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Abstract— The demography of anchovy fishes in the Gulf
of Biscay seems to be related to the presence of so-
called “retentive” hydrodynamical structures, that keep fish
eggs and larvae in a favorable environment. To verify
this hypothesis, an automatic detection tool is needed to
process a database of thousands of hydrodynamical maps
to be compared with biologists observations and fisheries
statistics. The results could be used to decide fishing quotas
or bans for the sake of preserving the natural resource. We
propose two evolutionary schemes, one based on ant systems,
the other on induction of genetic programming filters, in
order to automatically detect these retentive structures. Our
heuristics are shown to be competitive with human experts
and are compared to other detection schemes.

Index Terms— Evolutionary computation, genetic program-
ming, iterative filters, automatic structure detection

I. INTRODUCTION

Problem overview

Presence and density of animal species in the ocean and
coastal waters are strongly influenced by the location of
physical structures, such as upwellings, temperature fronts
or vortices. In the case of the anchovy in the Gulf of
Biscay, oceanographers and biologists from the Ifremer1

institute are studying the correlation between so-called
“retentive” structures and the demography of these fishes.
Retentive structures are meso-scale vortices, whose size
ranges from 10 km to 200 km, that keep fish eggs and
larvae in favourable environmental conditions, different
from those encountered outside the structure, and that last
long enough to allow fish growth. The presence of these
retentive structures during Spring is dependent upon the
weather, and it is supposed to be a good predictor for
future fish demography, and this, in turn, could allow to
decide adequate fishing quotas or bans to preserve this
natural resource.

Verifying this hypothesis is not obvious: a first major
problem lies in efficiently identifying such hydrodynam-
ical patterns in massive data-sets, in order to match
their presence against biologists observations and fisheries
statistics for several years.

1French Research Institute for Exploitation of the Sea

Characterizing the detection task
At this stage of the study, there is no formal model

for these meso-scales retentive structures, but rather their
detection is made by experts on stream vector maps.
During this process some structures that could be retained
by a naive observer are rejected, e.g. because the stream
aspect is chaotic in the neighborhood, suggesting these
are only transient patterns or artifacts due to the model
digitization.

When specialists highlight retentive structures by hand
on the stream maps, they certainly use hidden expertise
about plausible structures, and knowledge about the typ-
ical stream dynamic in the Gulf of Biscay and of the
characteristics of the simulation model. Thus the physics-
based vortices detection problem is probably mixed with
a hidden criteria learning task. An efficient detection
scheme for this problem may therefore build over these
two aspects: using hydrodynamics and being able to learn
part of the expert’s knowledge.

Maps and data set
The data comes from a large set of vector fields

issued from more than ten years of daily hydrodynamic
simulations of the Gulf of Biscay. The simulations are
based on two 3D hydro-dynamical models: Mars3D [1]
developed by Pascal Lazure at Ifremer laboratory and the
Mercator model2. A typical stream map is a 2 dimensional
matrix containing the orthogonal u and v components of
the stream vector at 10 meters depth for every intersection
(x, y) of a discrete grid with 10km by 10km cells, as
illustrated on Figure 1. Maps are collected at regular
time steps, usually every 24 hours and are stored in the
NetCDF3 format. One needs to record the location of
interesting vortices over many years in order to conduct
further statistical analyses. This yields a very large amount
of maps to be processed, thus an automatic and efficient
detection tool is needed to conduct the study.

Vorticity-based methods
As a starting point, two ”classical” state-of-the-art

vector fields analysis methods have been tested, one based

2http://www.mercator-ocean.fr
3http://my.unidata.ucar.edu/content/software/netcdf/index.html
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Figure 1. An example of detection performed by an expert: interesting
vortices are circled in black. Every vortex will be digitized as a set
of map cells. The coastline (at 10 meters depth) of South Western
France can be recognized on the picture right, while the grey part in
the lower left corner was not output by the hydrodynamical simulator
in this example.

on the vorticity of the vector field, the other based on the
Helmholtz decomposition of this vector field. In the first
one, the vorticity (or curl) in each cell is computed, which
can be done on a discrete field by a convolution, and
then a threshold is applied on this scalar field to extract
significant features (see [2]).

The second method relies on the Helmholtz decompo-
sition of the vector field ω(x, y) = (u(x, y), v(x, y)) into
two fields, one solenoidal field ωso and one irrotational
field ωir such that ω = ωso + ωir (see [3]).

From the knowledge of ωso = (uso(x, y), vso(x, y)),
one can build the orthogonal field ω⊥so =
(−vso(x, y), uso(x, y)), and then integrate a scalar
potential function Ψ such that:

w⊥
so = ∇Ψ

The extrema of Ψ are characteristic points of the
solenoidal field, and vortices centers can be extracted.
The vortices spatial extensions can then be modeled by
Rankine functions. The interested reader may also refer
to [4] for a good review of the state of the art.

Although theoretically sound, these classical vortices
detection schemes do not comply well with the problem
at hand. Their main weakness is they are based on the
local vorticity (or curl), while we are searching for areas
where the stream draws some kind of loop which does
not need to be circular, and which dimension is up to
200 km. It is obviously difficult to assess the presence
of such structures by using only local information. In
open ocean, where stream perturbations are low, classical
schemes perform quite well since retentive structures are
mainly large, almost circular, well-defined vortices, but
when it comes to coastal waters, the shallow depths and

Figure 2. A typical example of a hard case for automatic detection: a
strong local extremum of curl that triggers classical methods but does
not match with a retentive structure. This map detail is taken from the
surroundings of South Brittany.

coastal river plumes induce many deviations of the stream
circulation. This results in the detection of inaccurate
structure, as shown in Figure 2.

Thus we think the identification of retentive structures
certainly need to take into account information coming
from larger areas of the stream vector map. The relative
failure of these classical methods also hints at the pos-
sibility to try to learn part of the experts knowledge in
order to perform a better detection, as said above.

Streamlines method

An alternative choice to vorticity-based schemes con-
sists in choosing a “Lagrangian point of view”: retentive
structures could be retrieved by dropping virtual buoys
and following their trajectories. Neglecting buoys mass
and water viscosity, this be approximated by integrating
the streamlines of the vector field, e.g. as illustrated in [5].
The detection of looping streamlines can be done by
tracking trajectories that come close enough to any given
point at repeated time intervals.

Although simple in concept, applying this scheme
needs to determine places on the map where to seed
streamlines (usually random, or regular grid-wise places),
and to set a threshold radius to detect looping trajectories.
These are two tricky points, since small variations in these
parameters can yield very different detection results. As it
is reported in the result section, results were a lag behind
those from evolutionary methods (see also [24]).

Evolutionary methods - Ant algorithms and genetic pro-
gramming

In the following, we first present a detection heuristic
based on a new and very active paradigm, ant algorithms.
Although mostly used for combinatorial optimisation
tasks, we show that ant algorithms can be efficient pattern
detection schemes. Another original and important char-
acteristic of our ant algorithm is its use of several teams
of ants, distinct teams focusing on the detection of distinct
structures. Through an individual behaviour that remains
easy to program, artificial ants are able to collaborate
in order to make retentive structures emerge, taking into
account both local and global information on the map.
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This gives an original and competitive heuristic, but the
ability to learn specific traits of a given area is somewhat
crude: it is limited to tuning the number of ants, teams,
iterations and a bias parameter favouring exploration
versus exploitation of the so-called pheromone matrix that
is characteristic of ant systems. Anyway this tuning can
be done on a set of example maps, providing a kind of
limited parametric learning.

Then, in a second part of the paper, we tackle this
problem as a plain non-parametric learning task, that we
solve with a refinement of genetic programming (GP)
filters trained on example maps. It has been shown [6]
that evolution of GP filters can provide efficient pattern
detection heuristics, that are able to take into account
the knowledge an expert has of the land features he is
studying. A problem we encountered again is accessing
more global information on the map than is usual through
the restricted “window” that is read by standard GP filters.
We propose an iterative wrapper that allows them to
gather information across the map without need for a
large increase of the number of GP terminals, that would
otherwise render the search fruitless. This scheme has
been first introduced in [7], we provide here a more formal
description of the iterative code wrapper, and a detailed
comparison with other techniques, notably assessing the
advantages and drawbacks of the ant algorithm versus
iterative GP filters.

The remainder of this paper is organized in the follow-
ing way. Section II gives a brief overview of ants in nature
and how the ants foraging mechanism has given birth to
artificial ant algorithms. Section III describes the main
principles used by our ant algorithm and how we adapt the
ant paradigm to automatic retentive structure detection.
Section IV introduces the genetic programming filters
concept and Section V shows how this scheme has been
improved to incorporate global information. Section VI
describes the experimental results, before conclusion.

II. AN OVERVIEW OF ANT ALGORITHMS

Behavior of social insects like ants, bees, termites and
some wasps is characterized by a kind of self-organization
called stigmergy. This means that interactions between
insects are mostly based on local information without
explicit references to any global goal. Individuals typi-
cally communicate by changing local properties of their
environment, e.g. chemical deposits dropped by ants, and
through this limited medium of communication some kind
of distributed and collective intelligence emerges [8], [9].

Real ants have inspired a family of “ant algorithms”,
that were introduced with Marco Dorigo’s PhD. The
basic idea is to mimic the cooperative behavior of an
ant colony, and this has been used mainly in order to
solve large combinatorial optimization problems [10],
[11], [12], [13]. Primary works have been based on a
simple model of the ant foraging mechanism, that allows
an ant group to find the shortest path between its nest
and some food source. During their trip, ants leave a
chemical trail of pheromone on the ground, whose role

is to guide the other ants towards the target point. This
chemical substance evaporates and thus has a decreasing
action over time, and the quantity left by one ant depends
on the amount of food it found. Every ant chooses its path
partly at random and partly according to the quantity of
pheromone it smells in its neighborhood.

This model of communicating ants has been used as a
framework for solving combinatorial optimization prob-
lems like the TSP [11], [14], [15], routing problems, load
balancing in communication networks [16], numerical
optimization [17], graph coloring problem [18],... New
trends based on the behavior of social insects have also
appeared these last years (modeling of ants chemical
recognition system, ...) and have led to new topics of
research: classification [19], automatic music generation
and automatic painting4 for instance.

III. MARSOUIN: AN ANT ALGORITHM FOR RETENTIVE
STRUCTURE DETECTION

In ant algorithms, new solutions are usually created
by virtual ants using some quality function of the local
environment, e.g. length of edges for a graph shortest path
problem, and some simulation of pheromone communica-
tion, e.g. a matrix of pheromone concentrations. A typical
basic ant algorithm can be summed up as a loop over three
main steps:
• generation of solutions by ants according to local

and pheromone information
• application of a local search scheme to improve

the solutions found (although not inspired from the
biological model, this phase is necessary to obtain
competitive results on many combinatorial search
problems);

• update of the pheromone information to simulate
new deposits and evaporation

A. Ants behavior

Real ants live in colonies and are able to distinguish
both their own trail and that of their colony fellows. In our
case, we consider a population of ants divided into several
colonies, called teams, sharing a specific pheromone that
does not attract ants from other teams. This is done in or-
der to allow the teams to focus on different vortices. These
virtual ants are randomly spawned on the grid points (i.e.
intersections) of the 2-dimensional map. Each point is
characterized by the speed and direction of the stream,
and it also has two arrays of pheromone concentrations,
one indexed by ants and the other indexed by teams. This
allows an ant to detect its own trail and the composite trail
of its own team. Pheromone concentrations are initialized
to the null value.

Ants iteratively move from a map point to one of its
8 closest neighbors. These moves are synchronized and
thus all ants move at the same rate. The choice of an ant

4see http://www.antsearch.univ-tours.fr/WebRTIC/
default.asp?FCT=DP&ID PAGE=52
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next position is determined according to a stochastic rule
modulated by four parameters:

1) the direction of the stream is the main parameter
in the choice of the next move: ants are allowed a
maximum 45 degrees deviation from the direction
of the stream

2) the velocity of the stream: the higher its speed, the
higher the chance to follow its direction

3) the level of pheromone dropped by all ants of the
same team on neighboring map points: the higher
the level, the more attractive the point

4) an individual random directional bias, that is drawn
with a flat distribution at the creation of every ant:
as stream vectors are always tangential to any ro-
tating circulation of the stream, this directional bias
is useful to allow ants to follow curved trajectories.

The general course of the algorithm is changed on three
occurrences:

• when an ant reaches the coast, it is destroyed and
re-spawned at random elsewhere

• when an ant loops over its own individual trail, the
looping part of the trail is recorded to be examined
latter as a candidate retentive vortex (see next sub-
sections). The ant continues its trip.

• when a given number of moves (i.e. iterations of the
algorithms) has been performed, the algorithm stops.

Notice that this simple set of rules takes into ac-
count both vorticity and divergence: in the presence of
a flow that is both rotating and diverging, ants may
be efficiently prevented from achieving a loop around a
vorticity extremum. Notice also that the directional bias
is attributed once for all to a given ant: some of them will
always favour left turns, others right turns, some others
straight moves. As the detection of a vortex may need all
types of moves, a run of the algorithm is a collaborative
process through both the pheromone communication and
the directional bias.

Experiments have been performed with a number of
teams ranging from 1 to 10, and population sizes as small
as 10 ants up to 500, adapting the number of iterations
to keep the same computational effort. Bigger population,
and secondarily a greater number of teams, provide less
variance in the detection as can be expected due notably to
the greater number of directional biases that are sampled.

B. Local search

Almost all ant algorithms are hybridized with a local
search method in order to enhance their performance. In
our case, there is no true local search scheme, but a simple
filter is applied when a candidate vortex has been found:
looping paths that are too short to be compatible with
that of a meso-scale structure (less than 40 kilometers)
are discarded, as are “forward-backward” moves, i.e. flat
loops, that may happen in places where the stream is
chaotic.

C. Pheromone update

Many different pheromone update schemes have been
proposed in the literature [13], [11], [20], [21]. They
usually consist in two parts: evaporation and amplifica-
tion. During the evaporation phase, all pheromone trails
are decreased according to a given value (percentage,
probability...) while during the amplification phase the
best pheromone trails are increased, in analogy with real
ants increasing their deposits after finding a food source.

As a candidate vortex can be found at any time step,
evaporation in Marsouin is done after every move phase,
and not as a dedicated step performed after having built
complete solutions as in many other ant algorithms. The
evaporation factor ρ is an input parameter, and exper-
iments show that values between 0.1 and 0.5 provide
interesting results for the set of maps we used. For every
map point (i, j) the following evaporation formula is
applied on all pheromone values τ :

τnew
i,j = (1− ρ)τold

i,j

Standard ways of performing amplification can be
roughly split up into two sets: either only the “best” ant
can improve its trail; or all ants improve their trails in
proportion to the quality of the solution they just built.
The intuitive idea is that amplification should take place
when a given task has been fulfilled, e.g. completing a cir-
cuit through all cities in the classic Traveling Salesperson
Problem.

Here, our implementation is very close to the natural
model: each time an ant moves on a map point, it drops
some pheromone. The reinforcement effect is computed
according to a classical update scheme:

τnew
ij = τold

ij + Cst

We also tried an extra amplification of pheromone
dropped on looping trails, in order to model increased
deposits after finding a goal. However it did not bring
significant improvement, since a looping ant already in-
creases the amount of pheromone dropped on its solution.

D. Final step

Once the ant algorithm is over, we perform a final
analysis of the candidate structures:
• structure barycenters are computed
• when the intersection of several structures contains

all their barycenters, these structures are merged into
a larger one, and a new barycenter is computed

Thus concentric or almost concentric cyclic paths are
merged together to obtain a unique largest “envelope” of
the retentive vortex structure. Then the coordinates of the
center, the direction of rotation and the area are computed
and recorded.

As we said above, although this scheme was simple to
design and effective, it does not allow significant learning
of an expert knowledge. To assess the possibilities of
evolutionary learning, a genetic programming scheme has
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also been developed, and is detailed in the next two
sections.

IV. GENETIC PROGRAMMING FILTERS

Our basic GP scheme is inspired by the work of
Daida [6] on detecting pressure ridges in the arctic ice
cover. We evolve filters (i.e. classifier programs) in a
supervised learning framework. These are selected on
their ability to correctly classify cells of a stream map
whether they belong or not to a structure of interest.
Each filter classifies one map cell at a time, and it is
successively applied to every cell of the map. Evaluation
is done against a set of reference maps tagged by the
expert. In contrast to the previous ant algorithm, where
ants are seeking to follow a vortex frontier moving from
a grid intersection to another, here we try to find not the
vortex frontier but the grid cells belonging to the vortex
area.

GP filters have been implemented with the ECJ4 Java
evolutionary library, using the standard Lisp-like tree
representation. Inputs available to a filter are floating point
physical data such as stream strength and vorticity. We
enforce the so-called closure property and use only GP
nodes that return a floating point value.

The conversion between the floating point returned
by the GP tree and the boolean value expected for a
classification problem can be done in the standard way,
i.e. by determining a threshold level that divide results
between lower values interpreted as negative answers and
higher values that are considered positive. Continuously
increasing the threshold from the lowest returned value to
the highest one, we obtain a monotonous increase of the
true positive and false positive rates, from 0% to 100%,
thus we can draw a Receiver Operating Characteristics
(ROC) curve. This is a standard technique (see e.g. [22])
that will be used later when evaluating and comparing
heuristics. The end-user will have the choice of the
threshold level that corresponds to his preferred trade-off
between sensibility and specificity.

A. Basic GP filters presentation

The set of function and terminal nodes is shown in
table I, and it has been chosen to allow computations on
the physical characteristics of the stream.

For example, it seems relevant to use information
from the 8 neighbors of the cell we are working on:
the ”strength3x3” terminal returns the mean value of
the stream strength in the neighboring cells, and the
”angle3x3” terminal gives the mean value of the angle
of the vector stream in those same cells. The ”min”
and ”max” function nodes have been introduced to allow
simple comparisons. The ”curl” and ”divergence” are
standard operators used in vortices detection. Notice that
in order to speed up the evaluation phase, most terminal
nodes (curl, divergence, strength, strength3x3, angle3x3)
are pre-computed for the maps in the learning set. The

4http://cs.gmu.edu/eclab/projects/ecj/

evolution parameters are shown in table II, and are quite
standard.

Name Value
Number of generations 80
Size of the population 600
Max depth for a tree 15

Mutation rate 5%
Crossover rate 85%

Reproduction rate (with elitism) 5%

TABLE II.
GENERAL PARAMETERS USED IN THE GP ALGORITHM.

B. Fitness function choice

One of the difficulty in Genetic Programming is to find
the adequate fitness function to optimize. Basically, we
evaluated the fitness of individuals by measuring their
performance on a learning set of 10 maps tagged by an
expert. However the actual performance of a filter would
depend on the choice of the threshold level as explained
above. A different approach consists in maximizing the
area under the ROC curve, denoted as AUC — Area
Under Curve —, so the need for a threshold is relieved.
This is now a standard way of doing, e.g. see Sebag et
al. [23] for a discussion about efficient computation of
the AUC.

Optimizing the AUC is efficient, but, as we will see
later, the ant algorithm dominates when the threshold is
set to obtain very low false-positive rates. We therefore
propose another fitness function that focuses on having
a steeper slope in the left part of the ROC curve (cor-
responding to the low false-positive rates). This can be
achieved by choosing a set of 10 values on the ROC x-
axis, 5 in the range [0.25, 0.35] that we want to focus on,
the others equally spaced on the range ]0, 1]\ [0.25, 0.35].
Then we get the corresponding points (xi, yi) on the ROC
curve and we maximize the following fitness function:

f =

∑n
i=1

yi

xi

n

C. Basic GP filters results and discussion

Although GP filters have been previously successful on
classification and pattern detection cases, they did not give
conclusive results on our problem. GP produced rough
and noisy classification especially near the coast, that
reminds of results obtained by vorticity analysis.

We conjecture that these filters have a too reduced
“sight range” to recognize global vortices shapes that can
be spread over 20 grid cells or more. We previously saw
in the introduction that whether or not a cell is a member
of a retentive structure certainly depends on the stream
characteristics of this cell, but also on the relation it shares
with surrounding cells that may or not be members of
the same structure. In this regard, the ”strength3x3” and
”angle3x3” nodes probably give a too local information,
and we need to add more problem specific knowledge to
allow GP to cross the gap.
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Name Meaning Input Output
add addition 2 reals 1 real
sub subtraction 2 reals 1 real
mul multiplication 2 reals 1 real
div protected division 2 reals 1 real
min minimum of 2 arguments 2 reals 1 real
max maximum of 2 arguments 2 reals 1 real
cos cosine 1 real 1 real
sin sine 1 real 1 real

strength normalized stream strength null 1 real ∈ [0, 1]
strength3x3 stream strength averaged over a 3x3 cells matrix null 1 real ∈ [0, 1]
angles3x3 stream vector angle averaged over a 3x3 cells matrix null 1 real

curl cell vorticity null 1 real
divergence cell divergence null 1 real

erc ephemeral random constant null 1 real

TABLE I.
SUMMARY OF NON-TERMINAL AND TERMINAL NODES USED IN THE BASIC GP FILTERS.

Experiments have been conducted to let the evolution
process determine the size of these matrix-shaped termi-
nals, but these were not successful probably due to the
increased dimension of the search space. This has lead
us to propose a solution based on the propagation of
classification results across the map, as explained in the
next section.

V. ITERATIVE GENETIC PROGRAMMING FILTERS

To remedy the failure of the previous scheme, we need
to provide some means of communicating information
over the map, while keeping a manageable search space:
a large increase in the number of terminals to access a
variety of distant cells would prevent successful learning
by GP.

Our proposition is iterative filters, i.e. filters that are
applied in several successive classification steps on a map,
that can access a memory of neighbors previous decisions
at each step to compute their new classification value, and
that returns the decision computed in the last iteration.
Indeed, if a filter incorporates a node that accesses the
memory of previous classifications from neighbor cells,
then step by step it will gain some information from
distant cells as far as the number of previous iterations.

Iterative GP filters presentation

From a technical point of view, two terminal
nodes are added to the node set: lastValue and
meanLastValue.
• lastValue: returns a value that aggregates the

filter results at previous iterations. This value is
initialized at a given value (e.g. 0.5) for all cells
during the first iteration (no previous classification
results), and it is later updated using the following
equation:

lastValuei+1 =
2 ∗ lastValuei + F

3
were lastValuei is the value returned by this
terminal at iteration i, and F is the classification
value computed by the filter at iteration i.

• meanLastValue: returns the mean of
lastValue for the 8 neighboring cells.

In order to take into account this extra information,
the fitness function is wrapped into an iterative scheme
detailed in Table III. Notice that the pseudo code can be
very easily modified to accommodate for a set of maps
rather than a single one.

Thanks to the meanLastValue node, a filter is
now able to take into account classification results from
its immediate neighbors, aggregated over the previous
iterations. Within successive iterations, it can grasp some
classification information about cells distant from two,
three or more grid cells, depending on the maximum
number of iterations we allow. The classification values
produced by the GP filter on every cell during the last
iteration will serve to compute its ROC-based fitness.

Experiments also showed that it is very difficult for a
filter to avoid false positives near the coast line, almost
setting a higher bound to performances. To tackle this
problem, a distCoast node has also been introduced
that returns 1 if the cell is farther than 2 grid steps from
the coast, else 0.

VI. EXPERIMENTS

In this section we present some illustrations of structure
detections performed on a set of maps generated by the
Ifremer laboratory. This set consists of 10 “snapshots” of
the Gulf of Biscay during the year 1995. It sums up to 153
retentive structures reported by the expert, 1778 positive
cells and 38152 negative cells.

A. Ant algorithm results

Figure 3 illustrates the results of the ant algorithm with
two different settings, to be compared with the same map
tagged by the expert in Figure 1. The running time is less
than a minute on a 1.6 GHz PC, all structures are detected,
two false positive patterns are found on the left, one false
positive on the right. Notice that some of the vortices area
are only roughly approximated. It is typical of what can be
expected from this algorithm: most individual structures
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declare lastValue as an array of floats indexed by cells of the map
declare F as an array of floats indexed by cells of the map
foreach cell of the map // initialize

lastValue[cell] = 0.5;
endfor
for(int iter=0; iter < maxIter; iter++) // iterate filter

foreach cell of the map // classify map cells
F[cell] = evaluateGPTree(cell, lastValue); // compute classification for given cell

endfor
foreach cell of the map // aggregate previous classifications

lastValue[cell] = (2 * lastValue[cell] + F[cell]) / 3;
endfor

endfor
return F; // keep last classification

TABLE III.
PSEUDO CODE FOR ITERATIVE GP FILTERS CLASSIFICATION.

Figure 3. Structures detected by the ant algorithm, left with 1 team of 100 ants, right with 5 teams of 20 ants, both within a limit of 400 ant moves,
to be compared with expert prediction on Figure 1.

are found but their size is not very precise, with some
false positives.

It is to be noted that the expert worked first in a span of
time limited to 2 hours on this set of 10 maps (so a little
less than one minute per vortex), then the ant algorithm
was launched and the expert had the opportunity to correct
his first judgement on the basis of the algorithm results,
to settle the reference maps. This was done in order to
evaluate the level of human mistakes due to eye strain, and
this led the human expert to add about 20% new structures
that were forgotten in the first, time-limited, phase. Misses
were mostly small structures on the most encumbered
maps that contain up to 26 vortices, but sometimes even
large structures have gone un-noticed. This stresses the
benefits brought by our automatic detection scheme.

As this method performs quite well, it has been em-
bedded within an automatic tracking scheme. This allows
to automatically tag and follow retentive structures over
several days/months. It allows biologists to gather inter-
esting statistics, such as the number of retentive structures
over a year, the average surface of these structures, the
average lifetime and speed of displacement.

Iterative GP filters results
To illustrate the influence of the number of iterations

on GP filters, Figure 4 plots the value (1−AUC) versus
generations (the lower the curve, the better) for several
parameter values. We can see that iterative filters have
an increased efficiency, with a maximum at 6 iterations,
which may be a parameter dependent on the typical size
of vortices in our area. The distCoast node also boosts
the performance, reducing the number of false positives
within the neighborhood of the coast line, as is illustrated
in Fig. 5. Notice that vortices are not output as individual
structures, contrary to the ant algorithm.

B. Comparisons between heuristics
A comparison between iterative GP filters, the ant

algorithm and streamlines is given in Figure 6 using ROC
curves when possible and simple points elsewhere. For
GP, depending on the trade-off desired either the “steeper
slope” or the AUC fitness function may be preferred, since
the “steeper slope” results are slightly better than the ant
algorithm for very low false positives rates, but globally
worse.
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Figure 4. Comparison of fitness evolution for different iteration parameters.

Figure 5. Example map filtered by GP using 6 iterations and the
”distCoast” node.

We have led a cross-validation experiment at max-
imizing the AUC, with 6 iterations and distCoast
node, using 9 maps as the learning set and evaluating
the best GP filter on the last map. This has been done 10
times, varying the validation map, and results have been
averaged. The averaged (1−AUC) value on the validation
maps is 0.1179 with a standard deviation of 0.0344, thus
the validation error remains close to the averaged learning
error shown on Figure 4.

We have also performed a similar experiment with a
non-recurrent back-propagation artificial neural network
(see e.g. [25]), taking 54 inputs i.e. the same 6 terminal
inputs as GP computed for 9 cells evenly spaced in a
70km x 70km area around the classification focus. Lim-
iting the learning time to 15 min as for GP, we obtained

an averaged (1-AUC) value of 0.2485 with a standard
deviation of 0.0178. We do not claim to have spent as
much time in tuning the artificial neural network (ANN)
as we have spent for the GP algorithm, nonetheless it
gives some hints about GP being competitive with ANN
for this problem.

VII. CONCLUSION

In this article, we presented two innovative schemes
for detection of retentive meso-scale vortices on simulated
stream vector fields. New artificial intelligence techniques
may be of help especially when such tasks have no well
defined models in mathematical or physical terms. As the
detection relies on information that is spread over space,
and possibly on expert hidden criteria, classical methods
for vector field analysis do not bring satisfying solutions.

The two approaches introduced are part of the active
evolutionary computation field but with two different
paradigms. We saw that the ant based algorithm gave good
results due to its ability to overcome the difficulties that
classical methods had. Its main advantage is its capacity
to directly output individual structures, which allow to
easily implement a movement tracking feature. The main
drawback of this scheme is its small range of true over
false positives ratios.

We presented iterative GP filters for detection of reten-
tive meso-scale vortices on simulated stream vector fields.
The GP-based method delivers a fully functional and fast
program that can be executed on every map. This scheme
has needed considerable insights into the problem in order
to develop not only suitable GP functions and terminals,
but also an original iterated scheme for GP classification.

With our GP based filtering method, we are able to
learn some part of the expert knowledge, while also
performing meaningful computations in term of vector
field analysis, as can be judged by the results. It does not
provide individual structures, but it is possible to adapt
the true to false positives ratio to what the user need.
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Figure 6. ROC curve based comparison between GP filters and other methods.

We think that the iterating scheme for GP classification
may well be of interest in the image analysis domain and
possibly for some general classification tasks.
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