
Increasing the efficiency of graph colouring
algorithms with a representation based

on vector operations
István Juhos

Department of Computer Algorithms and Artificial Intelligence, University of Szeged, Hungary
E-mail: juhos@inf.u-szeged.hu

Jano I. van Hemert
National e-Science Institute, University of Edinburgh, United Kingdom

E-mail: jano@vanhemert.co.uk

Abstract— We introduce a novel representation for the graph
colouring problem, called the Integer Merge Model, which
aims to reduce the time complexity of graph colouring
algorithms. Moreover, this model provides useful informa-
tion to aid in the creation of heuristics that can make the
colouring process even faster. It also serves as a compact
definition for the description of graph colouring algorithms.
To verify the potential of the model, we use it in the complete
algorithm DSATUR, and in two version of an incomplete
approximation algorithm; an evolutionary algorithm and
the same evolutionary algorithm extended with guiding
heuristics. Both theoretical and empirical results are pro-
vided investigation is performed to show an increase in the
efficiency of solving graph colouring problems. Two problem
suites were used for the empirical evidence: a set of practical
problem instances and a set of hard problem instances from
the phase transition.

Index Terms— graph colouring, representation, node merg-
ing, colouring strategies, evolutionary algorithm, DSATUR

I. INTRODUCTION

The Graph Colouring Problem (GCP) plays an im-
portant role in graph theory. It arises in a number of
applications—for example in time tabling and scheduling,
register allocation, and printed circuit board testing (see
[1]–[3]). GCP deals with the assignment of colours to
the vertices of an undirected graph such that adjacent
vertices are not assigned the same colour. The primary
objective is to minimise the number of colours used.
The minimum number of colours necessary to colour
the vertices of a graph is called the chromatic number.
Finding it is an NP-hard problem, but deciding whether
a graph is k-colourable or not is NP-complete [4]. Thus
one often relies on heuristics to compute a solution or an
approximation for large problem instances.

Graph colouring algorithms make use of adjacency
checking, during colouring, which plays a key role in the
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overall performance (see [5]–[7]). In the more general
context of constraint satisfaction problems, one speaks
about constraint checks, which is defined as the process
of verifying whether a constraint is either satisfied or
violated under the current partial assignment of values to
variables. The number of these checks applied to solve a
problem instance, depends on the problem representation
and how the algorithm then uses this representation.
The Integer Merge Model (IMM) introduced here directly
addresses these issues. Generally, there are three main
data structures used to represent graphs: the adjacency
matrix, the incidence matrix, and the adjacency list.
For graph colouring the adjacency matrix is commonly
used, although a few specialised representations exist that
depend on specific problem properties, for instance, on
sparse graphs [8]. In [6], a novel graph representation for
the colouring problem called the Binary Merge Model
(BMM) is introduced. IMM is a generalisation of BMM,
which is a useful and an efficient representation of the
GCP (see [6], [7]). IMM preserves BMM’s beneficial fea-
ture of improving upon efficiency, i.e., decreasing the
number of adjacency checks. Moreover, it provides useful
information about the graph structure during the colouring
process, which enables one to define more sophisticated
colouring algorithms and heuristics, and to describe these
with a compact description.

To demonstrate the potential of IMM, it is embedded
in the DSATUR algorithm [9]—a standard and effective
complete GCP solver—and in a meta-heuristic environ-
ment driven by an evolutionary algorithm. Of the latter,
two variants are used, one with and one without heuristics
that make use of the additional information provided by
IMM. On two problem sets, we compare the effectiveness
and efficiency of these three algorithms, by testing them
with and without using IMM.

II. REPRESENTING THE GRAPH K-COLOURING
PROBLEM

The problem class known as the graph k-colouring
problem is defined as follows. Given a graph G(V,E),
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which is a structure of nodes and edges, where V =
{x1, ..., xn} is a set of nodes and E = {(xi, xj)|xi ∈
V ∧ xj ∈ V ∧ i #= j} is a set of edges. The edges define
the relationship between the nodes (V × V → E). The
graph k-colouring problem is to colour every node in V
with one of k colours such that no two nodes connected
with an edge in E have the same colour. The smallest
such k for which this task can be achieved, is called the
chromatic number, which will be denoted here by χ.

Graph colouring algorithms make use of adjacency
checking during the colouring process, which has a large
influence on the performance. Generally, when assigning
a colour to a node, all adjacent or coloured nodes must
be scanned to check for equal colouring. In the context of
constraint satisfaction, one says that constraint checks are
performed. For graph colouring, the number of constraint
checks performed to test whether an assigned colour is
valid, lies between two bounds, the current number of
coloured neighbours and |V |−1. With the IMM approach
the number of checks is greater than zero and less than
the number of colours used up to this point. These bounds
arise from the model-induced hyper-graph structure ex-
plained next, and using these one can guarantee that the
algorithms will perform better under the assumption it
does the same search.

A. Integer Merge Model
The Integer Merge Model (IMM) implicitly uses hyper-

nodes and hyper-edges (see Figure 1). A hyper-node is a
set of nodes, which will be assigned the same colour as
any pair of nodes in that set is never connected. Hyper-
node can be generalized for normal nodes by considering
a one element colour set, i.e., one colour..

Definition 1 (Hyper-node): Given two coloured nodes
〈x1, c1〉 and 〈x2, c2〉 we create a hyper-node {x1, x2} iff
x1 #= x2 and c1 = c2. Generally, H =

⋃
{xi}i∈I , where

I ⊆ [1, n] is an index set having at least two elements, can
form a hyper-node, when {xi}i∈I × {xi}i∈I ∩ E = ∅.

Here, a hyper-edge can connect only two hyper-nodes
if and only if they are connected by at least two normal
edges. We can generalize hyper-edges to normal edges
as well, if we allow a hyper-edge to consist of one edge
only.

Definition 2 (Hyper-edge): Let I1, I2 ⊆ {1, n} distinct
a non-empty index sets, i.e. I1 ∩ I2 = ∅, furthermore
H1 = {xi}i∈I1 and H2 = {xj}j∈I2 form hyper-nodes,
that is there is no intra-edge between the nodes in a set:
H1 × H1 ∩ E = ∅ and H2 × H2 ∩ E = ∅. H1 and
H2 is connected by a hyper-edge (H1,H2) iff there is
inter-edges between the nodes in the different sets, i.e.
H1 ×H2 ∩ E > 1.

When using graphs in this paper, we shall represent
hyper-edges with two parallel lines to make them distinct
from regular edges for which a single line is used.
Similarly, for hyper-nodes we will add another slightly
larger circle around the node, and annotate the node with
a set of variables. Although, the colouring of nodes is
implicit in our model, as it starts with assigning a unique

colour to every node, then removing colours as nodes are
merged into hyper-nodes, we will colour nodes to make
the process easier to follow. Coloured nodes are shown
by colouring half the node. If nodes are coloured with the
same colour, they have the same half coloured.

The IMM concentrates on the operations between hyper-
nodes and normal nodes. We try to merge the normal
nodes with another node, and when the latter is a hyper-
node, a reduction in adjacency checks is possible. These
checks can be performed along hyper-edges instead of
normal edges, whereby we can introduce significant sav-
ings. This is because the initial set of normal edges is
folded into hyper-edges. The colouring data is stored in
an Integer Merge Table (IMT) (see Figure 2). Every cell
(i, j) in this table has non-negative integer values. The
columns refer to the nodes and the rows refer to the
colours. A value in cell (i, j) is greater than zero if and
only if node j cannot be assigned a colour i because
of the edges in the original graph G(V,E). The initial
IMT is the adjacency matrix of the graph, hence a unique
colour is assigned to each of the nodes. If the graph is
not a complete graph, then it might be possible to reduce
the number of necessary colours. This corresponds to the
reduction of rows in the IMT. To reduce the rows we
introduce an Integer Merge Operation, which attempts to
merge two rows. When this is possible, the number of
colours is decreased by one. When it is not, the number
of colours remains the same. It is achievable only when
two nodes are not connected by a normal edge or a hyper-
edge. An example of both cases is found in Figures 1 and
2.

The Integer Merge Operation merges an initial row
ri into an arbitrary (initial or merged) row rj if and
only if (j, i) = 0 (i.e., none of the nodes in the hyper-
node {xj1 , . . . , xjm} are connected to the node xi) in
the IMT. If rows ri and rj can be merged then the
result is the union of these rows, which in the con-
text of the graph G(V,E) amounts to either creating
a hyper-node {xi, xj1 , . . . , xjm} or merging two hyper-
nodes {xi1 , . . . , xit , xj1 , . . . , xjm} with 2 ≤ m, t ≤ n
and m + t ≤ n.

Definition 3: The Integer Merge Operation Let S be
the set of initial rows of the IMT and R be the set of all
possible |V | size integer-valued rows (vectors). Then an
integer merge operation is defined as,

merge(ri, rj) : R× S → R

r′j := rj + ri, r′j , rj ∈ R, ri ∈ S,

or by components,
r′j(l) := rj(l) + ri(l), l = 1, 2, . . . , |V |

A merge can be associated with an assignment of a
colour to a node, because two nodes are merged if they
have the same colour. Hence, we need as many merge
operation as the number of the nodes in a valid colouring
of the graph, apart from the nodes which are coloured
initially and then never merged, i.e., a colour is used only
for one node. If k number of rows are left in the IMT, i.e.,
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the number of colours used, then the number of Integer
Merge Operations is |V |− k, where k ∈ {χ, . . . , |V |}.

B. Computational cost of the merge operation in practice
With regard to the time complexity of a merge opera-

tion, we can say that it uses as many integer additions as
the size of the operands |V |. In fact, we need only to in-
crement the value in the row rj , where the corresponding
element in the row ri is non-zero, which is d(xi) number
of operations. The number of all operations are less than∑

i d(xi) = 2|E| for a valid colouring. This occurs when
a list based representation of the rows is available in an
implementation. Note that, incrementing an integer value
may require less CPU time than an integer addition.

Since, nowadays computer processors (CPU) sup-
port parallel operations, e.g., vector addition operations
(VADD), a merge operation can be only one instruction
instead of |V | or d(xi) instructions. In this case at most
|V | − k number of VADD operations are needed for a
valid colouring (see above). The order of real life graphs
can vary from a hundred nodes to thousands of nodes,
but a common CPU can be able to perform less additions
simultaneously. In other words, the space for performing
VADD operations is smaller than the size of the graph.
More explicitly, due to a cell value of an IMT is always
less than n, thus we need at most -log2 n. bits allocated
for each one. Since, an IMT row has n cells, we need
an array of bits of size n -log2 n. for a VADD operation,
which can be distributed over several registers, in a vector
machine to get a merge in one operation.

For instance, the IBM PowerPC CPU used in an Xbox
[10] has 49 152 (3 ·128 ·128) bits for this operation. Thus,
we can use one merge operation for graphs having at most
4 000 number of nodes. Hence, one can require special
hardware, a vector processor to achieve the appropriate
VADD size required to keep the |V | − k complexity in
colouring. Nevertheless, having smaller VADD size, say
l, the necessary VADD operations are -|V |/l. (|V | − k),
which can still significantly reduce the computational
efforts for a merge. Especially, if l ≥ |V |, then we get
back the |V |− k as mentioned previously. Examples that
show how such hardware can speed up computation are
found in the survey by [11], and more specifically for
constraint satisfaction in [12].

C. Computational complexity of the constraint checks
When solving a graph colouring problem while using

the original graph representation to check for violations,
approximately |V |2 constraint checks are required to get
to a valid colouring. In contrast, the IMM supported
scheme uses at most |V | · k number of checks ( |V | ≥
k ≥2 χ). This is possible because each node will be
compared at most to the existing hyper-nodes/colours, of
which is there are not more than k or χ if a solution
exists. Hence, their quotient determines the improvement
of an IMM supported colouring, which is proportional to
the |V |/k ratio. We verify this claim theoretically in this
section and empirically in the experiments section.

In traditional schemes, adjacency matrix representation
plays the key role in the GCP 1. We have two choices when
colouring a node for constraint checking; either along the
already coloured nodes, or along all the neighbours of
the node considered. In the following, we show how to
considerably reduce the number of constraint checks by
applying our proposed representation.

Let Π is the sequence of the nodes occur in the
colouring process. Define

!
d (x) as the coloured-degree

of the node x being currently coloured, which refers
backwards to the already coloured nodes and

"
d (x) of

the uncoloured-degree refers forwards to the uncoloured
node. Furthermore, denote kΠ(x) the number of colours
used before x would have been coloured according to Π.

Corollary 1: Given a random graph G(n, p) with fixed
p and given a colouring algorithm A, then the following
performance is expected on average based on counting
constraint checks #(.):

1) checking the coloured nodes: #(Acol) = O(n2)

2) checking the neighbours: #(Aneigh) = O(n2)

3) checking the hyper-nodes/colour classes:
#(Aimm) ≤ O(n2/ log n)

Proof:
1) Checking the already coloured nodes requires as

many neighbour checks as the number of the edges,
because we have to check the t number of coloured
nodes if the t + 1. node comes to colour, that is,

#(Acol) =
∑

i =
1
2
n(n− 1) = O(n2) (1)

2) When the neighbours of the node currently being
coloured are checked for constraint violation, the
number of performed constraint checks are equal
to the sum of the degrees, i.e., twice the number of
edges

#(Aneigh) =
∑

di = 2|E| ∝ pn(n− 1) = O(n2)
(2)

3) Using the IMM representation, merge opera-
tions provide hyper-nodes, which represent colour
classes, thus checking along the hyper-nodes, re-
quires at most as many checks as the number of
colours used at that moment. The worst case is
when the colouring is tight, meaning node x is in
position Π(x) coloured by at least the colour kΠ(x).

#(Aimm) ≤
∑

ki = n
P

ki

n ∝ nrχ ∝ n rn
2 log n (3)

= O(n2/ log n)

n
rn

2 log n
∝ rp

2p
n(n−1)

log(n−1) ∝
pn(n−1)

log(n−1)2p/r(4)

1List based or incidence matrix representations requires more opera-
tions for graph colouring.
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where r is constant2 and χ ∝ n
2 log n according3 to

[16].

While, the theorem above tells us an asymptotic be-
haviour of the algorithms, we can check the worst case
behaviour of the A using these different approaches. It
is clear that, the application of the Acol for dense graphs
are better against the #(Aneigh) and conversely Acol has
worse properties in spare graphs against #(Aneigh). The
following theorem state that using our IMM approach,
the #(Aimm) always outperforms the other techniques
mentioned.

Corollary 2: Let G an arbitrary graph, then the follow-
ing relations are hold

1) #(Aimm) ≤ #(Acol)
2) #(Aimm) ≤ #(Aneigh)

Proof:
1) The number of colours are less than the number of

coloured nodes:
#(Aimm(x)) ≤ kΠ(x) ≤ Π(x), then
#(Aimm) ≤

∑
ki ≤

∑
i.

2) When
!
d (x) refers to distinctly coloured nodes

then #(Aimm(x)) =
!
d (x). Otherwise, if

!
d (x)

refers to same coloured nodes as well as distinct
ones the #(Aimm(x)) =

!
d (x), since hyper-

nodes encompasses the same coloured nodes.
Consequently

#(Aimm(x)) ≤ d(x) due to d(x) =
!
d (x) +

"
d (x),

and #(Aimm) ≤
∑ !

d (x) ≤
∑

d(x).

Conclusion of the Corollary 2 tells us more. Namely, an
IMM based algorithm could perform better than that which
could check the coloured neighbours only. However, to
implement such an algorithm, which checks the coloured
neighbours only, we have to use additional computation
efforts, thus an IMM algorithm performs even better.

D. Permutation Integer Merge Model
The result of colouring a graph after two or more

integer merge operations depends on the order in which
these operations were performed. Consider the hexagon in
Figure 1(a) and its corresponding IMT in Figure 2. Now
let the sequence P1 = r1, r4, r2, r5, r3, r6 be the order
in which the rows are considered for the integer merge
operations, i.e., for the colouring.

This sequence of merge operations results in a 4-
colouring of the graph depicted in Figure 1(c). However,
if we use the sequence P2 = r1, r4, r2, r6, r3, r5 then
the result will consist of a 3-colouring, as shown in
Figure 1(e) with the merges merge(r1, r4), merge(r2, r6)
and merge(r3, r4). The merge is greedy, i.e., it takes a row
and tries to find the first row from the top of the table
that it can merge. The row remains unaltered if there is no

2 This is true in the context of the naturally defined greedy algorithms
r ≈ 2 [13]–[15], other algorithms are designed to perform better.

3Note, the base of the logarithms is 1/(1− p).

suitable row. After performing the sequence P of merge
operations, we call the resulting IMT the merged IMT.

merge(r1,r4)

merge(r2,r5)

merge(r2,r6)

merge(r3,r5)

(a)

(b)

(c)

(d)

(e)

x1

x2

x4

x5

x6

x3

x5 x3

{x2,x6 }

{x1,x4 }

{x3,x5 }

{x2,x6 }

{x1,x4 }

x5

x3

x2x6

{x1,x4 }

{x1,x4 }

{x2,x5 }x6

x3

Figure 1. Examples of the result of two different merge orders P1 =
r1, r4, r2, r5, r3, r6 and P2 = r1, r4, r2, r6, r3, r5. The double-lined
edges are hyper-edges and double-lined nodes are hyper-nodes. The P1
order yields a 4-colouring (c), however with the P2 order we get a
3-colouring (e).

Finding a minimal colouring for a graph k-colouring
problem using the IMT representation and integer merge
operations comes down to finding the sequence of merge
operations that leads to that colouring. This can be rep-
resented as a sequence of candidate reduction steps using
the greedy approach described above. The permutations
of this representation form the Permutation Integer Merge
Model (PIMM). It is easy to see that these operations and
the colouring are equivalent.

E. Extracting useful information: co-structures

The IMM can be incorporated into any colouring al-
gorithm that relies on a construction based form of
search. The hyper-graph structure introduced can save
considerable computational effort as we have to make
only one constraint check along a hyper-edge instead of
checking all the edges it contains. Next to this favourable
property, the model gives incremental insight into the
graph structure with the progress of the merging steps.
This information can be used in a beneficial way, for
instance, for defining colouring heuristics.

In this section, the co-structures are defined. These
structures contain information about some useful graph
properties obtained during the merging process. How
this information is used in the algorithm is explained
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(a) x1 x2 x3 x4 x5 x6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(b) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(c) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r5 1 0 1 1 0 1

r3 1 1 0 1 0 1
r6 1 0 1 0 1 0

(d) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r6 2 0 2 0 1 0

r3 1 1 0 1 0 1
r5 0 0 0 1 0 1

(e) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r6 2 0 2 0 1 0
r3 ∪ r5 2 1 0 2 0 2

Figure 2. Integer Merge Tables corresponding to the graphs in Figure 1.

in Sections III-A and III-B, where we describe the two
algorithms in which we have embedded the Integer Merge
Model.

In practice, in the initial graphs none of the nodes are
coloured. The colouring is then performed by colouring
the nodes in steps. Here, we deal with the sub-graphs of
the original graphs defined by the colouring steps. The
related merge tables contain partial information about the
original one. For example, let the original graph with its
initial IMT be defined by Figure 3 on which the colouring
will be performed. Taking the x1, x4, x2, x6, x3, x5 order
of the nodes into account for colouring G, then P1 =
r1, r4, r2, r6, r3, r5 ordered merges of the IMT rows will
be performed. After the greedy colouring of the x1, x4, x2

nodes there is a related partial or sub-IMT along with the
(sub-)hyper-graph. These are depicted in Figure 3. The
1st and the 4th rows are merged together, but the 2nd
cannot be merged with the result of merge(r1, r4), thus
the 2nd row remains unaltered in the related IMT.

The left, top, right, and bottom bars are defined around
an IMT to store the following four co-structures.

a) The left co-structure: is associated with the orig-
inal graph and each row contains the sum of the values
of that row. The sum of the cell values of a row is equal
to the sum of the degree of the nodes associated with the
row (merged or initial).

b) The top co-structure: contains for each row the
sum of that row, which gives us the number of coloured
neighbours in the original graph, i.e., the graph without
taking merging into account.

c) The right co-structure: supplies information
about the hyper-graph represented by the sub-IMT. Its
values are calculated by counting the number of non-zero
values in the rows and columns in the order described.
It provides the hyper-degree value of the nodes, which
is especially interesting in case of hyper-nodes. The
hyper-degree tells us how many unique normal nodes are
connected to the hyper-node being examined. This counts
a node once, even if it is connected to the hyper-node in
question by more than one normal edge folded into a
hyper-edge.

d) The bottom co-structure: also supplies informa-
tion about the hyper-graph represented by the sub-IMT. It
counts the number of non-zero values in each column in
the order described. For every node, we then derive the
colour degree, i.e., the number of adjacent colours of a
node.

x1

x2

x4

x5

x6

x3

(a)
(b)

r1 0 1 1 0 0 1

r2 1 0 1 0 0 0

r3 1 1 0 1 0 1

r4 0 0 1 0 1 0

r5 0 0 0 1 0 1

r6 1 0 1 0 1 0

x1  x2  x3  x4  x5  x6
1 1 3 0 1 1

5 0 1 2 0 1 1 4

2 1 0 1 0 0 0 2

1 1 2 0 1 1

x1  x2  x3  x4  x5  x6

{r1,r4}

r2

4 1 1 0 1 0 1 3

2 0 0 0 1 0 1 2

3 1 0 1 0 1 0 3

r3

r5

r6

x5 x3

x2x6

{x1,x4 }

(c)

(d)

Figure 3. The left side shows the partial colouring of the G graph
according to the x1, x4, x2 greedy order and a common adjacency
matrix of the graph. The right side shows the IMT related to this partial
colouring with its co-structures and IMT induced hyper-graph.

By extending the IMT we are able to describe efficient
heuristics in a compact manner. To demonstrate this we
will formulate two effective heuristic using the Integer
Merge Model to get novel colouring algorithms. Two
kinds of implementations of the two heuristic algorithms
are considered during the experiments, when IMM is used
and when it is not used.
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Procedure DSATURimm

1) Find those uncoloured nodes which have the highest
saturated value:
S = {x|τb(x) = maxy(τb(y)), x, y ∈ V }

2) Choose those nodes from S that have the highest
uncoloured-degree:
N = arg maxx(d(x)− τt(x))

3) Choose the first row/node from the set N
4) Merge it with the first non-neighbour hyper-node
5) If there exists an uncoloured node then continue

with Step 2

Figure 4. The DSATUR heuristic is defined by the IMM top (τt) and
bottom (τb) co-structures. Here, d is the degree of a node.

III. EMBEDDING THE INTEGER MERGE MODEL

We shall now describe how our proposed representation
can be embedded into two different algorithms. The first,
DSATUR, uses a backtracking algorithm that provides
a complete algorithm, where the efficiency is mainly
dependent on the ordering of colouring the variables,
which is determined using a heuristic. The second, a
simplistic evolutionary algorithm that uses a permutation
as its genotype, and consequently applies suitable genetic
operators on this genotype to maintain valid permutations.

A. DSATUR heuristic

This algorithm of Brélaz’s [9] uses a heuristic to
dynamically change the ordering of the nodes and it then
applies the greedy method to colour them. It works as
follows. One node with the highest saturation degree,
i.e., the number of adjacent colours, is selected from the
uncoloured sub-graph and is assigned the lowest indexed
colour that still yields a valid colouring, which is the
first-order heuristic. If there exist several such nodes, the
algorithm chooses a node with the highest degree, which
forms the second-order heuristic. The result can also be a
set of nodes. If this is the case, we choose the first node
in a certain order, which is the third-order “heuristic”.
The top and bottom co-structures are used to define the
DSATUR heuristic (see Figure 4). Let us denote the top co-
structure by τt, i.e., the number of coloured neighbours,
and the bottom co-structure by τb, i.e., saturation degree.
In our terminology the highest saturated node is the node
which has the largest τb value. Here, τt is used in the
second order heuristic.

A backtracking algorithm is used to discover a valid
colouring [17]. It achieves either an optimal solution or
a near optimal solution when the maximum number of
constraint checks is reached. For comparison purposes,
two algorithms were implemented using this heuristic.
The first one, DSATURIMM is based on the IMM struc-
tures, while the second one DSATURpure, uses the tradi-
tional colouring scheme, where we only make use of the
adjacency matrix.

B. Evolutionary algorithm

We have two goals with this meta-heuristic. The first is
to find a successful order of the nodes (see Section II-D)
and the second is to find a successful order for assigning
colours. This approach differs from DSATUR, where a
greedy colour assignment is used. For the first goal, we
must search the permutation search space of the model
described in Section II-D, which is of size n!. Here,
we use an evolutionary algorithm [18] to search through
the space of permutations. The genotype consists of the
permutations of the nodes, i.e., the rows of the IMT.
The phenotype is a valid colouring of the graph after
using a colour assignment strategy on the permutation
to select the order of the integer merge operations. The
colour assignment strategy is a generalisation of the one
introduced in [7]. We say that the c-th vector of the sub-
IMT r′(c) is the most suitable candidate for merging with
rpi if they share the most constraints. The dot product
of two vectors provides the number of shared constraints.
Thus, by reverse sorting all the sub-IMT vectors on their
dot product with rpi , we can reduce the number of colours
by merging rpi with the most suitable match. Here, the
dot product operates on integer vectors instead of binary
ones, thus generalise that.

An intuitive way of measuring the quality of an in-
dividual p in the population is by counting the number
of rows remaining in the final BMT. This equals to the
number of colours k(p) used in the colouring of the
graph, which needs to be minimised. When we know
the optimal colouring is χ then we may normalise this
fitness function to g(p) = k(p) − χ. This function gives
a rather low diversity of fitness of the individuals in
a population because it cannot distinguish between two
individuals that use an equal number of colours. This
problem is called the fitness granularity problem. We
modify the fitness function introduced in [7] so that to use
Integer Merge Model structures instead of the appropriate
binary one. This fitness relies on the heuristic that one
generally wants to avoid highly constraint nodes and rows
in order to have a higher chance of successful merges at
a later stage, commonly called a succeed-first strategy.
It works as follows. After the final merge the resulting
IMT defines the colour groups. There are k(p)− χ over-
coloured nodes, i.e., merged rows. Generally, we use the
indices of the over-coloured nodes to calculate the number
of nodes that need to be minimised (see g(p) above). But
these nodes are not necessarily responsible for the over-
coloured graph. Therefore, we choose to count the hyper-
nodes that violates the least constraints in the final hyper-
graph. To cope better with the fitness granularity problem
we should modify the g(p) according to the constraints
of the over-coloured nodes discussed previously. The final
fitness function is then defined as follows. Let ζ(p) denote
the number of constraints, i.e., non-zero elements, in the
rows of the final IMT that belong to the over-coloured
nodes, i.e., the sum of the smallest k(p) − χ values
of the right co-structure. The fitness function becomes
f(p) = g(p)ζ(p). Here, the cardinality of the problem is
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Procedure EAIMM

1) population = generate initial permutations
randomly

2) while stop condition allows
a) evaluate each p permutation

i) merge pj-th uncoloured node into c-th
hyper-node by c = maxj

〈
r′j , rpi

〉

ii) calculate f(p) = (k(p)− χ)ζ(p)
b) populationxover = crossover(population,

probxover)
c) populationmut = mutate(populationxover,

probmut)
d) population = select2-tour(population ∪

populationxover ∪ populationmut)
3) end while

Figure 5. The EAimm uses directly the IMM structure.

known, and used as one of the stopping criteria (f(p) = 0)
to determine the efficiency of the algorithm. If χ is
unknown, we can use the worst approximation which is
χ′ = 0. We must modify the stop condition to, reaching
a time limit or to fitness ≤ 0 due to under-approximation
(χ′ ≤ χ) or over-approximation (χ′ > χ). Alternatively,
the normalisation step can be left out, but this might
seriously effect the quality of the search in a negative
way.

We use a generational model with 2-tournament se-
lection and replacement, where we employ elitism of
size one [19]. The initial population is created with 100
random individuals. Two variation operators are used to
provide offspring. First, the 2-point order-based crossover
(OX2) [19, in Section C3.3.3.1] is applied. Second, sim-
ple swap mutation operator is applied, which selects at
random two different items in the permutation and then
swaps. The probability of using OX2 is set to 0.3 and
the probability for using the simple swap mutation is
set to 0.8. The stop condition is either a colouring with
the chromatic number is found, or the maximum number
of constraint checks, set in the experiments section, is
reached. All these parameter settings are taken from the
experiments in [7].

IV. EXPERIMENTS

The goal of these experiments are twofold. First, to
show the improvement in efficiency possible when adding
the Integer Merge Model to an existing technique. Second,
to show further improvement possible in the evolutionary
algorithm by adding heuristics that are based on the
additional bookkeeping in the form of the co-structures.

A. Methods of comparison
How well an algorithm works depends on its effec-

tiveness and efficiency in solving a problem instance.
The first is measured by determining the ratio of runs
where the optimum is found, this ratio is called the

TABLE I.
PROPERTIES OF THE GRAPHS IN THE DIMACS SUITE, SHOWING THE

NUMBER OF VERTICES |V |, THE NUMBER OF EDGES |E|, AND THE

CHROMATIC NUMBER OF THE GRAPH χ

GRAPH |V | |E| χ

fpsol2.i.2 451 8691 30
fpsol2.i.3 425 8688 30
homer 561 1629 13
inithx.i.1 864 18707 54
inithx.i.2 645 13979 31
inithx.i.3 621 13969 31
miles500 128 1170 20
miles750 128 2113 31
miles1000 128 3216 42
miles1500 128 5198 73
mulsol.i.5 186 3973 31
myciel6 95 755 7
myciel7 191 2360 8
queen5 5 25 160 5
queen7 7 49 476 7
queen8 8 64 728 9
r75 5g 8 75 1407 13

success ratio; it is one if the optimum, i.e., the chromatic
number of the graph, is found in all runs. The second is
measured by counting the number of constraint checks
an algorithm requires to find the optimum. A constraint
check is defined equally for each algorithm as checking
whether the colouring of two nodes is allowed or not. This
measurement is independent of the hardware used and is
known to grow exponentially with the problem size in the
worst case.

In this section, the results of the three kinds of algo-
rithms are presented with and without using the Integer
Merge Model, i.e., DSATUR, EA which uses the introduced
fitness f and colour choosing heuristics and EAnoheur
which does not apply these heuristics, it uses a greedy
colouring with the fitness g.

Each algorithm was stopped when they reached an
optimal solution or 150 000 000 number of constraint
checks. DSATUR with backtracking is an exact solver,
it tries to explore the search space systematically by
its heuristics. Thus, only one run is enough to get its
result. Because of the stochastic nature of evolutionary
algorithms, we use ten independent runs.

B. DIMACS Challenge problem instances
The first test suite consists of problem instances taken

from “The Second DIMACS Challenge” [20] and Michael
Trick’s graph colouring repository [20]. Most of these
graphs originate from real world problems, with some
additional artificial ones. We can find problems from
scheduling, register allocation, football games, city dis-
tances, placement of queens on a chessboard, connections
of letters in a book. We present the basic properties of
the graphs in Table I. Especially, the artificial problems
are hard to solve due to the method of generating by
Mycielski transformation [21]. They are triangle free, and
the chromatic number increases with the problem size.

In Table II, we compare the results of two variants
of DSATUR and two variants of the evolutionary algo-
rithm without using heuristics. First, we observe that
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TABLE II.
NUMBER OF CONSTRAINT CHECKS REQUIRED TO SOLVE TO

OPTIMALITY FOR THE DIMACS TEST SUITE FOR DSATUR AND THE EA

without heuristics. RESULTS ARE SHOWN WITH AND WITHOUT THE

USE OF IMM (LATTER IS DENOTED BY PURE). PREFIX-INDICES SHOW

THE SUCCESS RATIO IF IT IS NOT ONE.

GRAPH DSATURimm DSATURpure EAnoheur
imm EAnoheur

pure

fpsol2.i.2 3059091 40527833 4541 56027
fpsol2.i.3 2660498 32683629 4988 61015
homer 2085103 75198957 3672 171641
inithx.i.1 22305812 345876238 5456 142315
inithx.i.2 6030391 95778467 3680 112000
inithx.i.3 5762200 86482594 3804 124508
miles500 147922 1046162 46276 75445
miles750 204871 1121864 693403 5103811
miles1000 244886 1249001 559636 1120068
miles1500 329361 1500956 14584 19550
mulsol.i.5 472872 2750261 1370 8905
myciel6 27807 624340 331 2146
myciel7 134956 4810974 1350 11163
queen5 5 1665 12408 1777 2488
queen7 7 1176441 9106599 6675813 25332278
queen8 8 − − 0.4102517235 −
r75 5g 8 35693383 − 0.2122257875 0.2129031499

in all cases, using the IMM representation improves the
efficiency algorithm with varying degrees of speed-ups,
on which we elaborate more later. The evolutionary
algorithm without heuristics performs much better than
DSATUR for most problem instances solving some prob-
lem instances in a fraction of the time, such as inithx.1.
Exceptions are three graphs that are hard to solve for
DSATUR (miles500, miles1000, and queen7 7), and one
that is easy to solve (queen5 5).

When the evolutionary algorithm is making use of the
co-structures through its heuristics, we get the results
shown in Table II. First, when using heuristics, the
evolutionary algorithm always performs better than when
not using heuristics. Also, the success ratio for the two
hardest problem instances (queen8 8 and r75 5g.8) has
improved and r75 5g.8 is now always solved to optimal-
ity. Second, using heuristics, the evolutionary algorithm
always performs better than DSATUR.

We can summarise the results on test suite one found
in Table II and Table III as follows,

• The performance of an algorithm improves signifi-
cantly if it employs the IMM framework.

• The evolutionary algorithms perform better than
DSATUR, even after improving the efficiency of the
latter with IMM.

• Adding heuristics to the evolutionary algorithms is
useful to improve upon the efficiency for harder
problem instances.

• All algorithms find a solution for almost every
problem within the maximum number of constraint
checks, except for the extremely hard queen8 8 and
r75 5g 8 problems.

In Figure 6, we show how much the speed of DSATUR
and the evolutionary algorithm increases measured as the
ratio of constraint checks used to solve the problem when
not using IMM and when using IMM. For DSATUR, the
lowest speed increase is 4.56, while the largest speed-

TABLE III.
NUMBER OF CONSTRAINT CHECKS REQUIRED TO SOLVE TO

OPTIMALITY FOR THE DIMACS TEST SUITE FOR DSATUR AND THE EA

with heuristics. RESULTS ARE SHOWN WITH AND WITHOUT THE USE

OF IMM (LATTER IS DENOTED BY PURE). PREFIX-INDICES SHOW THE

SUCCESS RATIO IF IT IS NOT ONE.

GRAPH DSATURimm DSATURpure EAheur
imm EAheur

pure

fpsol2.i.2 3059091 40527833 3414 42022
fpsol2.i.3 2660498 32683629 3174 39151
homer 2085103 75198957 2455 57586
inithx.i.1 22305812 345876238 4328 120348
inithx.i.2 6030391 95778467 2606 84603
inithx.i.3 5762200 86482594 2480 79458
miles500 147922 1046162 9066 10366
miles750 204871 1121864 120051 145459
miles1000 244886 1249001 57934 116054
miles1500 329361 1500956 5436 7032
mulsol.i.5 472872 2750261 1221 7916
myciel6 27807 624340 283 1499
myciel7 134956 4810974 901 5602
queen5 5 1665 12408 678 906
queen7 7 1176441 9106599 1092455 2793682
queen8 8 − − 0.687482316 0.2125298157
r75 5g 8 35693383 − 18668080 0.929609833
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DSatur imm/pure
EA imm/pure
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Figure 6. Speed increase ratios for DSATUR and the evolutionary
algorithm for the DIMACS problems, which are ordered by |V |/χ

up is 36.1. For the evolutionary algorithm, the lowest
speed increase is 1.81, and the largest speed-up is 41.4.
Depicted in Figure 7, is the correlation of the speed-up
ratios of the two algorithms with the ratio |V |/χ, i.e.,
the number of nodes divided by the chromatic number.
DSATUR fits with a coefficient of 0.948 and an asymptotic
error of 10.0%, while the evolutionary algorithm fits with
a coefficient of 0.695, and an asymptotic error of 9.8%.
We had predicted this speed-up in Section II-C, and the
correlation fits rather well, especially for DSATUR.

C. Equi-partite graphs in the phase transition
The second test suite is generated using the well known

graph k-colouring generator of Culberson [15]. It consists
of 3-colourable graphs with 200 nodes. The edge density
of the graphs is varied in a region called the phase
transition. This is where hard to solve problem instances
are generally found, which is shown using the typical
easy-hard-easy pattern. The graphs are all equi-partite,
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Figure 7. Linear correlation between the |V |/χ ratio and the speed-up
ratios of DSATUR and the evolutionary algorithm with heuristics.

which means that in a solution each colour is used
approximately as much as any other. The suite consists
of nineteen groups where each group has five instances,
one each instance we perform ten runs and calculate
averages over these 50 runs. The connectivity is changed
from 0.010 to 0.100 by steps of 0.005 over the groups.
To characterize better the area of the phase transition, a
simplification technique is used introduced by Cheeseman
et al in [22]. This three steps node reduction removes the
0.010–0.020 groups, and simplify the graphs in the other
groups to get the core of the problems.

Figure 8 shows the performance measured by success
ratio and by average constraint checks performed of the
algorithms on test suite two where 50 independent runs
are used for every setting of the density. Both evolutionary
algorithms show a sharp dip in the success ratio in the
phase transition (see Figure 8), which is accompanied
with a rise in the average number of constraint checks.
IMM has significant influence on the performance, the
improvement lies in between 6 and 48 times on average
(see Figure 8). DSATUR provides good results on the
whole suite. Both the low target colour and the sparseness
of the graphs are favourable terms for the heuristics it em-
ploys. Furthermore, the order of the graphs does not imply
combinatorial difficulties for the backtracking algorithm.
Beside these facts, the suite is appropriate to get valuable
information about the behaviour of the algorithms. Even
if the DSATURS perform well on the problem sets, the EA,
using the IMM abilities, can outperform the pure version
of DSATUR in the critical region. In the phase transition
it is 50% better on average. In practice, increasing the
size of the graph leads to better performance of the
EAs as opposed to the two exact DSATUR algorithms.
By employing EA heuristics, i.e., the fitness function f
and the colour choosing strategy, we clearly notice an
improvement in both efficiency and effectiveness over the
simple greedy colouring strategy with the simple fitness
g. Furthermore, the confidence intervals for this range are
small and non-overlapping. These two approaches give a
much robust algorithm for solving graph k-colouring.
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Figure 8. Results for the equi-partite graphs in the phase transition area
for the DSATUR variants, the EAs with and without heuristics

V. CONCLUSIONS

In this paper, we introduced the Integer Merge Model
for representing graph colouring problems. It forms a
good basis for developing efficient graph colouring al-
gorithms because of its three beneficial properties, a
significant reduction in constraint checks, availability of
useful information for designing heuristics that guide
colouring, and it allows for a compact description of
algorithms.

We showed how the popular DSATUR can be described
in terms of the Integer Merge Model and we empirically
investigated how much it can benefit from the reduction
in constraint checks. Similarly, we showed how an evolu-
tionary algorithm can be made more efficient by adding
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heuristics that rely on the Integer Merge Model. Here we
have shown a significant increase in both effectiveness,
i.e., a solution is found more often, and efficiency, i.e.,
a solution is found faster. We show a speed-up of about
|V |/χ, i.e., the number of nodes in the graph divided
by the chromatic number of the graph, is what can be
expected based on our theoretical and empirical results.

Further studies may include incorporating the Integer
Merge Model in other algorithms, including more heuris-
tics. Also, other constraint problems may be considered.
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