
Incremental Implementation of Syntax
Driven Logics∗

I.S.W.B. Prasetya
Inst. of Inf. and Comp. Sciences, Utrecht Univ. Email: wishnu@cs.uu.nl

A. Azurat†

Fakultas Ilmu Komp., Univ. Indonesia. Email: ade@cs.ui.ac.id.

T.E.J. Vos
Inst. Tecnológico de Inf., Univ. Politécnica de Valencia. Email: tanja@iti.upv.es

A. van Leeuwen‡

Inst. of Inf. and Comp. Sciences, Utrecht Univ. Email: arthurvl@cs.uu.nl

Abstract— This paper describes a technique combin-

ing higher order functions, algebraic datatypes, and

monads to incrementally implement syntax driven log-

ics. Extensions can be compositionally stacked while

the base logic is left unchanged. The technique can

furthermore be used to build a set of weaker logics

for light weight verification or to generate validation

traces. The paper explains the technique through an

example: a Hoare logic for a simple command language.

The example also shows how exceptions can be treated

as an extension, without having to change the under-

lying logic.

Index Terms— syntax driven logic, algebraic data type,

modular logic, verification tool.

I Introduction

Maintenance is a problem when developing and im-
plementing a realistic programming logic. During the
process features may be changed or added. At the
early stage, even the object language may be changed;
so the logic has to be changed as well. Logics under-
lying imperative languages are usually syntax driven
and are typically implemented as recursive functions
over the target program. This essentially weaves the
logic into the code that drives the recursion. The re-
sult is a monolithic program that cannot be modified

∗Based on ”Building Verification Condition Generators by
Compositional Extensions” by I.S.W.B. Prasetya, A. Azurat,
T.E.J. Vos, and A. van Leeuwen which appeared in the Proceed-
ings of 3rd IEEE International Conference on Software Engi-
neering and Formal Methods, Koblenz, Germany, 2005. c©2005
IEEE.

†RUTI research grant.
‡NWO research grant

without tampering with the code. From experience
we learn that this is a dangerous and error prone op-
eration which can easily introduce inconsistencies in
the logic.

This paper describes a technique to incrementally
implement a sytax driven logic, such that variants
and extensions can be added modularly, i.e. without
directly tampering with the code of the old implemen-
tation. This has a number of interesting advantages:
(1) it is safer; (2) it allows modifications to be engaged
or disengaged like plug-ins; and (3) it is easy to create
a set of partial logics, each of which can be used in
isolation for light weight verification.

The technique uses a combination of algebras,
higher order functions, and monads to represent a
syntax driven logic. Algebras are modular structures
used to abstractly specify recursive computation [1].
Higher order functions are used to implement modifi-
cations on algebras. Monads have been recognized to
be a useful tool to build modular semantics [2]. Here
we use monads to build modular logics. More specifi-
cally, monads are used to hide certain aspects regard-
ing the structure of a logic; exposing only the aspects
that will remain unchanged across various instances
of the logic. This enables us to keep the code of the
base logic unchanged despite an extension that would
actually modify the logic’s structure. The change can
be delayed to the instantiation of the corresponding
monad class.

The paper also addresses the soundness issue. It
discusses conditions under which modifying a logic L
to L′ would preserve the soundness of L and shows an
example of an incremental proof. The latter is an issue
when the new logic often has to satisfy a modified no-

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 1

© 2006 ACADEMY PUBLISHER

tion of soundness. Rather than proving this from the
scratch an incremental proof reuses facts known about
L. In particular, it does not tamper with the proof of
L. This may be interesting in the context of deep
embedding. Deep embedding implements a (program-
ming) logic by modelling its syntax and semantics in
the logic of a theorem prover. Excellent examples are
the embedding of Java in Isabelle by Huisman [3] and
C in HOL by Norrish [4]. It is a very safe approach,
since it allows the soundness of the embedded logic
to be verified. Suppose we want to make variants of
the embedded logic. To prove their soundness, we
could rework the proof of the base logic. Usually, this
is an expensive operation. Furthermore, after several
changes, the proofs will have a maintenance problem.
An incremental proof offers a more maintainable al-
ternative.

A Preliminary

We will explain our approach through an example
logic for a simple imperative language L0 shown in
Figure 1. For simplicity, we will assume that all state-
ments terminate. The construct inv i while g do S is
just a while-loop; i is a candidate invariant specified
by the programmer.

The implementation will be explained using a nota-
tion that resembles that of the functional program-
ming language Haskell (www.haskell.org) [5]. In
depth knowledge of Haskell syntax is not needed to
read this paper, though we assume the reader is fa-
miliar with functional programming. Familiarity with
the concept of Haskel class and monads will be quite
helpful. An actual Haskell implementation of the ex-
ample is available on request.

We will use the notion of class as in Haskell. A class
C specifies a collection of types supporting a fixed set
of operations. An example of a class specification is
this:

class Eq a where (==) :: a→ a→ Bool

which declares a class called Eq of all types that for
which the operation == is available. This allows the
overloading of the symbol ==. By intention, there may
be some algebraic properties associated to the opera-
tions of a class (e.g. that == should be commutative),
though these cannot be specified within Haskell. Us-
ing the same notation as above we can also define a
class of type constructors. The type notation like:

f :: Eq a⇒ a→ Bool

is used to say that f is a function of type a → Bool,
but it is also required that the type a is a known in-
stance of the class Eq. The use of ⇒ in the above no-
tation should not be confused with⇒ in the predicate

Stmt → Assignment
| if Expr then { Stmt } else { Stmt }
| inv Expr while Expr do { Stmt }
| Stmt ; Stmt

pre (x := e) q = q[e/x]

pre (S1; S2) q = pre S1 (pre S2 q)

pre (if g then S1 else S2) q
= if g then pre S1 q else pre S2 q

p = pre S i
` i ∧ ¬g ⇒ q , ` i ∧ g ⇒ p

pre (inv i while g do S) q = i

Figure 1: A simple command language L0 and its logic.

logic. A class can also be defined to extend another
class, like:

class Eq a⇒ Ord a where (<) :: a→ a→ Bool

This declares the class Ord. Its operations are < and
all operations of Eq. It also means that for a type to
be an instance of Ord, it has to be an instance of Eq
as well.

In the rest of the paper, type variable m is assumed
to range over monads, and the type variable e repre-
sents the type of expressions. Rather than imposing a
concrete representation and/or syntax of expressions,
we will assume e to be an instance of a class called
Expression supporting a minimum set of constants
and operations: true, false, 0,∧,∨,⇒ and ¬. And
in addition, the following two operations:

subst :: (String, e)→ e→ e
safe :: e→ e

The first is to perform a syntactical substitution. The
second will be explained later.

B Paper Outline

Section II explains our representation. Section III
shows examples of how a logic can be altered and ex-
tended modularly. Section IV shows an experiment
where we extend the language L0 by adding new con-
structs to raise and handle exceptions. Not only that
the old logic underlying L0 has to be extended with
new rules, but some modification to the logic’s struc-
ture is needed as well. Normally this would require
surgery on the implementation of the old logic. Sec-
tion IV shows how it can be done without. Sections V
and VI discuss soundness issues. Finally, related work
and conclusion are given in Sections VII and VIII.

2 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

II Representating Syntax Driven Logics

Hoare logic [6] is commonly used to specify and verify
imperative programs. Usually, it is used in combina-
tion with predicate transformers, which are functions
that take and return a predicate [7, 8, 9]. Figure 1
shows a simplistic command language L0 and its un-
derlying logic. In the logic shown in Figure 1, pre is
a predicate transformer. In particular, given a state-
ment S and a post-condition q, pre returns a pre-
condition that is sufficient for S to realize q1. It can
be shown that ` p ⇒ pre P q implies {p} P {q}.
Hence, a Hoare triple specification can be reduced to
a problem expressed in terms of pre.

The inference rules of the logic underlying L0 spec-
ify how pre computes its result. Some of the rules,
such as the rule for while, produce so-called verifi-
cation conditions like the conditions i ∧ ¬g ⇒ q and
i∧g ⇒ p. The pre-condition returned by pre, as spec-
ified by a rule, is only sufficient if the corresponding
verification conditions can be shown to be valid.

In functional programming, data types are used to
abstractly represent sentences of a language. In our
case, the sentences are L0 statements and below is a
data type called Stmt which is sufficient to represent
them.

Definition II.1 : Stmt

data Stmt e = String := e
| Stmt :> Stmt

| IfElse e Stmt Stmt

| While e e Stmt

:= and :> are data constructors representing assign-
ment and sequential composition in L0.

The logic of L0, which specifies the calculation of pre,
is syntax driven: for each kind of statement there
is exactly one inference rule. Consequently, given a
statement S and a post-condition q, pre S q can be
calculated recursively over the structure of S. Some
rules emit verification conditions, which should be col-
lected. Collecting these verification conditions is usu-
aly done by another recursive function, called a ver-
ification condition generator or VCG. A fraction of a
straightforward implementation of pre and the corre-
sponding VCG is shown below. Their computations
are merged into one recursive function pvcg. When
given a program S, a post-condition q, and an ini-
tially empty list of verification conditions, pvcg S q []
returns a tuple (V, p) where V is a list of verification
conditions generated along the way, and p is pre S q.

pvcg ::Expression e => Stmt -> e -> [e] -> ([e],e)

pvcg (x:=e) q vcs = (vcs, subst (x,e) q)

1If S does not contain any loop, pre will return the weakest
pre-condition. Otherwise it will just produce a suficient one.

pvcg (s1 :> s2) q vcs = ...

pvcg (While i g body) q vcs = (c1:c2:vcs’,i)

where

c1 = i /\ neg g ==> q

c2 = i /\ g ==> p

(vcs’,p) = pvcg i vcs

pvcg (IfElse g s1 s2) vcs q = ...

Although straightforward to write, the code is also
too monolithic in that it cannot be modified without
tampering with it. Later we will show how to do it
differently. The next subsection will first introduce
some notation and underlying concepts.

A Algebras

Any data type T induces a so-called fold function: a
higher order function that defines a recursive pattern
over T . For the data type Stmt from Definition II.1,
the corresponding fold function is:

foldStmt (Aasg, Aseq, Aif, Awhile) S = fold S
where

fold (x := e) = Aasg x e
fold (S1 :> S2) = Aseq (fold S1) (fold S2)
fold (IfElse g S1 S2) = Aif g (fold S1) (fold S2)
fold (While i g S) = Awhile i g (fold S)

The tuple A = (Aasg, Aseq, Aif, Awhile) consists of
functions; each specifies how the results of the recur-
sion are combined at the corresponding data construc-
tor. If r is the type of the result of the recursion, those
functions can be seen as operations on r. In literature
a tuple of operations is also called an algebra. So, a tu-
ple A such as above is also called an Stmt-algebra over
r; and if the target data type is T rather than Stmt,
then it is called a T -algebra. Notice that via a fold
function, an algebra can be said to abstractly specify
a recursive computation. The notation (|A|) is used to
denote the function obtained by folding the algebra A
as above. So, with respect to Stmt, we have:

(|A|) = foldStmt A

Algebraic theories of data types, e.g. [1, 10], use
Category Theory to abstractly and generically ex-
press properties of algebras, e.g. without having to
be explicit about the structure of the underlying data
type. In this paper we stick to a more classical (non-
categorical) approach.

Let us introduce some more notation. If A is a
tuple, the notation f |A extends A with f ; for example,
f |(g, h) = (f, g, h). If A is a T -algebra, and C is a
data constructor of T , AC denotes the component of
A which corresponds to C, and A{C = f} denotes the
algebra obtained by replacing AC with f .

Later we will also consider modifications to some al-
gebra A by post-processing the results of the functions
that constitute A. Such a modification is constructed

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 3

© 2006 ACADEMY PUBLISHER

by applying what we will call a modifier. For Stmt-
algebras, the modifiers will have the following type:

type Modifier e r = (String→ e→ (r → r)
, (r → r)
, e→ (r → r)
, e→ e→ (r → r))

(1)

The operator <$> defined below applies a modifier M
to an algebra A and results in a new algebra.

Definition II.2 : Applying a Modifier

M <$> A = ((λ x e →Masg x e (Aasg x e))
, (λ r1 r2 →Mseq (Aseq r1 r2))
, (λ g r1 r2 →Mif g (Aif g r1 r2))
, (λ i g r →Mwhile i g (Awhile i t g r)))

B Brief on Monads

We will give a brief overview of monads that is suf-
ficient to understand the rest of this paper. A more
inspiring introduction on monads can be found in [11].
There are also plenty of texts at www.haskell.org. In
Haskell monad is a class of type constructors support-
ing these two operations:

class Monad m where
return :: a→ m a
>>= :: m a→ (a→ m b)→ m b

There are some algebraic properties which the opera-
tions should satisfy —see [11]. Members of the above
class (the m’s) are monads. Monads have a number
of applications. For example, m a can be made to
represent state based computations returning values
of type a. In this setup return x is a computation
that returns x and does not change the underlying
state; c >>= f executes c then passes the value v it
returns to f and executes f v. For example we can
use m a = Int → (Int, a) to represent computations
whose state is a single integer. We can define return
and >>= as follows:

return x s = (s, x)
(c >>= f) s = f v t where (t, v) = c s

In this way we can mimic an imperative program in
a functional language. With proper syntactical sug-
aring (the do-notation), the state can be hidden and
we can abstractly imitate imperative programs within
a functional language. In Haskell we can write code
like:

do { q ← t1 r ; p← t2 q ; return p }
or equivalently like: do q ← t1 r

p← t2 q
return p

The code will be translated to:

t1 r >>= (λq → t2 q >>= (λp→ return p))

Note that via the Haskell class mechanism, the do-
notation is overloaded over all instances of monad.

C Predicate Transformer, Logic, and VCG

Recall that some rules of the predicate transformer
pre generate verification conditions. In order to col-
lect them, we can thread a list through the computa-
tion of pre such that whenever a verification condition
is emitted, it is added into the list. Consequently, if
e is the type of expressions, we have to represent a
predicate transformer by a function of type:

e→ [e]→ ([e], e)

where the [e] in the second argument represents the
threaded list of already generated verification condi-
tions. Because the list is threaded, it can be seen as
a state with respect to the computation of a trans-
former. Consequently, it can be represented by a
monad, and we can change the representation of trans-
formers as follows:

Definition II.3 : Transformers

Let m be a monad.

type Transformer m e = e→ m e

In particular, we will use recorder monads from the
class MonadR that are explained below. A recorder
monad extends an ordinary monad with an operation
record. Notice that the class specification of MonadR

leaves the exact implementation of the operation un-
specified. For our purpose, record c will be an oper-
ation that somehow adds the verification condition c
into the threaded list, now maintained as a state by
the monad.

Definition II.4 : Recorder Monad

class Monad m⇒ MonadR e m where record :: e→ m()

An inference rule can be represented by a function that
takes a statement and returns a transformer. This
means that an implementation of pre, will have the
following type:

pre :: MonadR e m ⇒ Stmt e→ Transformer m e

Now we can benefit from the monad representation
and can use the do notation. The rule for while can
then, for example, be implemented in Haskell as fol-
lows:

ruleWhile (While i g body) q
= do p← pre body q

record (i ∧ ¬g ⇒ q)
record (i ∧ g ⇒ p)
return i

This looks cleaner than the straightforward implemen-
tation we had at the beginning of Section II.

We will, however, use a slightly different implemen-
tation. Rather than passing a while statement as the

4 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

first argument of ruleWhile, we pass the transformer
for the body of the while, i.e. pre body. The result-
ing code for all rules is shown in Figure 2. The reason
for passing the transformer (instead of the statement)
is that now the type of a tuple containing the four
rules matches that of an algebra, i.e. an algebra of
transformers:

StmtAlgebra e (Transformer e m)

Notice that such an algebra fully specifies the trans-
former logic of L0, and hence we use the first to rep-
resent the latter. We define this type abbreviation as
follows:

Definition II.5 : Family of L0-logics

type L0Logic m e
= StmtAlgebra e (Transformer e m)

In particular, below we define an instance of such a
logic which corresponds to the pre-logic of L0 as in
Figure 2.

Definition II.6 : The Standard L0-logic

stdlogic

=
(ruleAsg, ruleSeq, ruleIfElse, ruleWhile)

where the rules are defined as in Figure 2.

From now on, we will not distinguish a value of type
stdlogic from the actual logic it represents. We use
the term ’logic’ for both.

Since a logic is now an algebra, it can be folded
over Stmt. Folding essentially comes down to apply-
ing the inference rules recursively down a given state-
ment. For example folding the logic stdlogic defined
above will construct the transformer pre. Further-
more, if the underlying monad m is chosen properly,
the transformer will record the generated verification
conditions in its monad state and, hence, we also have
a VCG.

Definition II.7 : Representation of VCG

type VCG m e = Stmt e→ Transformer m e

The standard VCG that generates verification con-
ditions while calculating the weakest precondition for
a statement can now easily be defined as follows:

Definition II.8 : The Standard VCG for L0

Let: stdvcg :: MonadR e m ⇒ VCG m e. We define:

stdvcg = (|stdlogic|)

ruleAsg x e q = return (subst (x, e) q)

ruleSeq t1 t2 q
= do p2 ← t2 q

p1 ← t1 p2

return p1

ruleIfElse g t1 t2 q
= do p1 ← t1 q

p2 ← t2 q
return ((g ⇒ p1) ∧ (¬g ⇒ p2))

ruleWhile i g tbody q
= do p← tbody i

record (i ∧ ¬g ⇒ q)
record (i ∧ g ⇒ p)
return i

Figure 2: The representation of L0 inference rules.

III Modifying Logics

Since now a logic is just a tuple of inference rules,
we can easily construct a variant logic by replacing
some of the rules. The corresponding VCG can be
obtained simply by folding the new logic. Below are
some examples of ’lighter’ logics obtained by replacing
the standard while rule with weaker ones.

Definition III.1 : The b and i Logics and VCGs

blogic = stdlogic{While = b ruleWhile}
ilogic = stdlogic{While = i ruleWhile}
bvcg = (|blogic|)
ivcg = (|ilogic|)

The definition of b ruleWhile and i ruleWhile rules
are given below. When given a program P , bvcg will
perform a reduction that assumes the invariance and
reachability of all i’s that decorate the loops in P .
More precisely, if P contains a loop inv i while g
do S, the reduction will assume that S preserves i
and that the state of P as it enters the loop will sat-
isfy i. Because these aspects of correctness are now
assumed, bvcg will produce fewer verification condi-
tions; which is more suitable for ’light’ verification.
The other VCG, ivcg, is another example of a ’light’
VCG. When given a program P with no nested loop,
it will only produce the verification conditions that
are needed to verify that all i’s decorating the loops
in P are preserved by their respective loops’ body.

Definition III.2 : The b-rule

b ruleWhile i g tbody q
= do p← tbody true

record (i ∧ ¬g ⇒ q)
record (i ∧ g ⇒ p)
return true

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 5

© 2006 ACADEMY PUBLISHER

Definition III.3 : The i-rule

i ruleWhile i g tbody q
= do p← tbody i

record (i ∧ g ⇒ p)
return true

We can also easily extend a logic. Suppose we con-
sider a more realistic variant of L0 that has the abil-
ity to abort when an expression is evaluated inside a
statement. This can come in handy when, for exam-
ple, the evaluation of an expression causes a division
by zero, or an attempt to read an array outside its
range. To deal with this, the logic of L0 will have to
be strengthened accordingly. We can do this by modi-
fying each affected inference rule so that the computed
pre-condition is strengthened by a predicate sufficient
to guarantee safe evaluation of the expressions in the
target statement. We will call such an extension an
SE (Safe Evaluation) extension.

Recall that the type e is an instance of the class
Expression. We assumed that the class also offers
a function safe :: e → e. The idea is that given
an expression e, safe e (symbolically) analyzes e and
returns a predicate which is sufficient to guarantee
that e can be evaluated safely (e.g. it will not raises a
division by zero exception).

Now we can define the following higher order func-
tion to strengthen an inference rule. The resulting
rule produces a strengthened pre-condition p such that
evaluating an expression e in a state satisfying p is al-
ways safe:

Definition III.4 : SE Rule Extension

Let:

SEextend :: e→ Transformer m e→ Transformer m e

We define:

SEextend e t q
= do { p← t q ; return (safe e ∧ p) }

For example, we can apply it to extend the assignment
rule:

SEruleAsg x e = SEextend e (ruleAsg x e)

This will strengthen the rule such that applying it to
an assignment x:=e will result in a pre-condition that
will guarantee the safe evaluation of the expression e.

We can now define a modifier that will extend each
inference rule of L0 accordingly. The extension for
the assignment has been shown above. The rules for
IfElse and While have to be extended as well to
guanrantee the safe evaluation of their guards. The
rule for sequential composition does not need any ex-
tension because it does not need to evaluate any ex-
pression (at the top level). Here is the SE-modifier:

Definition III.5 : SE Modifier

MSE

=
((λ x e→ SEextend e), id, SEextend, SEextendWhile)

where

SEextendWhile i g t q = do { t q ; record(i⇒ safe g) }

Now we can apply the modifier to a logic. For ex-
ample, MSE <$> stdlogic will result in the standard
L0 logic with the SE extensions. For more lightweight
verification, we can construct MSE <$> blogic, that,
when given true as the post-condition, will produce
only the verification conditions related to the safe eval-
uation of the expressions in the target program, re-
gardless of its functionality.

We can also use a modifier to extend the functional-
ity of a VCG such that, besides generating verification
conditions, it leaves a trace of information that can be
used for debugging or validation.

For example, the inference rule that handles assign-
ments in java-like OO languages is quite complicated
[3, 12] and users would definitely benefit from a trace
that can, for example, be sent to a third party tool
for validation. Below, we will define a modifier that
records the pre- and post-conditions of every assign-
ment in order to generate a trace. Note that such a
modifier needs to extend the state structure of a VCG.
Normally, this would require surgery on the existing
code of the VCG. In our case, however, no surgery
is needed since we have specified the monad underly-
ing a logic and its VCG using a Haskell class called
MonadR. Such a specification lays down the general
type of operations available to the class, but leaves
the precise internal structure of the class instances un-
specified. We can now simply extend the class MonadR

with a new class, called MonadD that adds an opera-
tion recordDebugInfo for inserting new information
to the validation trace. We call instances of the class
MonadD debugger monads.

Definition III.6 : Debugger Monad

class MonadR e m⇒ MonadD e m
where
recordDebugInfo :: String→ m()

We can now define a modifier that extends the assign-
ment rule so that it records its post-condition and the
calculated pre-condition:

Definition III.7 : VT Modifier

MVT = (masg, id, (λ g → id), (λ i g → id))

6 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

where:

masgx e r q
= do p→ r q

recordDebugInfo (show q)
recordDebugInfo (show (x:=e))
recordDebugInfo (show p)
return p

We can use this modifier on any logic. For example
MVT <$> stdlogic will extend the standard logic with
the above trace validation feature; MVT <$> (MSE <$>

stdlogic) will ’plug-in’ the SE and validation trace
extensions to the standard logic. After some beautifi-
cation, the trace extension can produce a trace like:

TRACE:

{ 0<=0 } i:=0 { 0<=i }

{ 0<=i+1 } i:=i+1 { 0<=i }

...

Notice that the validation trace extension can now be
added without changing anything in the base logic. All
we need to do is properly instantiate the monad used
by the logic, in order to create a concrete instance of
the logic that is needed to make a concrete VCG.

IV Extending Logics

We will now consider a situation where we extend the
language L0. Let us add two constructs: raise and
try. The first will enable us to raise an exception,
for example if the evaluation of an expression within
a statement causes a division by 0. The second con-
struct, try S1 catch S2, will try to do S1. If S1 ter-
minates normally then S2 is skipped, otherwise S2 is
executed. Furthermore, evaluating an expression in a
statement may now raise an exception,

In the following, we assume the representing type
Stmt and its fold function are extended accordingly
to accommodate the new constructs.

As the language grows, the logic supporting it
should also be expanded accordingly. Basically, all we
have to do is add the rules for the new constructs to
the old logics of L0. Let us try a minimalist extension
first. It is an extension of the L0 logic that will pro-
duce a pre-condition that will enforce normal execu-
tion of the target statement (that is, the pre-condition
guarantees that at no point during its execution the
statement will throw an exception). Consider now the
following rules for raise and try:

Definition IV.1 : Conservative raise Rule

ruleRaise q = return false

Definition IV.2 : Conservative try Rule

ruleTry ttry tcatch q = ttry q

In particular, ruleRaise returns an false as the pre-
condition, which means that the rule actually wants
to forbid an execution leading to raise. Consider
MSE <$> stdlogic as the base logic. The SE extension
makes sure that no expression in the target statement
will cause an exception. Since exception is now ex-
cluded, the statement in the catch part can be igored,
which what ruleTry above does. So, the new logic for
the extended L0 can be built by:

ruleRaise | ruleTry | (MSE <$> stdlogic)

A more reasonable extension, however, will really deal
with exceptions rather than simply excluding them.
Borrowing ideas from [13, 3], the Hoare triple notation
is extended to:

{p} S {(q, q′)}

where q, called normal post-condition, denotes the
post-condition of S, if it terminates normally; and
q′, called exceptional post-condition, denotes the post-
condition if S terminates via an exception. The rules
for raise and try are changed to:

ruleRaise (q, q′) = return q′

ruleTry ttry tcatch (q, q′) = do p′ ← tcatch (q, q′)
ttry (q, p′)

Notice that this requires the structure of the post-
condition in the old logic of L0 to be extended to a
pair. Our representation can handle such an exten-
sion! Recall that we represent post-conditions by a
type variable e that can take any structure, includ-
ing tuples. However we do require e to be an in-
stance of the class Expression. So, whatever the
concrete choice of e is, a proper instance of the class
Expression will have to be written, keeping in mind
that the class has to support quite a number of oper-
ations.

Another way to implement the extension is by
putting the exceptional post-condition in the state of
the used monad. This is not the way post-conditions
are normally treated. However the only rule that al-
ters the information in the exceptional post-condition
is the try rule, since this is the only place in L0 where
an exception is handled. Consequently, as we recur-
sively apply the rules down a target statement, the
information in the exceptional post-condition remains
most of the time constant. So, we can get a better ab-
straction by hiding it, which is what we do by making
it part of the monad’s state.

Below we introduce a class MonadE which extends
MonadR with two operations: getPostE which is
used to fetch the exceptional post-condition from the
monad’s state, and setPostE which is used to change
it.

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 7

© 2006 ACADEMY PUBLISHER

Definition IV.3 :

class MonadR e m⇒ MonadE e m where

getPostE :: m e
setPostE :: e→ m()

Now we can redefine the raise and try rules to make
use of a monad from the class MonadE :

Definition IV.4 : raise Rule

EruleRaise q = getPostE

Definition IV.5 : try Rule

EruleTry ttry tcatch q
= do { q′ ← getPostE ; p′ ← tcatch q ;

setPostE p′ ;
p← ttry q ;
setPostE q′ ;
return p}

To obtain the new logic, we simply add the above
rules to the old logics of L0 with the SE extension.
For example, a new standard logic can be built by:

EruleRaise | EruleTry | (MSE <$> stdlogic)

And if we prefer a more lightweight logic, we can, for
example, replace stdlogic above with blogic.

V Preserving Soundness

Modifying a logic may introduce inconsistencies. This
section discusses conditions sufficient for soundness
preserving modifications.

Consider a programming language L and a syntax
driven logic L for L. L is represented by an algebra A.
So, L = (|A|). We also write L.alg to denote A. Note
that L is a function that maps sentences of L to some
results domain. Let τ be the type of these results.
For example, in the logics discussed in the previous
sections, elements of τ are predicate transformers.

A soundness notion over L can be expressed in
terms of a predicate C, called soundness criterion.

Definition V.1 : Soundness

(L,L) is sound wrt C = (∀S : S ∈ L : C S (L S))

For example, below we show a soundness criterion
(Cstd) for the stdlogic of L0. The monad m e in the
definition of stdlogic is below concretely instantiated
to [e] → ([e], e); σ ranges over states; for a statement
S, E S is the semantics of S, which for simplicity is
assumed to be a function that maps an initial state to
S’s terminal state; for a predicate q the notation σ ` q
means that the state σ satisfies q.

Cstd S t
=
(∀q, σ ::

∧
V is valid ∧ σ ` p
⇒
E S σ ` q, where (V, p) = t q)

If ≤ and v are partial orders, a function f is (≤,v)-
monotonic if for all x, y: x ≤ y ⇒ f x v f x. Consider
a partial order relation ≤ over τ with the intention
that t1 ≤ t2 implies that it is in some sense safe to
replace t1 with t2. A soundness criterion C is said to
be≤-monotonic if it is (≤,⇒)-monotonic on its second
argument. For such a criterion, replacing a logic with
a ’bigger’ one is safe:

Theorem V.2 : Bigger is Safe

If (L,L) is sound wrt C, C is ≤-monotonic, and M
is such that (∀S : S ∈ L : L S ≤ M S), then (L,M)
is also sound wrt C.

Proof: We have to prove C S (M S) for all S ∈ L.
Since C is ≤-monotonic, it suffices to prove: (1)
C S (L S) and (2) L S ≤M S. The first follows from
the soundness of (L,L) wrt C, the second is assumed.

For example, Cstd defined before is ≤-monotonic,
where ≤ is this partial order over predicate transform-
ers:

Definition V.3 : A Possible Ordering

t1 ≤ t2 = (∀q :: (p1 ⇐ p2) ∧ (
∧

V1 ⇐
∧

V2)
where
(V1, p1) = t1 q
(V2, p2) = t2 q)

Furthermore, we call an algebra A ≤-monotonic if for
all components f of A, f is (≤,≤)-monotonic on all
its τ -arguments. For example, the logic stdlogic is
monotonic with respect to the ≤ defined above.

A modification to an algebra can be expressed in
terms of a function F that transforms an algebra to
another. We will use the term adaptor for F ; we define
the notion of ’ascending adaptor’:

Definition V.4 : Ascending Adaptor

An adaptor F is ≤-ascending if:

(∀S :: (|A|) S ≤ (|F A|) S)

An alteration via an ascending adaptor is safe; this is
just a simple corollary of Theorem V.2:

Corollary V.5 : Soundness Preserving Alteration

If: (1) (L,L) is sound wrt C, (2) C is ≤-monotonic,
and (3) F is ≤-ascending, then (L, F L.alg) is also
sound wrt C.

8 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

For example, the application of the SE-modifier (Def-
inition III.5) is ascending with respect to the ≤ in
Definition V.3. Therefore, applying the SE-modifier
on stdlogic will preserve Cstd defined above.

The previous section shows four ways to alter L:
we can replace some components of L.alg, adding new
components, instantiating the monad that parameter-
izes it, or apply a modifier to it. All these transfor-
mations are instances of adaptors. In general, prov-
ing that an adaptor is ascending requires an inductive
proof. However for the above found kinds of alter-
ations induction is not needed, if the target algebra is
monotonic: (1) if we replace a component f of an al-
gebra A.alg with f ′, it is sufficient to prove that when
given the same arguments the result of f ′ is at least
equal to that of f in terms of ≤; (2) if we add a com-
ponent g to L.alg, it is sufficient to show that g is
≤-monotonic on all its τ -arguments; (3) if we apply a
modifier M to L.alg, it is sufficient to show that each
component of M is ascending on its last argument.
Finally, (4) changing the underlying monad m is just
an instance of (1). Often, the new monad is just a
pure extension to state structure of the old monad (as
in our examples). In this case, the alteration is always
ascending.

VI Incremental Soundness Proof

When we alter a logic L, Theorem V.2 allows us to
infer that the new logicM respects the old soundness
criterion. However,M may have to satisfy a different
soundness criterion. Ideally, the soundness of the new
criterion is proven incrementally. That is, by reusing
old results as much as possible. This is possible if
for example the new criterion D is just a conjunctive
extension of the old one C. That is:

D S t = C S t ∧ C ′ S t

If the alteration from L to M has been shown to be
soundness preserving, then the soundness of M with
respect to D follows from its soundness with repect to
C ′ —so, we only need to prove the latter. But this
is a rather trivial case. If the alteration is non-trivial,
reuse is in general difficult.

Our investigation reveals that reuse is possible from
an inductive proof. Essentially this is because each
case of such a proof leads to a partial soundness result
which is independent of how the other cases are han-
dled. So, such a result remains valid even if we change
the other cases, and thus can be reused.

The use of monad also helps. All the rules and log-
ics given so far are parameterized by the used monad:
they will abstractly behave as specified regardless of
the used monad. Their concrete behavior still depends
on the used (concrete) monad. When two logics shar-
ing several rules are obtained using different concrete

E S = (|(Easg, Eseq)|) S where:

Easg x e σ = update (x, e) σ

Eseq r1 r2 σ = r2 (r1 σ)

Figure 3: An evaluator semantics for L−.

monads, we can expect that there is a close relation
between the two concrete incarnations of the shared
rules. By exploiting this relation, it is possible to reuse
the soundness proof of one logic in proving the other.

In the sequel we will illustrate the technique with an
example. For simplicity, we will strip down L0 to L−

which just contains assignment and sequential compo-
sition. As the logic we will take stdlogic restricted to
L−; so:

stdlogic = (ruleAsg, ruleSeq)

The rules are abstractly defined in Figure 2, which
implicitly takes a monad m as a parameter. The con-
crete behavior of these rules still depends the concrete
choice of m. Recall that a rule implements a predicate
transformer, see Definition II.3, which is a function of
type e → m e where e represents the post-condition,
and m e is a monadic wrapping of the resulting pre-
condition. For L− we need no wrapping. So, m e is
just e; return is just the identity function; and the
monad composition operator >>= becomes the plain
function composition. The resulting concrete rules are
given below:

Definition VI.1 : Concrete Rules of stdlogic

ruleAsg− x e q = subst (x, e) q
ruleSeq− t1 t2 q = t1 (t2 q)

An evaluator semantics for L− is given Figure 3: for
a statement S, E S is a function that maps an initial
state σ to S’s final state when executed in σ. For
expressions e, E e σ returns the value of the expression
e on the state σ. The function update in the semantics
of assignment changes a state. Rather than giving it
a concrete definition we abstractly characterize it in
terms of predicate substitution as follow:

Definition VI.2 : update

update (x, e) σ ` q = σ ` subst (x, e) q

Notice that this definition is independent of structure
of σ, q, and how ` interprets q on σ.

For the soundness criterion we take a simplified Cstd

from Section V:

Definition VI.3 : Standard Soundness

Cstd S t = (∀q, σ :: σ ` t q ⇒ E S σ ` q)

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 9

© 2006 ACADEMY PUBLISHER

The logic stdlogic is sound with respect to the above
criterion. To prepare for the incremental proof later,
we will prove this soundness result inductively. For
the assignment, it comes down to proving this:

Lemma VI.4 : Asg-case L−

(∀q, σ :: σ ` ruleAsg− x e q ⇒ Easg x e σ ` q)

Proof: unfolding the definitions of ruleAsg− and
Easg, it comes down to proving that σ ` subst (x, e) q
implies update (x, e) σ ` q. This follows from the
definition of update.

For sequential composition it comes down to proving:

Lemma VI.5 : Seq-case L−

(∀q, σ :: σ ` t1 q ⇒ r1 σ ` q) ∧
(∀q, σ :: σ ` t2 q ⇒ r2 σ ` q)
⇒
(∀q, σ :: σ ` ruleSeq− t1 t2 q ⇒ Eseq r1 r2 σ ` q)

Proof:

Eseq r1 r2 σ ` q

= { def. Eseq }
r2 (r1 σ) ` q

⇐ { the second inductive assumption }
r1 σ ` t2 q

⇐ { the first inductive assumption }
σ ` t1 (t2 q)

= { def. ruleSeq− }
σ ` ruleSeq− t1 t2 q

Now we can conclude the soundness result:

Theorem VI.6 : Soundness of stdlogic

stdlogic is sound with respect to Cstd

Proof: by an inductive proof. Lemma VI.4 proves
the assignment case and Lemma VI.5 proves the se-
quential composition case.

Now we extend L− by adding raise and try −
catch constructs. Let us call the new language L−

e .
As with L− the semantics will be given in terms of
an evaluator called X . This evaluator operates on
a slightly extended state structure; it is of the form
(σ, exc) where σ is an ordinary state, i.e. as used by
the evaluator E , and exc is a flag which is set to true
to indicate an exceptional state, and false to indu-
cate a normal state. On the new state structures we
also define the following operations:

1. to bring a state back to a normal state:
N (σ, exc) = (σ, false).

X S = (|(Xasg,Xseq,Xraise,Xtry)|) S where:

Xasg x e ρ = if norm ρ
then (Easg x e (fst ρ), false)
else ρ

Xseq r1 r2 ρ = Eseq r2 r1 ρ

Xraise (σ, exc) = (σ, true)

Xtry rtry rcatch ρ = if norm rtry ρ
then rtry ρ
else rcatch (N (rtry ρ))

Figure 4: The evaluator semantics for L−
e .

2. to check if a state is a normal state:
norm (σ, exc) = ¬exc

We also need these functions to obtain the components
of a pair: fst (σ, exc) = σ and snd (σ, exc) = exc.
The complete X semantics is given in Figure 4.

We use a pair of predicates to specify sets of ex-
tended states. Let ρ = (σ, exc) be an extended state.
Overloading the symbol `, we write ρ ` (q, z) to mean
ρ satisfies (q, z), defined as:

Definition VI.7 : ` on Extended State

(σ, true) ` (q, z) = σ ` q
(σ, false) ` (q, z) = σ ` z

As the logic for L−
e we take L−’s logic and extend it

with the raise and try rules defined previously in
Definitions IV.4 and IV.5 in Section IV:

elogic = EruleRaise | EruleTry | stdlogic

As before with stdlogic, this only provides an abstract
definition. The concrete rules of elogic depend on
the concrete monad m we choose to use. As explained
in Section IV the predicate transformers should now
work on pairs like (q, r) as the post-condition, where
q specifies the post-confition if a program terminates
in a normal state, and r is the post-condition if the
program terminates in an exceptional state. The idea
in Section IV is to thread r via the monad m. To
do so, we can concretely use e′ → (e′, e) as the monad
m e where e′ represents the threaded exceptional post-
condition. The corresponding monad operations are:

return p = (λz. (p, z))
f >>= g = uncurry g ◦ f

where (uncurry g) (x, y) = g x y. Furthermore
EruleRaise and EruleTry also require m to be an
instance of the class MonadR in Definition IV.3; the
concrete definition of the class’ operations must thus

10 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

be specified. These are getPostE and setPostE used
to extract and set the threaded exceptional post-
condition. Their definition:

getPostE = (λz. (z, z))
setPostE z = (λz′. (z, ()))

Given the above monad and instance of MonadR, it can
be shown that the concrete rules of elogic are:

Definition VI.8 : Concrete Rules of elogic

EruleRaisee q z = (z, z)
ruleTrye ttry tcatch q z = ttry q (snd (tcatch q z))
ruleAsge x e q z = (subst (x, e) q, z)
ruleSeqe t1 t2 q z = uncurry t1 (t2 q z)

An important step towards an incremental soundness
proof for elogic is to express the new incarnations of
the old rules (ruleAsg and ruleSeq) in terms of their
old incarnations. This is given by the theorem below,
which is quite easy to prove:

Theorem VI.9 : Old and New Incarnations

ruleAsge x e q z = (ruleAsg− x e q, z)
ruleSeqe t1 t2 q z = ruleSeq− u1 u2 (q, z)

where u1 = uncurry t1 and u2 = uncurry t2.

Let us first argue that the extension from stdlogic
to elogic is safe in the sense that it preserves the
old notion of soudness. Theorem V.2 will not let us
directly compare the two logics, since they operate
on different types of predicate transformers. We can
however ’downcast’ elogic to make it comparable to
stdlogic:

Le S q = p where (p, r) = (|elogic|) S (q, true)

Le has the same type of transformers as stdlogic.
Next, we define a ≤ ordering on these transformers:

t1 ≤ t2 = (∀q :: t2 q ⇒ t1 q)

Next, we have to show that the old soundness cri-
terion Cstd (Definition VI.3) is monotonic with re-
spect to the above ordering, and that for all S ∈ L−,
(|stdlogic|) S ≤ Le S. We will not show the proofs. In
Theorem VI.6 we have shown that stdlogic is sound
with respect to Cstd. Then by Theorem V.2 it follows
that:

Theorem VI.10 : Soundness Preservation of Le

(L−, Le) is sound with respect to Cstd

Next, let us prove that elogic is sound with respect
to its own soundness criterion. It is the same as Cstd,
except now we are using the evaluator X which is more
powerful and operates on an extended state structure:

Definition VI.11 : Extended Soundness Criterion

Ce S t = (∀q, z, ρ :: ρ ` t q z ⇒ X S ρ ` (q, z))

We will again prove the soundness by induction. Each
of the following lemmas deals with each case. The first
one below is the raise case:

Lemma VI.12 : Raise-case L−
e

(∀q, z, ρ :: ρ ` EruleRaisee q z ⇒ Xraise ρ ` (q, z)

Proof: it comes down to proving ρ ` (z, z) implies
(fst ρ, true) ` z. This is quite trivial, given Defini-
tion VI.7 of `.

The try induction case is below:

Lemma VI.13 : Try-case L−
e

(∀q, z, ρ :: ρ ` tt q z ⇒ rt ρ ` (q, z)) ∧
(∀q, z, ρ :: ρ ` tc q z ⇒ rc ρ ` (q, z))
⇒
(∀q, z, ρ :: ρ ` ruleTrye tt tc q z

⇒
Xtry rt rc ρ ` (q, z))

Proof:
Assume first that rt ρ produces a normal state. We
derive:

Xtry rt rc ρ ` (q, z)
= { def. of Xtry }

rt ρ ` (q, z)
= { rt ρ produces a normal state }

(fst rt ρ, true) ` (q, z)
= { Def. VI.7 of ` }

(fst rt ρ, true) ` (q, snd (tc (q, z)))
= { rt ρ produces a normal state }

rt ρ ` (q, snd (tc (q, z)))
⇐ { first inductive assumption }

ρ ` tt q (snd (tc (q, z)))
= { def. of ruleTrye }

ρ ` ruleTrye tt tc q z

Now assume that rt ρ produces an exceptional state.

Xtry rt rc ρ ` (q, z)
= { def. of Xtry }

rc (N (rt ρ)) ` (q, z)
⇐ { second inductive assumption }
N (rt ρ) ` tc (q, z)

= { def. of N }
(fst rt ρ, false) ` tc (q, z)

= { Def. VI.7 of ` }
(fst rt ρ, false) ` (q, snd (tc (q, z)))

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 11

© 2006 ACADEMY PUBLISHER

= { rt ρ produces an exceptional state }
rt ρ ` (q, snd (tc (q, z)))
⇐ { first inductive assumption }

ρ ` tt q (snd (tc (q, z)))
= { def. of ruleTrye }

ρ ` ruleTrye tt tc q z

2

Now we come to the interesting part, namely the as-
signment and the sequential composition cases. Con-
cretely, elogic and stdlogic use different rules to han-
dle these cases. However, we can expect a close rela-
tion between the two sets rules, because modulo the
monads, they are the same rules! This is indeed so, as
was given in Theorem VI.9. It is now possible to give
an incremental proof for the new incarnation. Below
is the assignment case:

Lemma VI.14 : Asg-case L−
e

(∀q, z, ρ :: ρ ` ruleAsge x e q z ⇒ Xasg x e ρ ` (q, z))

Proof: if ρ is exceptional, then it is of this form:
(σ, true). Unfolding the definitons of ruleAsge and
Xasg, it comes down to proving this:

(σ, true) ` (. . . , r) ⇒ (σ, true) ` (q, r)

which is trivial. If ρ is normal, then it comes down to
proving:

fst ρ ` ruleAsg− q e ⇒ Easg x e (fst ρ) ` q

Now we can reuse the results from stdlogic. The
above then follows from Lemma VI.4.

The Seq-case, the last one, is below:

Lemma VI.15 : Seq-case L−
e

(∀q, z, ρ :: ρ ` t1 q z ⇒ r1 ρ ` (q, z)) ∧
(∀q, z, ρ :: ρ ` t2 q z ⇒ r2 ρ ` (q, z))
⇒
(∀q, z, ρ :: ρ ` ruleSeqe t1 t2 q z ⇒ Xseq r1 r2 ρ ` (q, z))

Proof: unfolding the definition of ruleSeqe and Xseq,
what we have to prove is:

ρ ` ruleSeq− (uncurry t1) (uncurry t2) (q, z)
⇒
Eseq r1 r2 ρ ` (q, z)

Now we reuse the results from stdlogic, Lemma VI.5,
which says that it suffices to show this:

ρ ` uncurry t1 (q, z) ⇒ r1 ρ ` (q, z)

and something similar for t2 and r2. Notice that
uncurry t1 (q, z) = t1 q z. So the above is in fact the

same as the first inductive assumption of the Lemma
above.

Now we can conclude with the soundness result below;
it is proven by induction over L−

e ; the cases follow from
the four lemmas above.

Theorem VI.16 : Soundness of elogic

stdlogic is sound with respect to Ce

VII Related Work

One way monads can be useful for program verifi-
cation is to use them in the semantics of the target
language. In particular if the language has some ex-
tended features, monads can be used to abstractly rep-
resent the semantics of those features. For example,
in [14] Jacobs and Poll show how monads can provide
a useful level of abstraction and a means for organiz-
ing various complications in the denotational seman-
tics of Java used in the verification tool LOOP [15].
Java has a complicated denotational semantics due to
various abnormal termination schemes supported by
the language. Another example is the work on Hurd
in verification of probabilistic algorithms [16]. Hurd
uses state-transformer monad in his semantical model
of probabilistic programs to thread random bit gener-
ators over computation. In the language design com-
munity the usefulness of monads to build semantics in
a modular way has actually been realized much earlier
—see for example the work of Moggi [17] and Liang
and Hudak [2]. As opposed to using monads in the
executional semantics of a language L, this paper dis-
cusses the use of monads to implement logics about L.
A syntax driven logic can of course be seen as a seman-
tics of L, so general results about monadic semantics
also applies to monadic logics. As for other works
along the same line as ours, so far, we have not much
success in tracking one in bibliography databases.

Our notion of modifier also seems to correspond to
Cartwright and Felleisen’s systematic changes of the
admin function in extensible denotational semantics
[18]. The use of algebras to implement a syntax di-
rected logic is related to the attribute grammar ap-
proach [19]. Using an attribute grammar formalism
we can abstractly specify recursive computation over
a parsing tree. Essentially, such a specification is an
algebra, which is specified in terms of how values, also
called attributes, being passed and processed between
parent and child nodes in a tree. A number of at-
tribute grammar tools are available today, such as
Swierstra’s AG system [20]. Traditionally these tools
are used to build compiler related tools, such as type
checkers and pretty printers, but it is also suitable to
build any syntax directed tool such as VCGs (we tried
this ourselves in our x-mech verification tool [21]). In-

12 JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

tricate weavings of bottom-up and top-down compu-
tations are often found in the implementation of mod-
ern type checkers. This can be conveniently specified
in an attribute grammar formalism, whereas using a
monad this would be akward. All VCGs shown here
do not require any weaving, hence monad implementa-
tion is sufficient. In a more realistic setting, this may
change. For example, we may want to add a sub-logic
to deal with aliases. To cleverly track down aliases,
we may want to collect information in both bottom-up
and top-down directions. For such a setting combin-
ing the monad and the attribute grammar approaches
seems to be a good approach.

VIII Conclusion

We have described a technique to change/extend a
logic to obtain derivative logics in a modular manner.
The technique should lead to safer and more main-
tainable implementation of programming logics. As
a proof of principle, a small case study has been im-
plemented in Haskell. Experiments confirm the tech-
nique’s advantages; thus we believe that it is worth
further investigation.

References

[1] G. Malcolm, “Data structures and program transforma-
tion,” Science of Computer Programming, vol. 14, no. 2–3,
pp. 255–280, Oct. 1990.

[2] S. Liang and P. Hudak, “Modular denotational semantics
for compiler construction,” in ESOP’96, Proc., ser. LNCS,
vol. 1058, 1996, pp. 219–234.

[3] M. Huisman, “Java program verification in Higher-order
logic with PVS and Isabelle,” Ph.D. dissertation, Univer-
sity of Nijmegen, The Netherlands, 2001.

[4] M. Norrish, “C formalised in HOL,” University of Cam-
bridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-
453, 1998.

[5] R. J. Bird, Introduction to Functional Programming us-
ing Haskell, 2nd ed., ser. Prentice-Hall Series in Computer
Science. London, UK: Prentice-Hall Europe, 1998.

[6] C. Hoare, “An axiomatic basis for computers programs,”
Commun. Ass. Comput. Mach., vol. 12, pp. 576–583, 1969.

[7] E. Dijkstra and C. Scholten, Predicate Calculus and Pro-
gram Semantics, ser. Texts and Monographs in Computer
Science. Berlin: Springer-Verlag, 1990.

[8] R. C. Backhouse, Program Construction and Verification.
London: Prentice Hall, 1986.

[9] P. V. Homeier and D. F. Martin, “Trustworthy tools for
trustworthy programs: A verified verification condition
generator,” LNCS, vol. 859, pp. 269–284, 1994.

[10] J. Jeuring, “Theories for algorithm calculation,” Ph.D. dis-
sertation, Utrecht University, 1993.

[11] P. Wadler, “How to declare an imperative,” ACM Com-
puting Surveys, vol. 29, no. 3, pp. 240–263, Sept. 1997.

[12] C. Pierik and F. d. Boer, “A syntax-directed hoare
logic for object-oriented programming concepts,” in For-
mal Methods for Open Object-Based Distributed Systems
(FMOODS) VI, 2003, pp. 64–78.

[13] K. R. M. Leino, “Toward reliable modular programs,”
California Institute of Technology, Tech. Rep. cs-tr-95-03,
1995.

[14] B. Jacobs and E. Poll, “A monad for basic Java semantics,”
Lecture Notes in Computer Science, vol. 1816, pp. 150–
164, 2000.

[15] B. Jacobs, J. van den Berg, H. Huisman, M. van Berkum,
U. Hensel, and H. Tews, “Reasoning about Java classes:
preliminary report,” ACM SIGPLAN Notices, vol. 33,
no. 10, pp. 329–340, Oct. 1998.

[16] J. Hurd, “Formal verification of probabilistic algorithms,”
University of Cambridge, Computer Laboratory, Tech.
Rep. UCAM-CL-TR-566, 2003.

[17] E. Moggi, “An abstract view of programming languages,”
Laboratory for Foundations of Computer Science, Univer-
sity of Edinburgh, Tech. Rep. ECS-LFCS-90-113, 1989.

[18] R. Cartwright and M. Felleisen, “Extensible denotational
language specifications.” in Symposium on Theoretical As-
pects of Computer Software, 1994.

[19] J. Paakki, “Attribute grammar paradigms – A high-level
methodology in language implementation,” ACM Comput-
ing Surveys, vol. 27, no. 2, pp. 196–255, 1995.

[20] S. Swierstra, “Homepage of the AG system,” 1999,
www.cs.uu.nl/groups/ST/Software/UU_AG.

[21] “x-Mech home page,” www.cs.uu.nl/~wishnu/research/

projects/xMECH.

Ignatius Sri Wishnu Brata Prasetya was born in
Jakarta, Indonesia, on 8-th December 1966. He received his
Ph.D. in Computer Science from Utrecht University in 1995.
Dr. Prasetya is a member of IEEE and now works as a lecturer
and researcher at the Department of Information and Com-
puting Sciences of Utrecht University, The Netherlands. His
research areas are verification tools and theories of distributed
programming.

Tanja E. J. Vos was born in Hilversum, The Netherlands
on the 8th of October 1971. In 1995 she got a master in
Computer Science and in 2000 she recieved a PhD degree on
verification of distributed systems, both from the University in
Utrecht. Dr. Vos now works as a researcher in ITI (Instituto
Tecnológico de Informática), where she is the director of
the R&D group SQuaC (Software Quality and Correctness).
Moreover, she is a part-time teacher at the Technical University
of Valencia in Spain. Dr. Vos participates in various research
projects on software quality and testing funded by the Europe
Commission, the Spanish government and by industry. Previ-
ously, she has worked as a researcher and professor at various
universities like the Utrecht University (The Netherlands),
Universidad Mayor de San Simón (Bolivia), University of
Cambridge (UK), and the Mediterranean University of Science
and Technology in Spain.

Arthur van Leeuwen received a master degree in Com-
puter Science from the University of Nijmegen in 2002. He
is currently a research programmer at the Department of In-
formation and Computing Sciences of Utrecht University, The
Netherlands. His main research interest is the field of Program-
ming Languages.

JOURNAL OF SOFTWARE, VOL. 1, NO. 3, SEPTEMBER 2006 13

© 2006 ACADEMY PUBLISHER

