expiration. A lease requestor can also cancel a lease. If

a lease is neither renewed nor canceled before its

specified duration time passes, the lease automatically

expires. Here, the lease grantor and lease requestor are

both freed from responsibilities associated with the lease.

In the proposed architecture, all implementation codes

of component services should implement the

ComponentServiceInterface interface. By combining with

leasing, a component service is able to control its

resource usage or public access actively. On the other

hand, a union service should perform a resource

allocation mechanism in order to manage the situation,

such as when the union is no longer maintained due to the

disappearance or unavailability of its dependent

component services. The leasing policy should be

implemented in the getLease method of

ComponentServiceInterface interface. The getLease

method returns a Lease object that can be transmitted

over the network. Therefore, an instance of usThread has

to find the minimum value of the expiration time of all its

dependent component service for deciding the expiration

value of itself. Moreover, by adopting the Jini leasing

model, the union service decides which specific

component service in the union can change its

accessibility. Also, the usThread instance can manage the

status of the union service, and further provide users an

advanced service allocation administration.

B. Event Model

The Jini distributed event model allows one distributed

component to register interested events and receive

notifications of events generated by another component.

In its simplest form, an object that wants to be notified of

an event's occurrence first registers its interest to the

event generator. The event notification registration is

leased. The event generator will maintain the notification

registration for the notification receiver. Also, it will send

event notifications to the receiver as long as the receiver

continues to renew the lease. If a partial failure prevents

the event receiver from being able to renew the lease, the

event generator will remove the event notification

registration and discontinue notifications.

Fig. 6 illustrates the event model design for the

proposed architecture and the event dispatching process.

36 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

Figure 6. Event model and delivering process

The proposed architecture adopts a simple but effective

design, the generator-listener event model, where every

ComponentService instance creates an EventGenerator

object to send events and an usThread object representing

a union service creates an EventListener object to accept

related events.

When an event appears (e.g., network topology or

service status changes, a service detaches form Jini

federation), it is reported by an EventGenerator instance

and later passively received by an EventListener instance.

The EventListerer then passes this event to the

corresponding usThread instance and later the related

UnionService instance. The EventGenerator interface

defines only one method, setEventListener, which is used

to set the listener for events. The EventListener class

follows the standard Jini and Java RMI design pattern and

also implements the RemoteEventListener interface that

defines the notify method. For posting events, an

EventGenerator instance invokes the notify method of the

EventListener instance that previously has been set.

V. PRACTICAL EXAMPLE

Here, the example is a virtual "copy machine" service

that is composed of a physical "scanner" service and a

physical "printer" service. If a company has installed M

scanners and N printers, logically there could be M×N

copy services (virtual copy machines) - of course, some

physical restrictions and the differences between

hardware specifications will reduce this number. When

all real copy machines are busy or occupied, those M*N

copy services could provide an alternative solution.

Thanks to SOA, the existing investments (in legacy

systems or devices) could be protected. Through the help

of the proposed framework, for example, we can build a

mobile office, which is filled with mobile devices and

wireless printers so employees are permitted to do the

copy job at anywhere, at anytime. However, since our

target here is not to develop a fancy business copying

solution, we simplify the problem to one scanner plus one

printer. Also, we concentrate on the behavior of the

combined service, i.e., how the framework generates it,

and how developers comply with the framework’

programming interface.

Fig. 7 illustrates all significant Java classes

participating in this example. In Fig. 7, both ScanService

and PrintService are located on the servers or devices

actually. They play the role as an RMI server defined in

Fig. 3, while Agent is a standard RMI client.

Figure 7. Classes in the example.

As we described before, an RMI client communicates

with some RMI server via the connection built between

the stub and the skeleton. In Fig. 7, ScanServiceImpl

provides the stub for ScanService as well as the implicit

skeleton which is automatically created by Java RMI

compiler. So does PrintServiceImpl. Moreover,

ScanServiceProxy is a special Java interface extending

java.rmi.Remote and ScanService. Similarly,

PrintServiceProxy extends java.rmi.Remote and

PrintService. Last but not least, ServiceFinder in Fig. 7 is

a utility used to find some Jini service by specifying the

corresponding interface.

The abstract model for the example consists of an

Agent instance and a database, as represented in Fig. 8.

Here, service A and B resisters to JLL respectively. Of

course, at the same time, both let their stubs be hosted on

JLL. After it discovers service A and B via the standard

Jini LS, the Agent in Fig. 8 obtains stub of A and B, later

generates the combined service X according to the related

combination rule stored in a database, and finally

registers service X to JLL. Thus, Agent in Fig. 8

corresponds to BrokerAgent in Fig. 4.

Implementing this abstract model is straightforward.

First, it gets the stub of ScanService (A) and PrintService

(B) respectively. Next, it concatenates corresponding

methods to perform the cooperative service, CopyService

(X). The most important operation in the example is the

copy method defined in the CopyService interface. These

two finding steps look redundant, but in reality they are

necessary. Although the stub of the CopyServiceImpl

class exists in the JVM which hosts the Agent class that

goes through similar steps, they are different objects and

the interactions between them should be as simple as

possible. Another reason for finding service ScanService

(A) and PrintService (B) again is that, both of them have

the possibility of disappearance since every Jini service

can join and leave Jini federation arbitrarily.

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 37

© 2006 ACADEMY PUBLISHER

Figure 8. Combining service with remote objects.

In this case, Agent has to help construct a standard Java

RMI stub for the service X. The service X is a virtual

service, but it still acts like a standard Jini service.

However, the execution of the service X is different form

the previous one. The consumer accesses service X in the

way of invoking the remote methods carried by the stub

of X after downloading it. Note that, the skeleton of

service X exists in Agent since it is hosted on the same

machine as on which the Agent runs. Therefore, the

combined operation (A plus B) is executed on the

machine that hosts the Agent class. For the Agent class,

the code segment of the main method defined in is

presented in Fig. 9.

The Agent class first finds the "scan" (A) and the

"print" (B) service respectively. Later it initializes the

"copy machine" service (X). To simplify this example,

the combination rule demonstrated here is hard-coded.

Nevertheless, a flexible design is to put such rules in a

database. On the other hand, for the client, it directly

finds the desired "copy machine" service (X),

CopyService. Next, it invokes the copy method of the stub

obtained from CopyService. When searching CopyService

(X), the client need not trouble about the ScanService (A)

and PrintService (B) since both are invisible for the client

application. Fig. 10 shows the code segment of the main

method defined in the Client class.

Next, let’s put the focus on the copy method that is

defined in CopyService interface and implemented in

CopyServiceImpl class. The former is an interface and the

latter is the implementation for the former. The code

segment of the copy method is shown in Fig. 11.

Figure 9. Method main of Agent.

Figure 10. Method main of Client.

Figure 11. Method copy of CopyServiceImpl.

Straightforwardly, what the method copy does is

nothing but getting the remote references from

ScanService and PrintService respectively and then

calling scan and print sequentially. As we talked

previously, the Jini provides built-in authorization and

security mechanism. However, developers are welcome

to add their own business logic here. They can enhance

the authorization by applying some resource allocation

algorithm, or take stricter security model through the help

of encryption algorithms.

VI. CONCLUSIONS

The subject of this paper is how to realize the service

combination framework in a programmatic way. For

brokering services, the proposed Service Broker finds all

component services first and then employs them to create

a union service according to the corresponding

combination rule defined in a database or a knowledge

base. This suggests a service consumer directly accesses a

virtual union service and is not aware that underlying real

component services cooperate to complete the work. We

make full use of Java RMI and Jini, so as to provide

developers a service combination framework for

dynamically creating an intelligent device that have the

capability of automatically generating combined or

collaborative services.

Specifically, the contribution of this paper is twofold.

First, it explains the abstractions used to comprehend

such combinations of services, as are inherent to

distributed, pervasive or ubiquitous computing. Second, it

is argued that the concept of a combined service should

be realized through an explicit programmatic construction

that represents it at design time and at run time. Moreover,

developers can create a more intelligent service or device,

CopyServiceImpl.java – copy()

// Step 7, 8

public void copy() throws java.rmi.RemoteException {

System.setSecurityManager(new RMISecurityManager());

ServiceFinder ssf = new ServiceFinder(ScanService.class);

ScanService ss = (ScanService) ssf.getObject();

ServiceFinder psf = new

ServiceFinder(PrintService.class);

PrintService ps = (PrintService) psf.getObject();

 ps.print(ss.scan());

}

Client.java – main()

// Step 5 (find copy machine service)

ServiceFinder csf = new ServiceFinder(CopyService.class);

// Step 6 (get stub of copy machine service)

CopyService cs = (CopyService) csf.getObject();

// Step 7 (invoke the copy method)

cs.copy();

Agent.java – main()

// Step 3 for A (find scan service)

ServiceFinder ssf = new ServiceFinder(ScanService.class);

ScanService ss = (ScanService) ssf.getObject();

// Step 3 for B (find print service)

ServiceFinder psf = new ServiceFinder(PrintService.class);

PrintService ps = (PrintService) psf.getObject();

// Step 4 for X (initialize copy machine service)

CopyServiceImpl.main(null);

38 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

which can automatically make functional modules or

services combined and further configure a set of services

flexibly. Consequently, this paper extends the meaning of

a Jini service to a set of services.

The future works include research on combination

rules and the knowledge base that manages them. Ideally,

an intelligent system should evolve new rules form

existing combination rules. One approach is to introduce

machine learning techniques into the proposed

framework. Also, the knowledge base as we discussed

earlier is worthy of our continued study since it can

provide a flexible programmability and a strong support

for the evolvement of rules.

REFERENCES

[1] Thomas Erl, Service-Oriented Architecture: Concepts,

Technology, and Design, Prentice Hall PTR, August 2005.

[2] Dirk Krafziq, Karl Banko, and Dirk Slama, Enterprise

SOA: Service-Oriented Architecture Best Practices, ISBN:

0131465759, Prentice Hall, 2004.

[3] Munindar P. Singh and Michael N. Huhns, Service-

Oriented Computing : Semantics, Processes, Agents, John

Wiley & Sons, January 2005.

[4] ZapThink and Jason Bloomberg, The SOA Implementation

Framework White Paper: The Future of Service-Oriented

Architecture Software, ZapThink, LLC, April 2004.

[5] ZapThink and Jason Bloomberg, Growing an Agile

Service-Oriented Architecture White Paper: Achieving

Reuse & Loose Coupling through Web Services Delivery

Contracts, ZapThink, LLC, September 2003.

[6] Zoran Stojanovic and Ajantha Dahanayake, Service-

Oriented Software System Engineering Challenges and

Practices, Idea Group Publishing, April 2005.

[7] Gerhard Wiehler, Mobility, Security and Web Services:

Technologies and Service-oriented Architectures for a New

Era of IT Solutions, Wiley-VCH, August 2004.

[8] Thomas Erl, Service-Oriented Architecture: A Field Guide

to Integrating XML and Web Services, Prentice Hall PTR,

April 2004.

[9] Joost N. Kok and Kaise Sere, "Distributed service

composition", in Technical Report No. 256, Turku Centre

for Computer Science, Finland, March 1999.

[10] D. Chakraborty and A. Joshi, "Dynamic Service

Composition: State of-the-Art and Research Directions",

Technical report TR-CS-01-19, University of Maryland

Baltimore County, December 2001.

[11] Gerald C. Gannod, Sudhakiran V. Mudiam, and Timothy E.

Lindquist, "Automated support for servicebased software

development and integration", Journal of Systems and

Software, 2003.

[12] Gerald C. Gannod, Sudhakiran V. Mudiam, and Timothy E.

Lindquist, "An Architecture-Based Approach for

Synthesizing and Integrating Adapters for Legacy

Software", in Proc. of the 7th Working Conference on

Reverse Engineering, November 2000, pp. 128–137.

[13] Paolo Predozani, Alberto Sillitti, and Tullio Vernazza,

"Components and data-flow applied to the integration of

web services", in Industrial Electronics Society, The 27th

Annual Conference of the IEEE, volume 3, 2001, pp.

2204–2207.

[14] J. Suzuki and T. Suda, "Middleware Support for Super

Distributed Autonomic Services in Pervasive Networks",

in Proc. of the IEEE Workshop on Service Oriented

Computing, in conjunction with the 2004 IEEE

International Symposium on Applications and the Internet,

Tokyo, Japan, January 2004.

[15] Stephen Langella, "Distributed Data Management and

Integration, The Mobius Project", The Global Grid Forum

(GGF11) Semantic Grid Applications Workshop, Honolulu,

HI, Jun 2004.

[16] R.H. Katz, Eric. A. Brewer, and Z.M. Mao, "Fault-tolerant,

scalable, wide-area internet service composition", in

Technical Report, UCB/CSD-1-1129, CS Division, EECS

Department, UC. Berkeley, January 2001.

[17] Pierre-Antoine Queloz and Alex Villazon. "Composition of

services with mobile code", in Proc. of First International

Symposium on Agent Systems and Applications and Third

International Symposium on Mobile Agents, Palm Springs,

California, 1999.

[18] W. Keith Richards. Core Jini. Prentice-Hall PTR, 1999.

[19] UC Berkeley Computer Science Division, The Ninja

Project, http://ninja.cs.berkeley.edu.

[20] Sun Microsystems, JSR 78 - RMI Custom Remote

Reference,

http://java.sun.com/aboutJava/communityprocess.

[21] Sun Microsystems, "Java Remote Method Invocation

Specification, Rev. 1.50", Sun Microsystems, Mountain

View, California, October 1998.

[22] Esmond Pitt, Kathleen McNiff, and Kathy McNiff,

Java.rmi: The Remote Method Invocation Guide, ISBN:

0201700433, Addison-Wesley, 2001.

[23] William Grosso, Java RMI, ISBN: 1565924525, O’Reilly,

2001.

[24] Fintan Bolton, Pure Corba, ISBN: 0672318121, Sams,

2001

[25] Marku Aleksy, Axel Korthaus, and Martin Schader,

Implementing Distributed Systems with Java and CORBA,

ISBN: 3540241736, Springer, 2005.

[26] Frank E., III Redmond, Dcom: Microsoft Distributed

Component Object Model, ISBN: 0764580442, John Wiley

& Sons, 1997.

[27] Nathan Wallace, COM/DCOM Blue Book, ISBN:

1576104095, Coriolis Group, 1999.

Hsu, Kuo-Wei received a BS in electrical engineering from

National Chung-Hsing University, Taichung, Taiwan, and an

MS in computer science and information engineering from

National Taiwan University, Taipei, Taiwan. His primary

research focus is software engineering, particularly the

development of distributed system.

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 39

© 2006 ACADEMY PUBLISHER

