
Dynamic Web Service Calls for Data Integration
Salima Benbernou and Mohand-Said Hacid

LIRIS- Université Claude Bernard Lyon1,
69622 Villeurbanne, France

{sbenbern,mshacid}@liris.cnrs.fr

Abstract— Web Services are considered as a dominant
paradigm for constructing and composing distributed busi-
ness application and enabling enterprise-wide interoperabil-
ity. A peer to peer architecture provides a decentralized
infrastructure in sync with the spirit of the web and
that scales well to its size. In this paper, we present a
framework enabling implicit i.e. dynamic service calls in
data centric Peer to Peer Active XML language. Active
XML is a language devoted to the management of dis-
tributed data by embedding Web service calls into XML
document. The aim of implicit calls is to allow dynamic
data sources discovery through dynamic services discovery
and composition. Implicit service calls are based on the use
of ontologies for describing the domain and functionality
of services to call and an Active XML engine for the
call evaluation. The evaluation process deals mainly with
dynamic service composition. It consists of matching OWL-
S descriptions defined in a query with service descriptions
in a peer-to-peer network. Such a network is structured
in such a way that peers with similar functionalities are
grouped together and each peer makes itself acquainted with
matching relationships between its inputs/outputs and those
of other peers.

Index Terms— Semantic web services, data integration, peer
to peer, data discovery.

I. INTRODUCTION

As communication infrastructure advanced, in particu-
lar the evolution of Internet technologies, needs for ubiq-
uitous access to distributed information sources increased.
Data integration has been extensively studied in the past
in the context of company infrastructures. Nowadays, data
analysis and integration techniques are becoming more
and more prominent features of enterprise and govern-
ment systems. They offer tremendous opportunities for
empowering users and organizations in a variety of appli-
cation domains including electronic commerce, scientific
databases, enterprise information and digital government.
Since the Web is becoming a main target, data integration
has to deal with its large scale, and faces new problems of
heterogeneity and interoperablity between loosely coupled
sources.
These issues has been recently addressed in two comple-
mentary ways. First, Web services can be viewed as a
programming paradigm that extracts and integrates data
from heterogeneous information systems by providing
interface standards [1]. They can be described, published,
located, invoked, and can even operate with other services

This work is partially supported by the French National Research
Agency (ANR) - Program ”ACI Masses de Donnes:SemWeb”

to form a new composed service over a network. Emerg-
ing standards for Web services as SOAP and WSDL
simplify the interoperability problem by normalizing the
way programs can be invoked over the web. When they
are used to manage data on the Web, services bring new
features : (1) the discovery of Web services based on
their functionality leads to the discovery of data sources
that contain expected data (i.e., retrieval of dynamic data
sources) ; (2) the dynamic composition of Web services
allows to retrieve dynamic data; (3) the invocation of Web
services on demand allows retrieval of dynamic data. Our
work deals with the integration of the two first issues into
a single environment.
ActiveXML (for short AXML) is a language for Web-
scale data integration by embedding calls to Web services
into XML documents [2]. Active XML allows retrieval of
dynamic data by including features in XML documents
to indicate the location of the service to be called,
and to control three elements: the timing of the service
invocation , the lifespan of data and the extensional and
intensional data exchange. A service call which explicitly
makes reference to a service location is called explicit
call. In order to enable dynamic data source discovery
and dynamic data retrieval (i.e., when an update on data
source occurs) by means of dynamic service composition
in Active XML, we introduce implicit service call [3].
By resorting to ontologies, we provide a way to specify
service domain and service functionality with Active
XML documents. Our framework concentrates on the
reasoning issue to locate automatically the data in AXML
documents. The work presented focusses on:

1) dynamic data sources discovery
2) dynamic data retrieval by considering of dynamic

data sources.
The rest of the paper is organized as follows: Section
2 presents our motivation through an example. Section
3 briefly describes Active XML language. Section 4
presents our framework for embedding implicit service
calls within Active XML documents. Section 5 describes
an Active XML architecture with implicit calls. The re-
lated work is discussed in Section 6. Finally we conclude
in Section 7.

II. MOTIVATING EXAMPLE

In this section we present through an example two
main motivations regarding dynamic calls in AXML data
integration language. AXML allows retrieval of dynamic

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 1

© 2006 ACADEMY PUBLISHER

data by including syntax features indicating the location
of the service to call. A service call indicates explicitly
the service location. In order to allow dynamic data
source discovery and dynamic data retrieval by dynamic
service composition in AXML, we extend AXML with
functionalities to allow implicit calls by providing new
features taking into account the service category and
service functionality based on ontologies.

1) Dynamic data sources discovery. Let us consider
a scenario where we want to make an inventory of
books stored in city libraries. We assume that each
library has an Active XML peer with a service of-
fering its own book inventory. The implementation
and the outputs of the services can be different.
Now we want to make an inventory of the books
stored in all the local libraries of the ”GuangZhou”
city. By means of explicit service calls, we have
to be aware of locations of all relevant services
and then invoke an explicit service call. Figure 1(a)
shows an explicit call for book inventory. A draw-
back with this method is that it is not resilient to
changes. If Web services locations change, then we
have to manually encode the changes (by modifying
service calls).
On the contrary, with implicit service calls, it is
sufficient to be aware of the service domain (service
category) of the offered data (inputs of service) and
of the data that we expect to be returned (outputs
of service). In our example, the required service
belongs to the Book domain, it has no data offered
but a list of books is expected as output. Figure
1(b) shows an implicit call. When it is decided to
activate this implicit service call drawn up by using
these descriptions, the evaluation of the required
service location is launched and terminates after a
period of time. First, the query is propagated to its
owner peer’s master that shall decide the candidate
master peer which contains the registry of services
belonging to the same domain as the required
service. In our example, the candidate master has a
registry of services of the domain book. When the
query is received, it compares the query with the
service in its registry. The comparison is semantic-
based founded on semantic description of outputs
and inputs. If some services are found, the master
sends their locations to the invoker. If not, which
means that no existing service matches the query
and a process of dynamic composition may be
launched. The search terminates after a period of
time. Then, the user can decide which discovered
services (s)he would like to invoke later. Finally,
the chosen services are invoked. As a result, we
obtain the book inventories of the cities in spite of
the dynamic aspect of the data sources. The other
motivation of implicit service calls is that we can
invoke the relevant service without any knowledge
regarding its location.

2) Dynamic data retrieval. We want to build up a

< ?xm lversion= "1.0" encoding= "UTF-8" ?>

- < Inventory>
I nventory of the books of city librar ies

- < city nam e= "GuangZhou">
< sc> zhongshan.com / getBooks() < /sc>
< sc>GuangZhou.com / Books() < /sc>

< /city>
< /Inventory>

(a) Explicit call

< ?xm lversion= "1.0" encoding= "UTF-8" ?>

- < Inventory>
I nventory of the books of city librar ies

- < city nam e= "GuangZhou">
- < sc serviceCat= "hierachicalProfile .ow l# book">

< outputparam _data_type= "Concepts.ow l# booklist" />
< /sc>

< /city>
< /Inventory>

(b) Implicit call

Fig. 1. Type of service calls

personal Portuguese-Chinese dictionary. With ex-
plicit service call, we need to be aware of the
Portuguese-Chinese dictionary service location and
invoke the service. In the case a Portuguese-Chinese
service does not exist, while two other dictio-
nary services – Portuguese-English and English-
Chinese– exist and are locatable, we will not expect
an answer to the explicit call. However, with an
implicit service call by composing services through
input and output descriptions, the call will return
an answer. Instead of describing how to obtain the
data, an implicit service call describes the domain,
the inputs and outputs of a required service based on
ontologies (here we use OWL-S). In our example,
the required services in the translator domain have
a Portuguese word as input and a Chinese word as
output. The evaluation process of the implicit call
is performed in the same way as in the previous
example.

III. BACKGROUND

Active XML is a declarative language for distributed
information management and an infrastructure to support
the language in a peer-to-peer framework. It has two
fundamental components: Active XML documents and
Active XML service [2], [4], [5].
ActiveXml document. Active XML documents are based
on the simple idea of embedding calls to Web services
within XML documents. An XML syntax is defined to
denote service calls and the elements conforming to this
syntax are allowed to appear anywhere in an Active XML
document. The presence of these elements makes the
document intensional, since these calls represent some
data that are not given explicitly, but intensionally, by
providing means to acquire the corresponding data when

2 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

<?xml version="1.0" encoding="UTF-8" ?>

- <Inventory axml:docName="Inventory" xmlns:axml="http://www-

rocq.inria.fr/verso/AXML">

<publisher>Addison-Wesley</publisher>

<publisher>Morgan Kaufmann Publishers</publisher>

- <books>

- <book year="1999">

<title>The Economics of Technology and Content for Digital TV</title>

- <editor>

<last>Gerbarg</last>

<first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

- <axml:sc frequency="every 3600000" methodName="GetBooksByPublisher"

mode="replace" serviceNameSpace="GetBooksByPublisher"

serviceURL="http://lirispbu.univ-

lyon1.fr:8080/axml/servlet/AxisServlet">

- <axml:params>

- <axml:param name="publisher">

<axml:xpath>../../publisher/text()</axml:xpath>

</axml:param>

</axml:params>

</axml:sc>

</books>

</Inventory>

Fig. 2. Active XML document: Inventory of books

necessary. Active XML documents may also be seen as
dynamic since the same service called at different times
may give different answers if, for example, the external
data source changed. So an active XML document is
capable of reflecting world changes, which means that
it has different semantics at different times. Figure 2 is
an example of an Active XML document that represents
databases of books. This document contains some ex-
tensional information such as records of the publishers
and one record of a book The Economics of Technology
and Content for Digital TV, and at the same time some
intensional information: a service call to get the books
published by the publisher described by Xpath.

Service call elements in ActiveXML. The Service
Call (sc) element is defined in the special namespace
mentioned above and has a set of attributes and children
XML elements defining:

• The Web service to call which is defined by
serviceURL, serviceNameSpace, methodName, and
useWSDLDefinition.

• The attributes that provide information on how and
when to invoke the service call.

• The attributes that influence the behaviors imposed
on the results.

• Parameters that are accepted by the Web service.
• frequency states when the Web service should be

instantiated and the validity of the returned results.

Frequency attribute has two modes: (1) immediate mode,
means that service calls have to be activated as soon as
they expire (2) Lazy mode, means that a service call will
be activated only when its result is useful to the evaluation
of a query or when the instantiation of a service Call
parameter, defined through an XPath expression, is nec-
essary. The presence of lazy calls may cause dependencies
among call activations.
According to the expression of parameters, we distinguish
two kinds of service calls: (1) a concreteservice call is

one whose parameters do not include XPath expressions,
(2) a non-concrete service call is one whose parameters
do include at least one XPath expression.
Service call evaluation. The notion of task is introduced
to track the evaluation of each particular service call.
Since the service call can be concrete or non concrete,
tasks can be concrete or non-concrete. There are two types
of evaluation for each invoked mode:

• Service call with immediate mode.A service call has
to be activated as soon as it expires. The evaluation
is done, first, by selecting the service calls, thereby
processing the selected service call;

• Service call with lazy mode, a service will be acti-
vated only when its result is useful to the evaluation
of a query or when the instantiation of a Service
call parameter, defined through a XPath expression,
is necessary.
The presence of lazy calls may cause dependencies
among call activations. Before instantiating its XPath
parameters, we may need to activate some lazy calls,
that may affect the result of the instantiation. The
dependencies are described by means a graph called
dependency graph . The evaluation process can be
performed according to the query, first evaluating the
dependencies between calls through a dependency
graph. In this case, it is necessary to know which
call is affected by some updates in a node. Second,
selecting the service that can be activated according
to the attribute frequency and dependency graph.
Finally processing the selected service.

The active XML peer. The system which stores and
manages the AXML documents is called Active XML
peer. It takes charge of the automatic activation of the
service calls and the AXML documents’ updating. These
peers work in a decentralized peer-to-peer environment.
An ActiveXML peer has essentially three roles:

• A repository for AXML documents
• A client. An AXML peer can invoke the corre-

sponding service calls to make use of the intensional
data that can be found in AXML documents in the
repository.

• A server. An AXML peer may also provide Web
services in the form of queries over the documents
in its repository for other peers.

The internal architecture of an AXML peer (a part is
depicted in Fig 5 includes the following components: (1)
the repository: it stores the activeXML documents, (2)
the evaluator: it is responsible for the activation of the
service calls embedded inside AXML document and for
the update, (3) the Xquery processor: it deals with the
service requests by evaluating the corresponding queries.
Peers communicate with each other only by means of
Web service invocations, through their SOAP warpper
modules. They can exchange XML data with any Web
service client/provider and exchange ActiveXML data
with ActiveXML peer.

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 3

© 2006 ACADEMY PUBLISHER

IV. IMPLICIT CALLS IN ACTIVEXML DOCUMENTS

As we have seen previously, the service call defined
in Active XML is explicit since the service to call is
indicated explicitly in the element axml:sc by a set of
attributes that specify ”the service to call”. It requires
a user to be aware of its exact location. However, we
expect to call a relevant service by its description (service
query), i.e. implicit service call, instead of its identifica-
tion (location). In order to perform an implicit service call,
we have to know how to integrate the automated service
discovery and composition [6] [7] in Active XML. First,
we describe how to add semantic descriptions in the
service call and then how to obtain the query based on
these descriptions that are used for the service discovery
and composition. Then, we describe how to answer a
query by peer-to-peer composition in a network. Finally,
we present how to evaluate implicit service calls.

A. Implicit calls and OWL-S queries

An automated discovery or composition of services
requires the semantics of its functionality, especially
supported by the use of ontologies, in the description of
the service. Consequently, one way to make the implicit
service call possible in AXML is to annotate the descrip-
tion of service call by ontologies. The main issue here is
to determine the way to annotate. Which attributes of a
service need to be described for the search of appropriate
services? Description of inputs are necessary since they
are needed to invoke the service. Otherwise in the AXML
context, the description of the output is also required.
In some sense, an AXML document can be seen as a
(partially) materialized view that integrates plain XML
data and dynamic data obtained from service calls. This
means when a service is embedded in a document AXML,
we are aware of the data expected to be returned by the
service call. So the description of the output plays an
important role in the discovery of relevant services. An
existing or composite service matches a service query
when their respective output and input match. In the
second thought, the description of the service domain
(service category) is important for the reduction of search
space. Then we describe the service query by its domain,
outputs and inputs.
Query representation We suggest to represent the query
in the form of the service profile description by using
OWL-S. The benefit of this representation is that service
discovery can be done by performing a matching between
service profiles. Furthermore, the precondition and effect
descriptions in OWL-S make possible the extension of the
composition capability. Here, we focus on the collection
of inputs and outputs for composition.
How to annotate the service call? To match the service
queries described in AXML with the offered service
described by means of OWL-S, we need to annotate the
service call with globally shared concepts. Figure 3 shows
the structure of an implicit service call which is different
from the explicit service call in two respects:

<?xml version="1.0" encoding="UTF-8"?>
<Inventory axml:docName="Inventory"
xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<publisher>Addison-Wesley</publisher>
<publisher>Morgan Kaufmann Publishers</publisher>
<books>
<book year="1999">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>
<axml:sc serviceCat=
"http://lirispbu.univ-lyon1.fr/services/hierarchicalProfile.owl#Book"
frequency="every 3600000" mode="replace" >
<axml:params>
<axml:param name="publisher"
param_type=
"http://www.daml.org/services/owl-s/1.1/Process.owl#Input"
param_data_type=
"http://lirispbu.univ-lyon1.fr/services/Concepts.owl#publisher">
<axml:xpath> ../../publisher/text()</axml:xpath>

</axml:param>
<axml:param name="booklist"
param_type=
"http://www.daml.org/services/owl-s/1.1/Process.owl#Output"
param_data_type=
"http://lirispbu.univ-lyon1.fr/services/Concepts.owl#booklist">
<axml:value />

</axml:param>
</axml:params>

</axml:sc>
</books>

</Inventory>

Fig. 3. Active XML document with implicit service call

1) The implicit service call does not specify the at-
tributes (serviceURL,
serviceNameSpace, methodName, signature, and
useWSDLDefinition) that identify the service to be
called, but a new attribute serviceCat allows to
specify the domain of a service. In our example,
the domain of the query is
http://lirispbu.univ-lyon1.fr/
services/hierarchicalProfil.owl#
Book;

2) It adds two attributes param type and
param data type to the param element. Param type
specifies the type (Inputs, Outputs) of a parameter.
Param data type describes the class the values of
the parameter through a concept belong to. In our
example, we want to call a service that provides
a list of books based on the publisher’s name.
The implicit service call is defined as having two
parameters:
(1) publisher being the input of the service whose
value is of type
http://lirispbu.univ-lyon1.fr/
services/Concepts.owl#publisher;
(2)booklist being the output of the service whose
value is of type
http://lirispbu.univ-lyon1.fr/
services/Concepts.owl#booklist.

B. Data model for implicit service calls

In this section we introduce the data model and the
semantics of AXML documents and services.
Intuitively, an AXML instance consists of a number of
peers, each one containing some AXML documents that
are being run. AXML are unordered trees. The evaluation
of these documents generates calls between these peers
and possibly results in new documents being evaluated
at each peer.

4 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

{p, f, x1, x2, …, xn}

Peer Service
domain

input et ouput
avec annotations

?

Implicit service call

Domain of service

Input

Output

Generated
query

OWL-S

profile

Input

Output

hasInput

hasOutput
Domain

Query

Matching

Explicit service call

Explicit service call

UDDI
OWL-S

Fig. 4. Query with implicit service call

Instance. An instance I consists of a number of
peers p1, ..., pn. The content of a peer pi is defined by a
triple (R,F ,W), where Ri the peer’s repository, is a set
of persistent AXML documents, F , the peer’s services,
is a set of AXML service definitions, and W , the peer
working area, is a set of AXML temporary documents.
All these sets are assumed to be finite.
Each document d in the working area W of a peer pi

represents the computation of some service call in pi.

Documents. AXML is modeled by a labeled tree
with nodes representing the document elements/attributes
and the edge represent the component of relationships
among documents. Some of tree leaves are special
implicit service call nodes and is defined by a tuple
< p, f, x1, ..., xn >,

• p : the peer that contains the expected service. It
has to be evaluated by Active XML. Initially, it has
NULL as default value since we do not know which
service will be invoked.

• f : the domain of the expected service.
• x1, ..., xn : the inputs and outputs annotated by

concepts of the expected service.
Service query. Based on the description of the im-
plicit call, a query represented as an OWL-S profile
description [8], [9] is generated for service discovery
and composition. It is depicted in Fig4. The benefit of
this representation is that the service discovery can be
accomplished by performing matching between service
profiles.

C. Peer-to-peer composition for query answering

Once the query is formalized with OWL-S profile, the
discovery and composition tasks can take place.

1) The choice of the peer-to-peer composition
There are two computing types for service discovery
and composition: centralized computing [10]–[13]
and distributed computing [14]–[16].

In the first, a centralized registry exists; every Web
service coming on line advertises its existence and
eventually its functionalities and thereafter, every
service requester has to contact the registry to
discover a particular service or to compose services
and gather information about them. Whereas such
a structure is effective since, it guarantees the dis-
covery of services it has registered, it suffers from
problems such as performance bottlenecks, single
points of failure, and timely synchronization be-
tween the providers and registries (i.e. by updating
the changes of service availability and capabilities)
[14].
Alternatively, distributed computing allows the reg-
istry to be converted from its centralized nature to a
distributed one. In the current Active XML context,
each peer in the network provides the other peers
with its own data as Web services using XQuery
queries raised over the Active XML documents in
their repository. Hence, changes are frequent and
numerous in the service availability and function-
alities in an Active XML peer. Furthermore, we
envision that the number of implicit service calls is
enormous. As we have seen previously, centralized
computing is not suitable for such a situation,
while the distributed computing can resolve the
availability, reliability and scalability problems in
this environment.

2) A composition network
In order to reduce the complexity of the peer-to-
peer composition, we suggest to compute it in a
network, structured into two dimensions based on
the one proposed in [16]. In this network, each
peer can provide some Web services dealing with
particular domains. The peers that provide services
for the same domain are grouped together. Each
peer is a member of at least one domain. Each
domain has both a master peer and a backup peer.
The master peer in each domain maintains two
lists: (1) the list of master and backup peers of
other domains and (2) the list of all peers within the
master peer domain together with the services they
provide as well as the input and output parameters
they accept and generate respectively. The backup
peers have a replica of these lists. Furthermore,
each peer maintains its master, backup peer and
the predecessor-successor lists for its respective
services. A predecessor of a service means the
outputs match the inputs of this service, while a
successor of a service has the inputs matching the
outputs of this service. So, discovery of peers that
can participate in the composition through these
predecessor-successor relationships, starts from
the peer(s) providing the query’s outputs, up to
those accepting the inputs (provided by the query)
required for the composition.

3) SearchService: The peer-to-peer composition

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 5

© 2006 ACADEMY PUBLISHER

structure
A peer-to-peer composition service component in
ActiveXML system, namely searchService, should
be defined in order to achieve the service discovery
and composition task for implicit service call in the
network described previously. Its structure is based
on WSPDS [15]. WSPDS (Web services peer-to-
peer discovery service) is a distributed discovery
service implemented as a cooperative service.
SearchService is composed of two engines: the
communication engine and the local query engine.
Figure 5 depicts the proposed structure for search-
Service:

a) The communication engine: It provides the
interfaces to the Active XML evaluator, to the
user and to the other peers. It is responsible
for the following tasks:
- Receiving service queries from evaluator,
answering the queries by local query (through
the local query engine) and global query (via
the other peers) based on the query phase,
merging the different answers in order to allow
the user to choose the services (particular or
composite) to be invoked, and finally deliv-
ering to the evaluator the list of locations of
chosen services;
- Receiving queries from the other peers in the
peer-to-peer network, resolving the queries by
local query engine, and sending the response
to the caller as well as forwarding to the
candidate peers the query whose lifetime is
not yet over (TTL > 0). The parameter
TTL (Time To Live) is used to restrict the
dissemination of a query in the network and
to control the depth of the composition. For
example, we can suppose the value for TTL
to be 7, and then the query can be propagated
in the network with only a depth of 7.

b) The local query engine: It answers the query
received by the communication engine to the
local peer. It contains three modules: Service-
Cat, the Outputs and the Inputs which are
respectively responsible of the service domain,
outputs matching, and inputs matching be-
tween the OWL-S profile description of the
query and those of existing services.

Most parts of the matching algorithm will be built
on the semantics of the services. The semantics
themselves are described by ontologies. So the
matching between the services can be reduced to
the matching between the concepts that describe the
services including inputs and outputs.
Algorithm 1 deals with output matching. A match-
ing is recognized if and only if for each output
of the query, there is a matching output in the
advertised services. The success depends on the
degree of matches. If one of the query’s output
is not matched to any of the advertisement’s out-

puts, the match fails. The matching between inputs
is performed the same way, but with the query-
advertisement order reversed: the query’s outputs
are matched against the advertisement’s outputs,
the advertisement’s inputs are matched against the
query’s inputs

4) Composition algorithm used by searchService
The algorithm 2 describes the process of discovery
and composition in searchService. When a peer’s
searchService receives the query from its evaluator,
it forwards the query to the master in its domain,
communicates its master’s response with the user
and returns the list of compositions selected by a
user to the evaluator. The master of the initiator
peer determines the candidate domains for the query
and then relays the request to the master peers
of these domains It orders the compositions by
the matching degree and returns the result to the
initiator, when the master peers return the result.
To respond to the query, the masters then consult
their proper Query DB to find whether some of the
existing queries match this query. If such queries
exist, an answer is sent. Otherwise, they search
in their Peer DB to determine which services in
their domain provide all the expected outputs of the
query and transmit the query to the hosts of these
candidate services. When these host peers return the
list of compositions, the master peers compute the
matching degree for each composition based on the
output matching degree, the input matching degree
and the number of its components. Then the master
peers update their own Query DB and return the
list of compositions. To answer the query, the host
determines whether the service requires inputs that
can be provided by the query inputs. If they match,
the host adds the service to the list of compositions.
Otherwise, it relays this query to the peer providing
the predecessor of this service and waits for an
answer from its predecessor peer.

D. Evaluation of implicit service calls

We have seen that in the case where an Active XML
document contains the service call in a lazy mode,
the service call evaluation consists in three steps: (1)
evaluating a dependency graph for each non-concrete
service call; (2) selecting the service call that can
be executed based on the frequency attribute and the
dependency graphs; and (3) processing the selected
service.
However, for the implicit call, the evaluation of the
service location is necessary. Then in the evaluation
process, the third step deals with the evaluation of the
service location and processing of the selected service.

Algorithm 3 describes the processing of an implicit
non-concrete task t. A local process queryGenerator that
takes the parameters annotated as inputs will produce a
query based on OWL-S profile description and will return

6 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

Algorithm 1 Algorithm for Outputs matching – Match Outputs

Require: Qout – list of query’s outputs
Sout – list of service’s outputs

Ensure: tsMatchDegree
outputsMatchDegree ←− 0
for all output OutQ ∈ Qout do

Finding an output OutS ∈ Sout

if � ∃OutS | match Concepts(OutQ.Co,OutS .Co) �= disjoints then
the service does not offer this output demanded, return outputsMatchDegree ←− disjoints

else
outputsMatchDegree ←− outputsMatchDegree + match Concepts(OutQ.Co,OutS .Co)

end if
end for
return outputsMatchDegree ←− outputsMatchDegree/ |OutQ|

Algorithm 2 sketch-Composition Algorithm – searchService

Require: LQD – Location of Query in OWL-S profile Description
QP – Query Phase: toMaster, choiceMaster, choicePeer, choiceComponent
TTL – Time To Live

Ensure: SLLD – Service (composite or simple) Location List with matching Degree
if Query comes from the evaluator, i.e. QP = toMaster then

Transmit this query with choiceMaster phase to its master and communicate the result(SLLD) returned with the
user

else
if QP = choiceMaster then

Transmit this query with choicePeer phase to the masters whose services are in the same domain of the query
Fusion the results(SLLD) received and range the services in the results(SLLD) based on their matching degrees

else
if QP = choicePeer then

if ∃query ∈ QueryDB is similar to this query then
Return the results of the similar query as the responds

else
Transmit the query with choiceComponent phase to the member peers that provides the services whose
outputs match those of the query
Calculate the matching degree for each composition returned and add the composition returned in SLLD
Save the query with the results(SLLD) obtained in its Data bases of query

end if
else

Reduce the TTL of the query
if the inputs of candidate service match those of the query then

Generate a composition that contains the service matched with its matching degree and add it to the local
composition list SLLD

else
if ∃predecessors for the candidate service and the TTL <> 0 then

Transmit this query to its predecessors
Add the candidate service to the compositions in the list SLLD returned by its predecessors

end if
end if
Fusion the local composition list with those returned by their predecessors

end if
end if

end if

the address of the query. A local service searchService
takes as parameters the location of the OWL-S query,
the query phase (QP), the TTL and the service name as
inputs to achieve this task. Then, it returns the locations

of services fulfilling the query. When the evaluation of
the service location is completed, the XPath parameters
that are not annotated as ”output” of the service call are
evaluated. Once the evaluation is done, each pi has the

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 7

© 2006 ACADEMY PUBLISHER

Algorithm 3 peer P , implicit non-concrete task t(d, Pf , f, p1, p2, ..., pn)
if Pf = NULL then

LQD ←− queryGenerator(Pf , f, p1, p2, ..., pn) – Location of OWL-S Query Description
QP ←− toMaster – Query Phase
TTL ←− 7
servieN ←− NULL – service Name
SLL ←− call local service searchService(LQD,QP, TTL, serviceN). – Services’ Location List

else
SLL ←− (Pf , f)

end if
evaluate the XPath parameters p1, p2, ..., pm – the parameters annotated as input.
for all pi ∈ (p1, p2, ..., pm) do

let fi be the value obtained for xi (an AXML forest)
end for
for all (Pf ′

1
, f ′

1), ..., (Pf ′
t
, f ′

t) ∈ LSL do
for all x = x1, x2, ..., xm ∈ f1 × f2 × ... × fm do

create tx(t.root, Pf ′
1
, f ′

1, (t.root, Pf ′
2
, f ′

2, (...(Pf ′
t
, f ′

t , x1, x2, ..., xm)...)))
insert tx in W

end for
end for
suspend until all tx finish

value of an Active XML forest fi. Then the implicit non-
concrete service call is unrolled into explicit concrete
calls. Each service candidate has to be called and takes
as parameters each element in the cartesian product of
the forest f. The processing of t will end when all these
concrete tasks complete their execution. Similarly, the
processing of a concrete call can be adapted to accomplish
the processing of implicit concrete calls.

V. ARCHITECTURE

In this section, we propose a new architecture for
Active XML in order to take into account implicit ser-
vice calls. Figure 5 depicts the internal architecture of
Active XML with implicit service calls. We add two new
components to the initial structure:
1) searchService. It contains two components: the com-

munication engine and the local query engine. It is
in charge of the reception of the query from the
evaluator.

2) The storage.
It maintains the components describing its own peer.
Each peer in the network contains two components in
the storage:

• Description of services is a registry of OWL-S
descriptions of the services provided by the peer.
These service descriptions will be compared to
the service query by the local query engine.

• Process DB is a database maintaining the
predecessor-successor relations dealing with the
services provided by the peer. The directed graph
with input/output compatibility provided by Pro-
cess DB can reduce the computing complexity of
the composition.

The master peers and backup peers contain three
additional components in the storage:

a) Peer DB contains the peers providing the ser-
vices of the community presented by the master.
It serves as the service registry of a particular
domain.

b) Master DB contains the master peers and backup
peers of the other domains. This database is
necessary for the query propagation between
different domains. When the master peer of
the query owner receives the query, it sends
the query to those master peers that are in
its Master DB and whose domain matches the
query domain.

c) Query DB maintains the query, together with
its solution. It allows to reuse the solution of
a similar query, simple or composed, to answer
other queries.

XQuery
processor Evaluator

query

AXML
service

definitions

read
update

read
update

consults

SOAP
wrapper

SOAP

AXML peerS2

SOAP

AXML peerS3

SOAP
service

SOAP client

AXML peerS1

service call service result

AXML storage

Com m unication
engine

Localquery
engine

storage

consults

Descriptions of services

Process DB
Query DB

Peer DB

Master DB
storage

Fig. 5. Architecture for Active XML with implicit service calls

8 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

VI. RELATED WORK

There are many works related to P2P based approach
for Web services discovery and composition. In this
section we review the main approaches.
In [17] a Hypercube ontology-based P2P system that
focuses on the discovery of Web services is presented.
In [18] the Speed-R system is described that makes use of
ontologies to organise Web service discovery registries is
proposed. It also addresses the scalability of the discovery
process.
In [19] a peer to peer indexing system and associated
P2P storage that supports large-scale, decentralized, real-
time search capabilities is developed. It supports complex
queries containing partial keywords and wildcards.
In [20], the authors proposed a Web services integration
platform based on semantic Web and P2P. The platform
can automatically find Web services based on specific
domain ontology. Web services can be annotated and
transformed into OWL-S with richer semantic informa-
tion. Based on user’s requirement, SEWSIP can perform
Web service discovery, selection and composition in a
semi-automatic way. The integrated Web services are
transformed into BPEL for the execution of the services.
[21] presents a workflow engine that supports runtime
look-up of service endpoints based on a a P2P middle-
ware. Using a service identifier based on a DHT identifier,
service proxy objects that encapsulate port information
are downloaded over the structured P2P network from
the host where the service is deployed. A service proxy
delegates service invocations to an abstract protocol adap-
tor framework that uses dynamic invocation mechanisms
to provide a protocol-independent execution of remote
services, e.g., GIOP/IIOP or SOAP.
In [22]a self-serv project is described. The proposed
framework uses a P2P based orchestration model to
support the composition of multienterprise Web services.

The framework we proposed puts the interactions be-
tween peers at the core of data model, through the use
of service calls. It allows peers to play different roles,
and it does not impose strong constraints on interaction
patterns between peers, since they are allowed to define
and use arbitrary Web services. Moreover, AXML is
not a framework for service composition, but for data
integration using Web services.

VII. CONCLUSION

The service calls embedded in XML documents in
the ActiveXML framework are a powerful tool for data
integration. Including support for various integration sce-
narios like mediation, data warehousing and distributing
computations over the Web through the exchange of
ActiveXML documents. The exchange is controlled by
using schemas for the input and output parameters of
Web services. Moreover, the implicit call paradigm we
introduced in this paper has some benefits to enable
dynamic data source discovery and dynamic data retrieval.
The dynamic data is obtained without knowledge on the
data location.

By means of peer-to-peer composition service in the
network according to the community and predecessor-
successor relations, the time to find out the candidate
composition is reasonable.
In our framework, we integrated some techniques in the
Active XML system:
1) OWL-S is used to draw up the query based on the

annotation in the implicit service call.
2) A peer-to-peer composition service is defined to be

used in a structured network.
We consider in this paper only the service functionality
described by inputs and outputs. More appropriate data
source will be found by adding preconditons and effect
descriptions in the implicit call. We plan to investigate
this issue.

ACKNOWLEDGMENT

We would like to thank He Xiaojun and ActiveXML
group (http://activexml.net/) for their help.

REFERENCES

[1] M. Hansen, S. Madnick, and M. Siege, “Data integration using
web services,” MIT Sloan Working Paper, May 2002.

[2] O. Benjelloun, “Active xml: A data centric perspective on web
services,” Ph.D. dissertation, Paris XI university, 2004.

[3] S.Benbernou, X.He, and M.S.Hacid, “Implicit service calls in
activexml through owl-s,” Service-Oriented Computing - ICSOC
2005, Third International Conference, Netherlands, LNCS 3826
Springer 2005, 2005.

[4] S. Abiteboul, O. Benjelloun, and T. Milo, “Positive active xml,”
In Proc. of ACM PODS, 2004.

[5] O. Benjelloun, S. Abiteboul, and T.Milo, “The
active xml project: an overview,” ActiveXML website,
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-331.pdf,
2004.

[6] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara,
“Semantic matching of web services capabilities,” in Proceedings
of the First International Semantic Web Conference, 2002.

[7] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Au-
tomated discovery, interaction and composition of semantic web
services,” Journal of Web Semantics, vol. 1, no. 1, Sept. 2003.

[8] T. O. S. Coalition, “Owl-s: Semantic markup for web services,”
http://www.w3.org/Submission/OWL-S/, Nov. 2004.

[9] D. M. et al., “Bringing semantics to web services: The owl-s
approach,” Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC
2004), 2004.

[10] M. Sheshagiri, M. desJardins, and T. Finin, “A planner for com-
posing services described in daml-s,” AAMAS Workshop on Web
Services and Agent-Based Engineering, 2003.

[11] E. Sirin, B. Parsia, and J. Hendler, “Composition-driven filtering
and selection of semantic web services,” In AAAI Spring Sympo-
sium on Semantic Web Services, 2004.

[12] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition
of web services using semantic descriptions,” In Web Services:
Modeling, Architecture and Infrastructure workshop in ICEIS
2003, Angers, France, Apr. 2003.

[13] B.Benatallah, MS.Hacid, A.Leger, C.Rey, and F.Toumani, “On
automating web services discovery,” VLDB journal, vol. 14, no. 1,
2005.

[14] M. Paolucci, K. Sycara, T. Nishimura, and N. Srinivasan, “Us-
ing daml-s for p2p discovery,” Proceedings of the International
Conference on Web Services, 2003.

[15] F. Banaei-Kashani, C.-C. Chen, and C. Shahabi, “Wspds: Web
services peer-to-peer discovery service,” International Symposium
on Web Services and Applications(ISWS’04), Nevada, June 2004.

[16] B. Arpinar, R. Zhang, B. Aleman-Meza, and A. Maduko,
“Ontology-driven web services composition platform,” e-
Commerce Technology, 2004. CEC 2004. Proceedings. IEEE
International Conference, July 2004.

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 9

© 2006 ACADEMY PUBLISHER

[17] M.Schlosser, M.Sintek, S.Deker, and W.Nejdel, “A scalable and
ontology-based p2p infrastructure for semantic web services,” 2nd
International conference on P2P Computing (P2P’02), 2002.

[18] K.Sivashanmugam, K.Verma, R.Mulye, and Z.Zhong, “Speed-r:
Semantic p2p environment for diverse web services registries,”
http://webster.cs.uga.edu/ mulye/SemEnt/final.html.

[19] C. Schmidt and M. Parashar, “A peer-to-peer approach to web
service discovery,” WWW Journal, vol. 7, no. 2, 2004.

[20] L. Juanzi, X. Bin, Y. Wenjun, C. Dewei, Z. Po, and W. Kehong,
“Sewsip:semantic based web services integration in p2p,” IEEE
International Workshop on Service-Oriented System Engineering
(SOSE’05), 2005.

[21] D.Dahlem, D.McKitterrick, L. WNickel, J.Dowling, B.Biskupski,
and R.Meier, “Binding- and port-agnostic service composition
using a p2p soa,” Technical report at the The University of Dublin
Trinity College Ireland TCD-CS-2006-13, 2006.

[22] B. Benatallah and et al., “The self-serv environment for web
services composition,” Internet Computing, vol. 7, no. 1, 2003.

Salima Benbernou is an associate professor in the computer
science department at the University of Lyon 1, France. Her
research interests include Web services, semantic Web and
knowledge representation. Dr. Benbernou received a PhD in
computer science from University of Valenciennes, France.
Contact her at sbenbernou@liris.cnrs.fr.

Mohand-Said Hacid is a professor in the computer science
department at the University of Lyon 1, France. His is leading
the Database, Knowledge Representation and Reasoning group
(http://www710.univ-lyon1.fr/ dbkrr).

10 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

